Cosmology, Scalar Fields and Hydrodynamics

Size: px
Start display at page:

Download "Cosmology, Scalar Fields and Hydrodynamics"

Transcription

1 Cosmology, Scalar Fields and Hydrodynamics Alexander Vikman (CERN)

2 THIS TALK IS BASED ON WORK IN PROGRESS AND Imperfect Dark Energy from Kinetic Gravity Braiding arxiv: [hep-th], JCAP 1010:026, 2010 The Imperfect Fluid behind Kinetic Gravity Braiding arxiv: [hep-th] IN COLLABORATION WITH Cédric Deffayet, Oriol Pujolàs & Ignacy Sawicki

3 Good news: now cosmologists have some understanding about the processes in the very early universe when it was seconds young! - Inflation Image Credit WMAP Science Team Bad news: we do not know what the universe is made of now % is Dark: Dark Matter (DM) & Dark Energy (DE) Image Credit: NASA Excellent news - a lot of work to do for physicists!

4 ISOTROPY AND HOMOGENEITY OF THE FRIEDMANN UNIVERSE T µν =(E + P ) u µ u ν Pg µν One can characterize the universe by energy density and pressure (and equation of state ) P w X = P/E A perfect fluid or a simple scalar field have this Energy - Momentum Tensor (EMT) on all backgrounds E

5 WHAT DO WE KNOW ABOUT DARK ENERGY? It is accelerating the universe and is Dark Energy scale 10 3 ev the same as for DM approximately 75% of the energy budget of the universe today P E equation of state up to ±5-10% Λ Is it just? Cosmological Constant Problem...

6 MAY BE DARK ENERGY IS NOT JUST Λ?

7 INDEED, THERE WAS INFLATION- ANOTHER STAGE OF THE ACCELERATED EXPANSION IN THE VERY EARLY UNIVERSE

8 WHAT DO WE KNOW ABOUT INFLATON? It accelerated the universe (how Dark is it???) Mass scale GeV dominated the universe when it was seconds young P E equation of state up to % lasted at least couple of dozens of cosmic times

9 MAIN RESULTS OF THE SIMPLEST INFLATION the universe is huge and spatially flat Image Credit WMAP Science Team the cosmological perturbations e.g. Newtonian potential are Gaussian with the power spectrum speed of sound c 2 s ( P E δ 2 Φ (k) ) φ δ Φ (k) E c s (1 + P/E) H=c s k : fluctuation of on length scale δ 2 h µν (k) E Φ Garriga & Mukhanov 99 l = k 1 for the Gravity Waves H=k n s 1= d ln δ2 Φ d ln k =

10 CAN ONE GO BEYOND THE PERFECT FLUID, BUT STILL KEEPING ONLY ONE SINGLE DEGREE OF FREEDOM?

11

12 φ g µν BRAIDING METRIC WITH A SCALAR FIELD- Kinetic Gravity Braiding

13 WHAT IS KINETIC GRAVITY BRAIDING? S φ = d 4 x g [K (φ,x)+g (φ,x) φ] k-inflation/essence, Armendariz-Picon, Damour, Mukhanov, Steinhardt 1999/2000 where X 1 2 gµν µ φ ν φ Minimal coupling to gravity S tot = S φ + S EH However, derivatives of the metric are coupled to the derivatives of the scalar, provided G X 0 shift-symmetry: theory is not parity symmetric: φ φ + c φ φ

14 ACTION FOR KINETIC GRAVITY BRAIDING IS SIMILAR TO EINSTEIN-HILBERT ACTION The second derivatives (higher derivative -HD) enter the action but only linearly One can eliminate the HD(in time) only by breaking the Lorentz-invariant formulation of the theory. Boundary terms are required! Despite the HD in the action, the equations of motion are still of the 2nd order: NO new degrees of freedom - NO Ostrogradsky s ghosts order of equations of motion >2 implies Hamiltonian unbounded from below - ghosts

