Effective Field Theory approach for Dark Energy/ Modified Gravity. Bin HU BNU

Size: px
Start display at page:

Download "Effective Field Theory approach for Dark Energy/ Modified Gravity. Bin HU BNU"

Transcription

1 Effective Field Theory approach for Dark Energy/ Modified Gravity Bin HU BNU NAOC Nov. 2016

2 Outline 1. Evidence of late-time cosmic acceleration 2. Effective Field Theory approach for DE/MG 3. The structure of EFTCAMB 4. Planck-2015 results based on EFTCAMB 5. Conclusion

3 How do we know the Universe is accelerating?

4 It is via Measurement of the distance of far away object What we observed is line of sight integration effect Need to know the intrinsic physics! Standard Standard candle ruler fixed luminosity SNIa credit: WiggleZ team BAO fixed transverse scale

5 SNIa (White dwarf) luminosity module Einstein-DeSitter only CDM+baryon

6 BAO baryonic acoustic oscillation The imprint of sound horizon of Recom epoch on the LSS 100 Mpc 10 Mpc

7 BAO EdS transverse distance scale 100 Mpc 10 Mpc

8 Most simplest explanation LCDM 6 param Early universe ns>1 P(k) ns=1 ns<1 (Harrison-Zeldovich spectrum) 1970s k A_s Amplitude of primordial power spectrum (1E-10) n_s The tilt of the primordial power spectrum (0.96)

9 Most simplest explanation LCDM 6 param Late universe Omega_cdm Fraction of CDM(23%) Omega_b Fraction of baryons (4%) H0 Expansion rate (70 [km/s/mpc]) tau Optical depth of the reionization of hydrogen due to the formation of the first star (0.09), tells us how much percentage of hydrogen is ionised.

10 SN CMB LSS BAO [Planck13 CP paper]

11 Is this the end of story?

12 Tension between high-z and low-z Amplitude matter fluct. at 8 [Mpc/h] matter fluct. Planck (CMB) >> LSS (CFHTLenS) [Planck15-CP paper]

13 Tension between high-z and low-z Lensing amplitude Primary CMB >> Secondary CMB [Planck15-CP paper]

14 Tension between high-z and low-z Mass bias of tsz cluster CMB << LSS [Planck15-SZ paper]

15 Most part is below phantom divide! [Planck15-MG paper]

16 [Planck15-MG paper] GR GR predict, on the large scale, the two gravitational potentials are equal, due to the lack of sources of anisotropic stress!

17 All these motivate us to GR!

18 How to? DE MG Not the math trick of RHS or LHS

19 What do I mean by DE and MG? DE EoS of exotic fluid MG Growth rate of matter fluid LCDM w= w GR z

20 Zeldovich Approximation Continuity eq. Euler eq. Poisson eq. In the linear sub-horizon regime, GR gives The growth rate of CDM only depends on time! The displacement field In GR: CDM particles trajectory is straight line!

21 A video of ZA

22

23 Quasic-Static Approx: DE/MG: DE/MG: at linear regime growth rate of CDM depends on the scales! GR: The displacement field

24 Beyond Zeldovich Approximation DE/MG: at linear regime growth rate of CDM depends on the scales! Deflection by the gravitational potential [W. Valkenburg, BH, JCAP 1509 (2015) no.09, 054] Even at linear regime, trajectory of CDM particles are curved!

25 Examples f(r) gravity w ~0.01 n=1 n= ~0.1 ~ B0~1 B0~1 z at most 10% effect! ~0.01 z Most of viable model gives very similar EoS! It is hard to distinguish them via only EoS for the on-going and up-coming surveys! [Hu,Sawicki, PRD 76, (2007)] Need other observables to break the theoretical degeneracy!

26 /5-1 ~ 60% Many k modes!

27 Take home message: Compared with background probe, we should consider perturbation dynamics!

28 2. Effective Field Theory of DE/MG EFT provides a unified parametrisation of the scalar field perturbations in single scalar field DE/MG given background evolution. [Bloomfield et. al. [Gubitosi et. al. JCAP 1302 (2013) * There are 7 independent functions at linear level, EFT functions

29 The logic of construction of the action 1. Choose the time coordinate (clock), by asking (breaking time translation diffemorphism) 2. Build the block of the action by the operators which keep the unbroken 3D spatial Diffs 3. Multiply these operators by a only time dependent function

30

31 * relate with background operators, only one are independent * EFT functions depend on time only

32 How we know EFT approach is equivalent to the Covariant approach?

33 Covariant approach p t1 Valid in ALL the gauge t

34 EFT approach p Only Valid in the unitary gauge

35 EFT approach=> Covariant approach Identify pi field: Goldstone boson of breaking time shift symm Stuckburg trick: restore full covariance

36 3. The structure of EFTCAMB We implement the pi field into the Einstein-Boltzmann solver CAMB > EFTCAMB Evolving the full Einstein equation, Klein-Golden equation (pi field), fluid equation (CDM,baryon, massive neutrino),boltzmann hierarchy equation sets (CMB, massless neutrino) [Hu et.al. PRD89,103530(2014); PRD90,043513(2014); PRD91,063524(2015)]