15 KINETIC GRAVITY BRAIDING IS SIMILAR TO GALILEON ( Nicolis, Rattazzi, Trincherini 2008) BUT Does not require the Galilean symmetry: φ φ + c General functions µ φ µ φ + c µ K (φ,x) Minimal coupling to gravity, NO NO higher order therms like φt µ µ & & G (φ,x) φ ;λ φ ;λ (( φ) 2 φ ;µν φ ;µν 1 4 φ ;µφ ;µ R General Galileon Indeed, manifestly healthy Galileons are NEVER Galilean symmetric!!! Deffayet, Esposito-Farese, AV, 2009 ) DGP in decoupling limit Kinetic Gravity Braiding K-Essence, DBI K (φ,x)

16 EXPANSIONS IN GRADIENT TERMS K-Essence, DBI etc K (φ,x) X ( 1+c 1 (φ) X + c 2 (φ) X ) Kinetic Gravity Braiding integrate the canonical kinetic energy by parts G (φ,x) φ φ φ ( 1 + c 1 (φ) X + c 2 (φ) X )

17 EQUATION OF MOTION I L µν µ ν φ +( α β φ) Q αβµν ( µ ν φ)+ +Z G X R µν µ φ ν φ =0 Braiding EOM is of the second order: L µν, Q αβµν, Z constructed from field and it s first derivatives Q αβµν is such that EOM is a 4D Lorentzian generalization of the Monge-Ampère Equation, always linear in φ

18 EQUATION OF MOTION II Shift-Charge Current: J µ J µ =(L X 2G φ ) µ φ G X µ X New Equivalent Lagrangian: P P = K 2XG φ G X λ φ λ X Equation of motion is a conservation law : µ J µ = P φ

19 BRAIDING Einstein Equations (φ, φ, φ, g, g, g) =0 φeom (φ, φ, φ, g, g, g) =0 Cannot solve separately!!!! characteristics (cones of propagation ) depend on external matter

20 IMPERFECT FLUID FOR TIMELIKE GRADIENTS Four velocity : u µ µφ 2X φ is an internal clock projector: Time derivative: Expansion : µν = g µν u µ u ν ( ) d dτ uλ λ θ λ µ λ u µ = V /V Shift-symmetry φ φ + c violates φ φ and introduces arrow of time comoving volume

21 EFFECTIVE MASS & CHEMICAL POTENTIAL κ 2XG X charge density: n J µ u µ = n 0 + κθ Braiding energy density: E T µν u µ u ν = E 0 + θ φκ effective mass per shift-charge / chemical potential: ( E ) m n V,φ = 2X = φ

22 SHIFT-CURRENT AND DIFFUSION J µ = nu µ κ m λ µ λ m Diffusion 59, L&L, vol. 6 κ 2XG X Is a diffusivity / transport coefficient

23 IMPERFECT FLUID ENERGY-MOMENTUM TENSOR Pressure P 1 3 T µν µν = P 0 κṁ Energy Flow q µ µλ T λ ν u ν = m µν J ν q µ = κ ν µ ν m No Heat Flux! Energy Momentum Tensor T µν = Eu µ u ν µν P +2u (µ q ν) Solving for ṁ for small gradients or small κ one obtains bulk viscosity

24 DIFFUSION OF CHARGE For incompressible motion θ 0 equation of motion is: (D ) ṅ = µ µ n + Da µ µ n where the diffusion constant: D κ c.f. 59, L&L, vol. 6, p 232 n m m 4-acceleration: a µ u µ spatial gradient: µ ν µ ν

25 ENERGY CONSERVATION IN COMOVING VOLUME Energy conservation: u ν µ T µν =0 de = PdV + mdn dif Euler relation: E = mn P 0 Momentum conservation: µν λ T λν =0

26 VACUUM-ATTRACTORS Euler relation: E = mn P 0 for no particles: n =0 E = P κ ṁ almost ds!

27 COSMOLOGY q µ =0 and θ =3H Friedmann Equation: H 2 = κmh (E 0 + ρ ext ) r 1 c = κm crossover scale in DGP

28 CHARGE CONSERVATION ṅ +3Hn = P φ If there is shift-symmetry then P φ =0 n a 3

29 INFLATION BRINGS THE SCALAR TO ATTRACTOR n =0

30 EXAMPLE: SIMPLEST IMPERFECT DARK ENERGY Only one free parameter µ Lagrangian L = X ( 1+µ φ) shift-charge density n = m (3µHm 1)

31 NONTRIVIAL ATTRACTOR No Particles: n =0 m = (3µH) 1 m =0 H 2 = 1 6 ρ ext ( (µρ ext) 2 ) H 2 = 1 3 ρ ext STABLE GHOSTY

32 DARK ENERGY assume today 3 2 µρ ext 1 H µ 1 Λ µ 1 3ρ CDM 3 2 ρ CDMµ Mass Scale µ 1/3 (H 2 0 M Pl ) 1/ ev Length Scale: 1000 km In Quintessence - the size of the universe

33 HIGH FREQUENCY STABILITY Effective metric for perturbations No Ghosts G µν = Du µ u ν + Ω µν 2κ m K µν 2κ m a (µ u ν) D = E m κθ m κ2 Ω = n + λ Extrinsic curvature for φ = const ( κu λ ) In general propagation is anisotropic, but in cosmology: c 2 s = m Ωm 2κH md 1 2 κ2

34 SOUND SPEED c 2 s = P m + 2 κ + κ (4H κm/2) E m 3κ (H κm/2) Ṗ E The relation between the equation of state, the sound speed and the presence of ghosts is very different from the k-essence & perfect fluid. w X < 1 A manifestly stable Phantom ( ) is possible even with a single degree of freedom and minimal coupling to gravity

35 Phantom Attractor Crossing Ghosty Total Energy negative 2µX Pressure singularity Phase portrait for scalar field & dust

36 Ω X w X c 2 s log a Evolution of dark energy properties in the Friedmann universe also containing dust and radiation. The scalar evolves on its attractor throughout the presented period. During matter domination w X = 2, while w X = 7/3 during radiation domination. The sound speed is superluminal when the scalar energy density is subdominant, becoming subluminal when Ω X 0.1 and w X 1.4

37 Ω X w X c 2 s log a Evolution of DE properties in the Friedmann universe which also contains dust and radiation. The energy density in the scalar is J-dominated (off attractor) until a transition during the matter domination epoch. This allows the scalar to increase its contribution to the total energy budget throughout radiation domination (w X =1/6) and provide an early DE peaked at matterradiation equality, from whence it begins to decline with w X =1/4. The transition to the attractor behaviour is rapid. The equation of state crosses w X = 1 and the scalar energy density begins to grow. The final stages of evolution are on the attractor and are similar to those presented in previous figure.

38 w X wx w X0 0.1 < Ω m < 0.5 and Ω Xeq < 0.1. The shading contours correspond to the energy density of DE today Ω X0. Two parameterisations of DE behaviour are shown: w X and w X evaluated today, and w X evaluated today and at z =1/2. The requirement that the energy density in DE at matter-radiation equality be small, Ω eq X < 0.1 forces the value of the shift charge to be small today Q 0 < This means that in the most recent history, the evolution has effectively been on attractor or very close to it and the permitted value of w X is very restricted and determined to all intents and purposes by Ω 0 X

39 w X wx w X The shading representing the contribution of DE to energy density at matterradiation equality. We choose to cut the parameters such that the contribution to this early DE at that time is no larger than 10%. It can clearly be seen that values of w X closer to 1 are obtained when the shift charge is larger, but this leads to more early DE, eventually disagreeing with current constraints