37 Introduction The EFT approach Observational results The next phase EFTCAMB structure v1.0 0: GR code 0: LCDM Standard CAMB 1: wcdm Background DE equation of state: (Flag: EFTwDE) 2: CPL 1: pure EFT Use some parametrized forms for the EFT functions Pure EFT Omega model selection: (Flag: PureEFTmodelOmega) Pure EFT gamma_1 model selection: (Flag: PureEFTmodelGamma1) Pure EFT gamma_2 model selection: (Flag: PureEFTmodelGamma2) Pure EFT gamma_3 model selection: (Flag: PureEFTmodelGamma3) Pure EFT gamma_4 model selection: (Flag: PureEFTmodelGamma4) 0: Zero 1: Constant 2: Linear model 3: Power law model 4: Exponential model EFTCAMB STRUCTURE (Main EFT flag: EFTflag) Pure EFT gamma_5 model selection: (Flag: PureEFTmodelGamma5) Pure EFT gamma_6 model selection: (Flag: PureEFTmodelGamma6) 5: User defined 1: f(r) 2: minimally coupled quintessence 2: designer mapping EFT Use a theory whose background mimics exactly the one specified Mapping EFT model selection: (Flag: MappingEFTmodel) 3: non-minimally coupled quintessence 4: k-essence 5: Brans-Dicke 6: Background DE equation of state: (Flag: EFTwDE) 0: LCDM 1: wcdm 2: CPL... ( B.Hu, MR, N.Frusciante, A.Silvestri, arxiv: : EFTCAMB/EFTCosmoMC: Numerical Notes v1.0 ) Marco Raveri Theoretical Cosmology in the Era of Large Surveys 37

38 Introduction The EFT approach Observational results The next phase EFTCAMB structure v2.0 0: GR code 0: LCDM Standard CAMB 1: wcdm 1: pure EFT Use some parametrized forms for the EFT functions Background DE equation of state: (Flag: EFTwDE) Pure EFT Omega model selection: (Flag: PureEFTmodelOmega) Pure EFT gamma_1 model selection: (Flag: PureEFTmodelGamma1) Pure EFT gamma_2 model selection: (Flag: PureEFTmodelGamma2) Pure EFT gamma_3 model selection: (Flag: PureEFTmodelGamma3) Pure EFT gamma_4 model selection: (Flag: PureEFTmodelGamma4) 2: CPL 3: JBP 4: Turning point 5: Taylor expansion 6: User defined 0: Zero 1: Constant 2: Linear model 3: Power law model 4: Exponential model EFTCAMB STRUCTURE (Main EFT flag: EFTflag) Pure EFT gamma_5 model selection: (Flag: PureEFTmodelGamma5) Pure EFT gamma_6 model selection: (Flag: PureEFTmodelGamma6) Pure EFT Horndeski: (Flag: PureEFTHorndeski) 5: User defined Restricts pure EFT models to Horndeski. Pure EFT choices for gamma_4, gamma_5, gamma_6 will be ignored and handled internally. 1: f(r) 2: minimally coupled quintessence 2: designer mapping EFT Use a theory whose background mimics exactly the one specified Mapping EFT model selection: (Flag: MappingEFTmodel) 3: non-minimally coupled quintessence 4: k-essence 5: Brans-Dicke 6: Background DE equation of state: (Flag: EFTwDE) 0: LCDM 1: wcdm 2: CPL... Planck mass: (Flag: RPHmassPmodel) 3: EFT alternative parametrization Use a parametrization that is mapped to the EFT framework Parametrized EFT model selection: (Flag: AltParEFTmodel) 1: ReParametrized Horndeski... Background DE equation of state: (Flag: EFTwDE) 0: LCDM 1: wcdm 2: CPL Kineticity: (Flag: RPHkineticitymodel) Braiding: (Flag: RPHbraidingmodel) Tensor: (Flag: RPHtensormodel) 0: Zero 1: Constant 2: Power law model 3: User defined 4: full EFT mapping Use a theory by specifying it completely and mapping it to the EFT framework Full EFT mapping model selection: (Flag: FullMappingEFTmodel)... 1: Horava gravity 2: more coming soon! Low-energy Horava gravity Low-energy Horava gravity evading Solar System constraints (Flag: HoravaSolarSystem) ( B.Hu, MR, N.Frusciante, A.Silvestri, arxiv: : EFTCAMB/EFTCosmoMC: Numerical Notes v2.0 ) Marco Raveri Theoretical Cosmology in the Era of Large Surveys 38

39 3.1 Background parametrization EoS EFTCAMB provides 6 different kinds of parametrization of EoS (Flag: EFTwDE), including: LCDM (w=-1), wcdm (w=w0), CPL (w=w0+wa*a),

40 3.2 EFT parametrization: Pure EFT Phenomenological parametrization, e.g.