40 FURTHER DEVELOPMENT Kinetic Gravity Braiding with G X n arxiv: v2 [astro-ph.co], Rampei Kimura, Kazuhiro Yamamoto

41 CONSTRAINTS FROM CMB AND SN IA Kinetic Gravity Braiding with G X n arxiv: v2 [astro-ph.co], Rampei Kimura, Kazuhiro Yamamoto SN Ia CMB The SCP Union2 Compilation is a collection of 557 type Ia supernovae data whose range of the redshift is < z < 1.4 Thus n 3 mass scale 10 3 ev Length Scale: 1/10 mm

42 GROWTH FACTOR Kinetic Gravity Braiding with G X n arxiv: v2 [astro-ph.co], Rampei Kimura, Kazuhiro Yamamoto

43 EFFECTIVE NEWTON CONSTANT FOR PERTURBATIONS AND THE SOUND SPEED Kinetic Gravity Braiding with G X n arxiv: v2 [astro-ph.co], Rampei Kimura, Kazuhiro Yamamoto

44 FOR INFLATIONARY MODELS WITH BRAIDING SEE G-(& GENERALIZED G)-INFLATION T. Kobayashi, M. Yamaguchi, J. Yokoyama arxiv: [hep-th] arxiv: [hep-th]

45 CONCLUSIONS I φ Scalar field with a non-canonical action can behave like imperfect fluid: on general (not exactly isotropic and homogeneous FRW) background: T µν Eu µ u ν µν P Fluid elements (particles) are shift-charges: charges with respect to: φ φ + c φ kinetically mixes / braids with the metric: ( φ) 2 µ ( gg µν ν φ ) c.f. F (1) µν (A α ) F (2)µν (B β )

46 CONCLUSIONS II Manifestly stable (no ghosts and no gradient instabilities) and large violation of the Null Energy Condition (NEC) is possible even in theories minimally coupled to gravity: healthy Phantom with w< 1 n =0 Vanishing shift-charge,, corresponds to cosmological attractors similar to Ghost Condensate / bad k-inflation. But here these attractors can be manifestly stable (no ghosts and no gradient instabilities) and their exact properties depend on external matter. Through Euler relation these attractors generically E = mn P 0 evolve to de Sitter in late time asymptotic. Interesting for DE & Inflation!

47 THANKS A LOT FOR YOUR ATTENTION!

Galileon Cosmology ASTR448 final project. Yin Li December 2012

Galileon Cosmology ASTR448 final project. Yin Li December 2012 Galileon Cosmology ASTR448 final project Yin Li December 2012 Outline Theory Why modified gravity? Ostrogradski, Horndeski and scalar-tensor gravity; Galileon gravity as generalized DGP; Galileon in Minkowski

More information

Generalized Galileon and Inflation

Generalized Galileon and Inflation Generalized Galileon and Inflation Tsutomu Kobayashi Hakubi Center & Department of Physics Kyoto University RESCEU/DENET Summer School @ Kumamoto DENET Summer School @ Kochi, 8.31 2010 Last year, I talked

More information

G-inflation. Tsutomu Kobayashi. RESCEU, Univ. of Tokyo. COSMO/CosPA The Univ. of Tokyo

G-inflation. Tsutomu Kobayashi. RESCEU, Univ. of Tokyo. COSMO/CosPA The Univ. of Tokyo COSMO/CosPA 2010 @ The Univ. of Tokyo G-inflation Tsutomu Kobayashi RESCEU, Univ. of Tokyo Based on work with: Masahide Yamaguchi (Tokyo Inst. Tech.) Jun ichi Yokoyama (RESCEU & IPMU) arxiv:1008.0603 G-inflation

More information

Healthy theories beyond Horndeski

Healthy theories beyond Horndeski Healthy theories beyond Horndeski Jérôme Gleyzes, IPhT CEA Saclay with D. Langlois, F. Piazza and F. Vernizzi, arxiv:1404.6495, arxiv:1408.1952 ITP Heidelberg 26/11/14 Introduction to Horndeski Going safely

More information

Cosmological and astrophysical applications of vector-tensor theories

Cosmological and astrophysical applications of vector-tensor theories Cosmological and astrophysical applications of vector-tensor theories Shinji Tsujikawa (Tokyo University of Science) Collaboration with A.De Felice, L.Heisenberg, R.Kase, M.Minamitsuji, S.Mukohyama, S.