41 3.2 EFT parametrization: Full mapping designer mapping e.g. Designer f(r) gravity [Song,Hu,Sawicki PRD75:044004,2007] GR limit: B0 > 0, effetive mass > Infty

42

43 kinetic friction mass sound speed source Have pass the viability condition:

44 pi field solution: f(r) example pi a

45 CMB spectra example: f(r)

46 Initial Condition for N-body simulations Designer f(r) with LCDM background B0=0.001

47 Designer f(r) with wcdm background B0=0.01 and w=-0.95

48 FalconIC [ [Wessel Valkenburg, BH, arxiv: ]

49 4. Parameter estimation results from EFTCosmoMC and Planck-2015 Designer f(r) CosmoMC >EFTCosmoMC Linear EFT [Planck-2015,MG paper]

50 5. Conclusion EFTCAMB include most of viable single field DE/MG model For scalar field: full perturbative treatment, does not rely on quasistatic approx Support various background, LCDM/wCDM/CPL Check the stability for given parameterization Selected by Planck 2015 data release Selected by Theory Working Group of Euclid

51 Thank you!

with EFTCAMB: The Hořava gravity case

with EFTCAMB: The Hořava gravity case Testing dark energy and modified gravity models with EFTCAMB: The Hořava gravity case Noemi Frusciante UPMC-CNRS, Institut d Astrophysique de Paris, Paris ERC-NIRG project no.307934 Based on NF, M. Raveri,

More information

EFTCAMB: exploring Large Scale Structure observables with viable dark energy and modified gravity models

EFTCAMB: exploring Large Scale Structure observables with viable dark energy and modified gravity models EFTCAMB: exploring Large Scale Structure observables with viable dark energy and modified gravity models Noemi Frusciante Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade

More information

Galileon Cosmology ASTR448 final project. Yin Li December 2012

Galileon Cosmology ASTR448 final project. Yin Li December 2012 Galileon Cosmology ASTR448 final project Yin Li December 2012 Outline Theory Why modified gravity? Ostrogradski, Horndeski and scalar-tensor gravity; Galileon gravity as generalized DGP; Galileon in Minkowski

More information

COLA with scale dependent growth: applications to modified gravity and massive neutrinos

COLA with scale dependent growth: applications to modified gravity and massive neutrinos COLA with scale dependent growth: applications to modified gravity and massive neutrinos Kazuya Koyama Institute of Cosmology and Gravitation, University of Portsmouth Curvature Psaltis Living Rev. Relativity

More information

Cosmological and astrophysical applications of vector-tensor theories

Cosmological and astrophysical applications of vector-tensor theories Cosmological and astrophysical applications of vector-tensor theories Shinji Tsujikawa (Tokyo University of Science) Collaboration with A.De Felice, L.Heisenberg, R.Kase, M.Minamitsuji, S.Mukohyama, S.

More information

TESTING GRAVITY WITH COSMOLOGY

TESTING GRAVITY WITH COSMOLOGY 21 IV. TESTING GRAVITY WITH COSMOLOGY We now turn to the different ways with which cosmological observations can constrain modified gravity models. We have already seen that Solar System tests provide

More information

Shant Baghram. Séminaires de l'iap. IPM-Tehran 13 September 2013

Shant Baghram. Séminaires de l'iap. IPM-Tehran 13 September 2013 Structure Formation: à la recherche de paramètre perdu Séminaires de l'iap Shant Baghram IPM-Tehran 13 September 013 Collaborators: Hassan Firoujahi IPM, Shahram Khosravi Kharami University-IPM, Mohammad

More information

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli Coupled Dark University of Rome La Sapienza Roma, October 28th 2011 Outline 1 2 3 4 5 1 2 3 4 5 Accelerated Expansion Cosmological data agree with an accelerated expansion of the Universe d L [Mpc] 16000

More information

What can Cosmology tell us about Gravity? Levon Pogosian Simon Fraser University

What can Cosmology tell us about Gravity? Levon Pogosian Simon Fraser University What can Cosmology tell us about Gravity? Levon Pogosian Simon Fraser University Rob Crittenden ICG, Portsmouth Kazuya Koyama ICG, Portsmouth Simone Peirone U. Leiden Alessandra Silvestri U. Leiden Marco

More information

Introduction to hi class

Introduction to hi class CLASSy Tests of Gravity and Dark Energy Nordic Institute for Theoretical Physics and UC Berkeley Cosmology in Theory and Practice September 2017 Fundamental physics and cosmology Initial conditions, Dark

More information

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 BAO & RSD Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 Overview Introduction Standard rulers, a spherical collapse picture of BAO, the Kaiser formula, measuring distance

More information

Cosmological Tests of Gravity

Cosmological Tests of Gravity Cosmological Tests of Gravity Levon Pogosian Simon Fraser University, Canada VIA Lecture, 16 May, 2014 Workshop on Testing Gravity at SFU Harbour Centre January 15-17, 2015 Alternative theories of gravity

More information

To Lambda or not to Lambda?

To Lambda or not to Lambda? To Lambda or not to Lambda? Supratik Pal Indian Statistical Institute Kolkata October 17, 2015 Conclusion We don t know :) Partly based on my works with Dhiraj Hazra, Subha Majumdar, Sudhakar Panda, Anjan

More information

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14 Signatures of MG on non- linear scales Fabian Schmidt MPA Garching Lorentz Center Workshop, 7/15/14 Tests of gravity Smooth Dark Energy (DE): unique prediction for growth factor given w(a) Use evolution

More information

Can kinetic Sunyaev-Zel dovich effect be used to detect the interaction between DE and DM? Bin Wang Shanghai Jiao Tong University

Can kinetic Sunyaev-Zel dovich effect be used to detect the interaction between DE and DM? Bin Wang Shanghai Jiao Tong University Can kinetic Sunyaev-Zel dovich effect be used to detect the interaction between DE and DM? Bin Wang Shanghai Jiao Tong University Outline: The interaction model between DE&DM The ISW effect as a probe

More information

Non-linear structure formation in modified gravity

Non-linear structure formation in modified gravity Non-linear structure formation in modified gravity Kazuya Koyama Institute of Cosmology and Gravitation, University of Portsmouth Cosmic acceleration Many independent data sets indicate the expansion of

More information

Could dark energy be modified gravity or related to matter?

Could dark energy be modified gravity or related to matter? Could dark energy be modified gravity or related to matter? Rachel Bean Cornell University In collaboration with: David Bernat (Cornell) Michel Liguori (Cambridge) Scott Dodelson (Fermilab) Levon Pogosian

More information

Physical Cosmology 18/5/2017

Physical Cosmology 18/5/2017 Physical Cosmology 18/5/2017 Alessandro Melchiorri alessandro.melchiorri@roma1.infn.it slides can be found here: oberon.roma1.infn.it/alessandro/cosmo2017 Summary If we consider perturbations in a pressureless

More information

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum Physics 463, Spring 07 Lecture 3 Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum last time: how fluctuations are generated and how the smooth Universe grows

More information

CMB Anisotropies Episode II :

CMB Anisotropies Episode II : CMB Anisotropies Episode II : Attack of the C l ones Approximation Methods & Cosmological Parameter Dependencies By Andy Friedman Astronomy 200, Harvard University, Spring 2003 Outline Elucidating the

More information

CMB Polarization in Einstein-Aether Theory

CMB Polarization in Einstein-Aether Theory CMB Polarization in Einstein-Aether Theory Masahiro Nakashima (The Univ. of Tokyo, RESCEU) With Tsutomu Kobayashi (RESCEU) COSMO/CosPa 2010 Introduction Two Big Mysteries of Cosmology Dark Energy & Dark

More information

Gravity at the Horizon

Gravity at the Horizon from the cosmic dawn to ultra-large scales Nordic Institute for Theoretical Physics UC Berkeley KICP - April 2016 with L. Amendola, E. Bellini, J. Lesgourgues, F. Montanari, V. Pettorino, J. Renk, I. Sawicki

More information

Tests of cosmological gravity

Tests of cosmological gravity Tests of cosmological gravity Jeremy Sakstein University of Pennsylvania Astrophysics Seminar UC Irvine 23 rd January 2018 Who am I? Particle-cosmology (baryogenesis, early universe) Modified gravity (dark

More information

CMB studies with Planck

CMB studies with Planck CMB studies with Planck Antony Lewis Institute of Astronomy & Kavli Institute for Cosmology, Cambridge http://cosmologist.info/ Thanks to Anthony Challinor & Anthony Lasenby for a few slides (almost) uniform

More information

Modified Gravity and Cosmology

Modified Gravity and Cosmology Modified Gravity and Cosmology Kazuya Koyama Institute of Cosmology and Gravitation, University of Portsmouth Cosmic acceleration Many independent data sets indicate the expansion of the Universe is accelerating

More information

Dark Energy. RESCEU APcosPA Summer School on Cosmology and Particle Astrophysics Matsumoto city, Nagano. July 31 - August

Dark Energy. RESCEU APcosPA Summer School on Cosmology and Particle Astrophysics Matsumoto city, Nagano. July 31 - August RESCEU APcosPA Summer School on Cosmology and Particle Astrophysics Matsumoto city, Nagano LCC, Université Montpellier 2 July 31 - August 4 2014 More : Friedmann-Lemaître-Robertson-Walker (FLRW) universes:

More information

NEUTRINO COSMOLOGY. n m. n e. n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006

NEUTRINO COSMOLOGY. n m. n e. n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006 NEUTRINO COSMOLOGY n e n m n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006 LIMITS ON THE PROPERTIES OF LIGHT NEUTRINOS FROM COSMOLOGICAL DATA THE MASS OF THE ACTIVE SPECIES BOUNDS ON OTHER

More information

Detecting Dark Energy Perturbations

Detecting Dark Energy Perturbations H. K. Jassal IISER Mohali Ftag 2013, IIT Gandhinagar Outline 1 Overview Present day Observations Constraints on cosmological parameters 2 Theoretical Issues Clustering dark energy Integrated Sachs Wolfe

More information

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology from Large Scale Structure Sky Surveys Supernovae Ia CMB

More information

Healthy theories beyond Horndeski

Healthy theories beyond Horndeski Healthy theories beyond Horndeski Jérôme Gleyzes, IPhT CEA Saclay with D. Langlois, F. Piazza and F. Vernizzi, arxiv:1404.6495, arxiv:1408.1952 ITP Heidelberg 26/11/14 Introduction to Horndeski Going safely

More information

The Cosmic Linear Anisotropy Solving System:

The Cosmic Linear Anisotropy Solving System: a most classy way from Fundamental Physics to Cosmology Nordic Institute for Theoretical Physics and UC Berkeley IFT School on Cosmology Tools March 2017 DISCLAIMER: Short time! 2h course overview and

More information

Cosmological perturbations in f(r) theories

Cosmological perturbations in f(r) theories 5 th IBERIAN COSMOLOGY MEETING 30 th March 2010, Porto, Portugal Cosmological perturbations in f(r) theories Álvaro de la Cruz-Dombriz Theoretical Physics Department Complutense University of Madrid in