More information

Primordial non-gaussianity from G-inflation

Primordial non-gaussianity from G-inflation PASCOS 2011 @ Cambridge, UK Primordial non-gaussianity from G-inflation Tsutomu Kobayashi Hakubi Center & Department of Physics Kyoto University Based on work with Masahide Yamaguchi (Tokyo Inst. Tech.)

More information

Mimetic dark matter. The mimetic DM is of gravitational origin. Consider a conformal transformation of the type:

Mimetic dark matter. The mimetic DM is of gravitational origin. Consider a conformal transformation of the type: Mimetic gravity Frederico Arroja FA, N. Bartolo, P. Karmakar and S. Matarrese, JCAP 1509 (2015) 051 [arxiv:1506.08575 [gr-qc]] and JCAP 1604 (2016) no.04, 042 [arxiv:1512.09374 [gr-qc]]; S. Ramazanov,

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

Mimetic Cosmology. Alexander Vikman. New Perspectives on Cosmology Institute of Physics of the Czech Academy of Sciences

Mimetic Cosmology. Alexander Vikman. New Perspectives on Cosmology Institute of Physics of the Czech Academy of Sciences New Perspectives on Cosmology Mimetic Cosmology Alexander Vikman Institute of Physics of the Czech Academy of Sciences 07.01.2016 This talk is mostly based on arxiv: 1512.09118, K. Hammer, A. Vikman arxiv:

More information

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories CHAPTER 4 INFLATIONARY MODEL BUILDING Essentially, all models are wrong, but some are useful. George E. P. Box, 1987 As we learnt in the previous chapter, inflation is not a model, but rather a paradigm

More information

Topics on Galileons and generalized Galileons. Pacific 2016, Moorea, Sept the 13th. 1. What are scalar Galileons? 2. What are they useful for?

Topics on Galileons and generalized Galileons. Pacific 2016, Moorea, Sept the 13th. 1. What are scalar Galileons? 2. What are they useful for? Topics on Galileons and generalized Galileons Pacific 2016, Moorea, Sept the 13th 1. What are scalar Galileons? Cédric Deffayet (IAP and IHÉS, CNRS Paris Bures sur Yvette) 2. What are they useful for?

More information

Gravitational Waves. GR: 2 polarizations

Gravitational Waves. GR: 2 polarizations Gravitational Waves GR: 2 polarizations Gravitational Waves GR: 2 polarizations In principle GW could have 4 other polarizations 2 vectors 2 scalars Potential 4 `new polarizations Massive Gravity When

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

Examining the Viability of Phantom Dark Energy

Examining the Viability of Phantom Dark Energy Examining the Viability of Phantom Dark Energy Kevin J. Ludwick LaGrange College 12/20/15 (11:00-11:30) Kevin J. Ludwick (LaGrange College) Examining the Viability of Phantom Dark Energy 12/20/15 (11:00-11:30)

More information

Cosmology in generalized Proca theories

Cosmology in generalized Proca theories 3-rd Korea-Japan workshop on dark energy, April, 2016 Cosmology in generalized Proca theories Shinji Tsujikawa (Tokyo University of Science) Collaboration with A.De Felice, L.Heisenberg, R.Kase, S.Mukohyama,

More information

Examining the Viability of Phantom Dark Energy

Examining the Viability of Phantom Dark Energy Examining the Viability of Phantom Dark Energy Kevin J. Ludwick LaGrange College 11/12/16 Kevin J. Ludwick (LaGrange College) Examining the Viability of Phantom Dark Energy 11/12/16 1 / 28 Outline 1 Overview