More information

Mimetic dark matter. The mimetic DM is of gravitational origin. Consider a conformal transformation of the type:

Mimetic dark matter. The mimetic DM is of gravitational origin. Consider a conformal transformation of the type: Mimetic gravity Frederico Arroja FA, N. Bartolo, P. Karmakar and S. Matarrese, JCAP 1509 (2015) 051 [arxiv:1506.08575 [gr-qc]] and JCAP 1604 (2016) no.04, 042 [arxiv:1512.09374 [gr-qc]]; S. Ramazanov,

More information

Neutrino Mass Limits from Cosmology

Neutrino Mass Limits from Cosmology Neutrino Physics and Beyond 2012 Shenzhen, September 24th, 2012 This review contains limits obtained in collaboration with: Emilio Ciuffoli, Hong Li and Xinmin Zhang Goal of the talk Cosmology provides

More information

Bimetric Massive Gravity

Bimetric Massive Gravity Bimetric Massive Gravity Tomi Koivisto / Nordita (Stockholm) 21.11.2014 Outline Introduction Bimetric gravity Cosmology Matter coupling Conclusion Motivations Why should the graviton be massless? Large

More information

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information

The Nature of Dark Energy and its Implications for Particle Physics and Cosmology

The Nature of Dark Energy and its Implications for Particle Physics and Cosmology The Nature of Dark Energy and its Implications for Particle Physics and Cosmology May 3, 27@ University of Tokyo Tomo Takahashi Department of Physics, Saga University 1. Introduction Current cosmological

More information

Imprint of Scalar Dark Energy on CMB polarization

Imprint of Scalar Dark Energy on CMB polarization Imprint of Scalar Dark Energy on CMB polarization Kin-Wang Ng ( 吳建宏 ) Institute of Physics & Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan Cosmology and Gravity Pre-workshop NTHU, Apr

More information

Baryon Acoustic Oscillations Part I

Baryon Acoustic Oscillations Part I Baryon Acoustic Oscillations Part I Yun Wang (on behalf of the Euclid collaboration) ESTEC, November 17, 2009 Outline Introduction: BAO and galaxy clustering BAO as a standard ruler BAO as a robust dark

More information

Neutrinos in the era of precision Cosmology

Neutrinos in the era of precision Cosmology Neutrinos in the era of precision Cosmology Marta Spinelli Rencontres du Vietnam Quy Nhon - 21 July 2017 The vanilla model: -CDM (Late times) cosmological probes Supernovae Ia standard candles fundamental

More information

The Once and Future CMB

The Once and Future CMB The Once and Future CMB DOE, Jan. 2002 Wayne Hu The On(c)e Ring Original Power Spectra of Maps 64º Band Filtered Ringing in the New Cosmology Gravitational Ringing Potential wells = inflationary seeds

More information

New techniques to measure the velocity field in Universe.

New techniques to measure the velocity field in Universe. New techniques to measure the velocity field in Universe. Suman Bhattacharya. Los Alamos National Laboratory Collaborators: Arthur Kosowsky, Andrew Zentner, Jeff Newman (University of Pittsburgh) Constituents

More information

Introduction to CosmoMC

Introduction to CosmoMC Introduction to CosmoMC Part I: Motivation & Basic concepts Institut de Ciències del Cosmos - Universitat de Barcelona Dept. de Física Teórica y del Cosmos, Universidad de Granada, 1-3 Marzo 2016 What

More information

The AfterMap Wayne Hu EFI, February 2003

The AfterMap Wayne Hu EFI, February 2003 The AfterMap Wayne Hu EFI, February 2003 Connections to the Past Outline What does MAP alone add to the cosmology? What role do other anisotropy experiments still have to play? How do you use the MAP analysis

More information

Cosmological tests of ultra-light axions

Cosmological tests of ultra-light axions Cosmological tests of ultra-light axions Daniel Grin University of Chicago IAU General Assembly, Honolulu, 8/11/2015 FM5 The legacy of Planck R.Hlozek, DG, D.J. E. Marsh, P.Ferreira, arxiv:1410.2896, PRD

More information

Testing gravity on cosmological scales with the observed abundance of massive clusters

Testing gravity on cosmological scales with the observed abundance of massive clusters Testing gravity on cosmological scales with the observed abundance of massive clusters David Rapetti, KIPAC (Stanford/SLAC) In collaboration with Steve Allen (KIPAC), Adam Mantz (KIPAC), Harald Ebeling

More information

Concordance Cosmology and Particle Physics. Richard Easther (Yale University)

Concordance Cosmology and Particle Physics. Richard Easther (Yale University) Concordance Cosmology and Particle Physics Richard Easther (Yale University) Concordance Cosmology The standard model for cosmology Simplest model that fits the data Smallest number of free parameters

More information

2013: A Good Year for Cosmology A Brief History of Contemporary Cosmology

2013: A Good Year for Cosmology A Brief History of Contemporary Cosmology 2013: A Good Year for Cosmology A Brief History of Contemporary Cosmology Cristiano Sabiu School of Physics, KIAS The Universe on large scales seems to obey the proposed cosmological principle; it is homogeneous

More information

Phys/Astro 689: Lecture 3. The Growth of Structure

Phys/Astro 689: Lecture 3. The Growth of Structure Phys/Astro 689: Lecture 3 The Growth of Structure Last time Examined the milestones (zeq, zrecomb, zdec) in early Universe Learned about the WIMP miracle and searches for WIMPs Goal of Lecture Understand

More information

Synergizing Screening Mechanisms on Different Scales

Synergizing Screening Mechanisms on Different Scales Synergizing Screening Mechanisms on Different Scales Jeremy Sakstein University of Pennsylvania Probing the dark sector and general relativity at all scales CERN 17 th August 2017 Or. What should astrophysical

More information

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena The Power of the Galaxy Power Spectrum Eric Linder 13 February 2012 WFIRST Meeting, Pasadena UC Berkeley & Berkeley Lab Institute for the Early Universe, Korea 11 Baryon Acoustic Oscillations In the beginning...

More information

Structure formation and observational tests. Kazuya Koyama University of Portsmouth

Structure formation and observational tests. Kazuya Koyama University of Portsmouth Structure foration and observational tests Kazuya Koyaa University of Portsouth How to test D/MG odels instein equations M G T, T G ( T ) 0 M D MG Background (hoogeneity & Isotropy) everything is deterined

More information

Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter

Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter Nguyen Quynh Lan Hanoi National University of Education, Vietnam (University of Notre Dame, USA) Rencontres du Vietnam:

More information

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY PARAMETRIC MODEL 16 spectra in total C(θ) = CMB theoretical spectra plus physically motivated templates for the

More information

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The history of modern cosmology 1917 Static via cosmological constant? (Einstein) 1917 Expansion (Slipher) 1952 Big Bang criticism (Hoyle)

More information

N-body Simulations and Dark energy

N-body Simulations and Dark energy N-Body Simulations and models of Dark Energy Elise Jennings Supported by a Marie Curie Early Stage Training Fellowship N-body Simulations and Dark energy elise jennings Introduction N-Body simulations

More information

An Effective Field Theory for Large Scale Structures

An Effective Field Theory for Large Scale Structures An Effective Field Theory for Large Scale Structures based on 1301.7182 with M. Zaldarriaga, 1307.3220 with L. Mercolli, 1406.4135 with T. Baldauf, L. Mercolli & M. Mirbabayi Enrico Pajer Utrecht University

More information

The Cosmic Microwave Background and Dark Matter

The Cosmic Microwave Background and Dark Matter The Cosmic Microwave Background and Dark Matter (FP7/20072013) / ERC Consolidator Grant Agreement n. 617656 Constantinos Skordis (Institute of Physics, Prague & University of Cyprus) Paris, 30 May 2017

More information

Baryon Acoustic Oscillations (BAO) in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample

Baryon Acoustic Oscillations (BAO) in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample Baryon Acoustic Oscillations (BAO) in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample BOMEE LEE 1. Brief Introduction about BAO In our previous class we learned what is the Baryon Acoustic Oscillations(BAO).

More information

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis Absolute Neutrino Mass from Cosmology Manoj Kaplinghat UC Davis Kinematic Constraints on Neutrino Mass Tritium decay (Mainz Collaboration, Bloom et al, Nucl. Phys. B91, 273, 2001) p and t decay Future

More information

Cosmic Large-scale Structure Formations

Cosmic Large-scale Structure Formations Cosmic Large-scale Structure Formations Bin HU bhu@bnu.edu.cn Astro@BNU Office: 京师 大厦 9907 18 weeks outline Background (1 w) universe geometry and matter components (1 hr) Standard candle (SNIa) (0.5 hr)

More information

Modified gravity. Kazuya Koyama ICG, University of Portsmouth

Modified gravity. Kazuya Koyama ICG, University of Portsmouth Modified gravity Kazuya Koyama ICG, University of Portsmouth Cosmic acceleration Cosmic acceleration Big surprise in cosmology Simplest best fit model LCDM 4D general relativity + cosmological const. H

More information

Probing alternative theories of gravity with Planck

Probing alternative theories of gravity with Planck Probing alternative theories of gravity with Planck Andrea Marchini Sapienza - University of Rome based on Updated constraints from the Planck experiment on modified gravity:prd88,027502 In collaboration

More information

Complementarity in Dark Energy measurements. Complementarity of optical data in constraining dark energy. Licia Verde. University of Pennsylvania

Complementarity in Dark Energy measurements. Complementarity of optical data in constraining dark energy. Licia Verde. University of Pennsylvania Complementarity in Dark Energy measurements Complementarity of optical data in constraining dark energy Licia Verde University of Pennsylvania www.physics.upenn.edu/~lverde The situation: SN 1A (Riess

More information

Cosmological Perturbation Theory

Cosmological Perturbation Theory Cosmological Perturbation Theory! Martin Crocce! Institute for Space Science, Barcelona! Cosmology School in Canary Islands, Fuerteventura 18/09/2017 Why Large Scale Structure? Number of modes in CMB (temperature)

More information

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris Braneworlds: gravity & cosmology David Langlois APC & IAP, Paris Outline Introduction Extra dimensions and gravity Large (flat) extra dimensions Warped extra dimensions Homogeneous brane cosmology Brane

More information

CosmoSIS Webinar Part 1

CosmoSIS Webinar Part 1 CosmoSIS Webinar Part 1 An introduction to cosmological parameter estimation and sampling Presenting for the CosmoSIS team: Elise Jennings (Fermilab, KICP) Joe Zuntz (University of Manchester) Vinicius

More information

Observational Cosmology

Observational Cosmology The Cosmic Microwave Background Part I: CMB Theory Kaustuv Basu Course website: http://www.astro.uni-bonn.de/~kbasu/obscosmo CMB parameter cheat sheet 2 Make your own CMB experiment! Design experiment

More information

Elise Jennings University of Chicago

Elise Jennings University of Chicago Pacific 2014 Testing gravity with large scale structure dynamics Elise Jennings University of Chicago THE UNIVERSITY OF CHICAGO THE ENRICO FERMI INSTITUTE EJ, B. Li, C.M. Baugh, G. Zhao, K. Kazuya 2013

More information

The Principal Components of. Falsifying Cosmological Paradigms. Wayne Hu FRS, Chicago May 2011

The Principal Components of. Falsifying Cosmological Paradigms. Wayne Hu FRS, Chicago May 2011 The Principal Components of Falsifying Cosmological Paradigms Wayne Hu FRS, Chicago May 2011 The Standard Cosmological Model Standard ΛCDM cosmological model is an exceedingly successful phenomenological

More information

Scale symmetry a link from quantum gravity to cosmology

Scale symmetry a link from quantum gravity to cosmology Scale symmetry a link from quantum gravity to cosmology scale symmetry fluctuations induce running couplings violation of scale symmetry well known in QCD or standard model Fixed Points Quantum scale symmetry

More information

Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe

Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe Yun Wang Univ. of Oklahoma II Jayme Tiomno School of Cosmology August 6-10, 2012 Plan of the Lectures Lecture I: Overview

More information

Introduction to the Vainshtein mechanism

Introduction to the Vainshtein mechanism Introduction to the Vainshtein mechanism Eugeny Babichev LPT, Orsay School Paros 23-28 September 2013 based on arxiv:1107.1569 with C.Deffayet OUTLINE Introduction and motivation k-mouflage Galileons Non-linear

More information

Testing the CDM paradigm with the CMB

Testing the CDM paradigm with the CMB Testing the CDM paradigm with the CMB Deepdreamed CMB The research leading to these results has received funding from the European Research Council under the European Union s Seventh Framework Programme

More information

Testing Gravity Cosmologically

Testing Gravity Cosmologically Testing Gravity Cosmologically Philippe Brax IPhT Saclay Asphon Toulouse March 2013 The Big Puzzle How do we know? measuring distances! Absolute luminosity. Received flux: what we see in the telescope

More information

Cosmology with high (z>1) redshift galaxy surveys

Cosmology with high (z>1) redshift galaxy surveys Cosmology with high (z>1) redshift galaxy surveys Donghui Jeong Texas Cosmology Center and Astronomy Department University of Texas at Austin Ph. D. thesis defense talk, 17 May 2010 Cosmology with HETDEX

More information

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University 1 Physics of the Large Scale Structure Pengjie Zhang Department of Astronomy Shanghai Jiao Tong University The observed galaxy distribution of the nearby universe Observer 0.7 billion lys The observed

More information

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA Dark Energy in Light of the CMB (or why H 0 is the Dark Energy) Wayne Hu February 2006, NRAO, VA If its not dark, it doesn't matter! Cosmic matter-energy budget: Dark Energy Dark Matter Dark Baryons Visible

More information

Dark Energy at the Speed of Gravitational Waves

Dark Energy at the Speed of Gravitational Waves New probes of gravity and cosmic acceleration Nordita & BCCP Theoretical Cosmology in the Light of Data - July 2017 with A. Barreira, F. Montanari, J. Renk (1707.xxxxx) D. Bettoni, JM Ezquiaga, K. Hinterbichler

More information

Modified gravity as an alternative to dark energy. Lecture 3. Observational tests of MG models

Modified gravity as an alternative to dark energy. Lecture 3. Observational tests of MG models Modified gravity as an alternative to dark energy Lecture 3. Observational tests of MG models Observational tests Assume that we manage to construct a model How well can we test the model and distinguish

More information

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris)

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris) Dark energy & Modified gravity in scalar-tensor theories David Langlois (APC, Paris) Introduction So far, GR seems compatible with all observations. Several motivations for exploring modified gravity Quantum

More information

Dark Matter Halos in Warm Dark Matter Models

Dark Matter Halos in Warm Dark Matter Models Dark Matter Halos in Warm Dark Matter Models 5. June @ Workshop CIAS Meudon 2013 Ayuki Kamada (Kavli IPMU, Univ. of Tokyo) in collaboration with Naoki Yoshida (Kavli IPMU, Univ. of Tokyo) Kazunori Kohri

More information

non-linear structure formation beyond the Newtonian approximation: a post-friedmann approach

non-linear structure formation beyond the Newtonian approximation: a post-friedmann approach non-linear structure formation beyond the Newtonian approximation: a post-friedmann approach Marco Bruni, Institute of Cosmology and Gravitation University of Portsmouth, UK Credits work with Irene Milillo

More information

Examining the Viability of Phantom Dark Energy

Examining the Viability of Phantom Dark Energy Examining the Viability of Phantom Dark Energy Kevin J. Ludwick LaGrange College 11/12/16 Kevin J. Ludwick (LaGrange College) Examining the Viability of Phantom Dark Energy 11/12/16 1 / 28 Outline 1 Overview

More information

Post-Newtonian cosmology

Post-Newtonian cosmology Post-Newtonian cosmology Dirk Puetzfeld (Iowa State University) COSMO-05, Bonn 28 August - 1 September 2005 Motivation i. Is there a systematic framework which allows us to quantify general relativistic

More information

Measuring Neutrino Masses and Dark Energy

Measuring Neutrino Masses and Dark Energy Huitzu Tu UC Irvine June 7, 2007 Dark Side of the Universe, Minnesota, June 5-10 2007 In collaboration with: Steen Hannestad, Yvonne Wong, Julien Lesgourgues, Laurence Perotto, Ariel Goobar, Edvard Mörtsell

More information

Thermalization of axion dark matter

Thermalization of axion dark matter Thermalization of axion dark matter Ken ichi Saikawa ICRR, The University of Tokyo Collaborate with M. Yamaguchi (Tokyo Institute of Technology) Reference: KS and M. Yamaguchi, arxiv:1210.7080 [hep-ph]

More information

Examining the Viability of Phantom Dark Energy

Examining the Viability of Phantom Dark Energy Examining the Viability of Phantom Dark Energy Kevin J. Ludwick LaGrange College 12/20/15 (11:00-11:30) Kevin J. Ludwick (LaGrange College) Examining the Viability of Phantom Dark Energy 12/20/15 (11:00-11:30)

More information

Nonlocal gravity and comparison with cosmological datasets

Nonlocal gravity and comparison with cosmological datasets Nonlocal gravity and comparison with cosmological datasets Michele Maggiore Cosmology on Safari, Jan. 2015 based on Jaccard, MM, Mitsou, PRD 2013, 1305.3034 MM, PRD 2014, 1307.3898 Foffa, MM, Mitsou, PLB

More information

Lecture 3. The inflation-building toolkit

Lecture 3. The inflation-building toolkit Lecture 3 The inflation-building toolkit Types of inflationary research Fundamental physics modelling of inflation. Building inflation models within the context of M-theory/braneworld/ supergravity/etc

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

Cosmological parameters of modified gravity

Cosmological parameters of modified gravity Cosmological parameters of modified gravity Levon Pogosian Simon Fraser University Burnaby, BC, Canada In collaborations with R. Crittenden, A. Hojjati, K. Koyama, A. Silvestri, G.-B. Zhao Two questions

More information

Constraints on the deviations from general relativity

Constraints on the deviations from general relativity 14/10/2010 Minneapolis Constraints on the deviations from general relativity From local to cosmological scales Jean-Philippe UZAN GR in a nutshell Underlying hypothesis Equivalence principle Universality

More information

The impact of relativistic effects on cosmological parameter estimation

The impact of relativistic effects on cosmological parameter estimation The impact of relativistic effects on cosmological parameter estimation arxiv:1710.02477 (PRD) with David Alonso and Pedro Ferreira Christiane S. Lorenz University of Oxford Rencontres de Moriond, La Thuile,

More information

Cosmological neutrinos

Cosmological neutrinos Cosmological neutrinos Yvonne Y. Y. Wong CERN & RWTH Aachen APCTP Focus Program, June 15-25, 2009 2. Neutrinos and structure formation: the linear regime Relic neutrino background: Temperature: 4 T,0 =

More information

Modern Cosmology / Scott Dodelson Contents

Modern Cosmology / Scott Dodelson Contents Modern Cosmology / Scott Dodelson Contents The Standard Model and Beyond p. 1 The Expanding Universe p. 1 The Hubble Diagram p. 7 Big Bang Nucleosynthesis p. 9 The Cosmic Microwave Background p. 13 Beyond

More information

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 El Universo en Expansion Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 5 billion years (you are here) Space is Homogeneous and Isotropic General Relativity An Expanding Universe

More information

A Panorama of Modified Gravity. Philippe Brax IPhT Saclay (associate researcher IAP)

A Panorama of Modified Gravity. Philippe Brax IPhT Saclay (associate researcher IAP) A Panorama of Modified Gravity Philippe Brax IPhT Saclay (associate researcher IAP) The Universe accelerates: why? Maybe a landscape of Universes? Or not? The acceleration of the Universe could also be

More information

Interaction between dark energy and dark matter. 王斌 Fudan University

Interaction between dark energy and dark matter. 王斌 Fudan University Interaction between dark energy and dark matter 王斌 Fudan University 相互作用 暗能量 暗物质理论及实验 DE--? Concordance Cosmology Λ 1. QFT value 123 orders larger than the observed 2. Coincidence problem: Why the universe

More information

CMB Anisotropies and Fundamental Physics. Lecture II. Alessandro Melchiorri University of Rome «La Sapienza»

CMB Anisotropies and Fundamental Physics. Lecture II. Alessandro Melchiorri University of Rome «La Sapienza» CMB Anisotropies and Fundamental Physics Lecture II Alessandro Melchiorri University of Rome «La Sapienza» Lecture II CMB & PARAMETERS (Mostly Dark Energy) Things we learned from lecture I Theory of CMB

More information