More information

Nonlinear massive gravity and Cosmology

Nonlinear massive gravity and Cosmology Nonlinear massive gravity and Cosmology Shinji Mukohyama (Kavli IPMU, U of Tokyo) Based on collaboration with Antonio DeFelice, Emir Gumrukcuoglu, Chunshan Lin Why alternative gravity theories? Inflation

More information

Scale-invariance from spontaneously broken conformal invariance

Scale-invariance from spontaneously broken conformal invariance Scale-invariance from spontaneously broken conformal invariance Austin Joyce Center for Particle Cosmology University of Pennsylvania Hinterbichler, Khoury arxiv:1106.1428 Hinterbichler, AJ, Khoury arxiv:1202.6056

More information

Is Cosmic Acceleration Telling Us Something About Gravity?

Is Cosmic Acceleration Telling Us Something About Gravity? Is Cosmic Acceleration Telling Us Something About Gravity? Mark Trodden Syracuse University [See many other talks at this meeting; particularly talks by Carroll, Dvali, Deffayet,... ] NASA Meeting: From

More information

Dark Energy a cosmic mystery. Dunkle Energie Ein kosmisches Raetsel

Dark Energy a cosmic mystery. Dunkle Energie Ein kosmisches Raetsel Dark Energy a cosmic mystery Dunkle Energie Ein kosmisches Raetsel Quintessence C.Wetterich A.Hebecker,M.Doran,M.Lilley,J.Schwindt, C.Müller,G.Sch ller,g.schäfer,e.thommes, R.Caldwell,M.Bartelmann, K.Karwan,G.Robbers

More information

Vainshtein mechanism. Lecture 3

Vainshtein mechanism. Lecture 3 Vainshtein mechanism Lecture 3 Screening mechanism Screening mechanisms The fifth force should act only on large scales and it should be hidden on small scales This implies that these mechanisms should

More information

The Nature of Dark Energy and its Implications for Particle Physics and Cosmology

The Nature of Dark Energy and its Implications for Particle Physics and Cosmology The Nature of Dark Energy and its Implications for Particle Physics and Cosmology May 3, 27@ University of Tokyo Tomo Takahashi Department of Physics, Saga University 1. Introduction Current cosmological

More information

arxiv:astro-ph/ v3 18 Apr 2005

arxiv:astro-ph/ v3 18 Apr 2005 Phantom Thermodynamics Revisited A. Kwang-Hua CHU P.O. Box 30-15, Shanghai 200030, PR China arxiv:astro-ph/0412704v3 18 Apr 2005 Abstract Although generalized Chaplygin phantom models do not show any big

More information

Stable violation of the null energy condition and non-standard cosmologies

Stable violation of the null energy condition and non-standard cosmologies Paolo Creminelli (ICTP, Trieste) Stable violation of the null energy condition and non-standard cosmologies hep-th/0606090 with M. Luty, A. Nicolis and L. Senatore What is the NEC? Energy conditions: Singularity

More information

D. f(r) gravity. φ = 1 + f R (R). (48)

D. f(r) gravity. φ = 1 + f R (R). (48) 5 D. f(r) gravity f(r) gravity is the first modified gravity model proposed as an alternative explanation for the accelerated expansion of the Universe [9]. We write the gravitational action as S = d 4

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology João G. Rosa joao.rosa@ua.pt http://gravitation.web.ua.pt/cosmo LECTURE 2 - Newtonian cosmology I As a first approach to the Hot Big Bang model, in this lecture we will consider

More information

Classical Dynamics of Inflation

Classical Dynamics of Inflation Preprint typeset in JHEP style - HYPER VERSION Classical Dynamics of Inflation Daniel Baumann School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 http://www.sns.ias.edu/ dbaumann/

More information

Extended mimetic gravity:

Extended mimetic gravity: Extended mimetic gravity: Hamiltonian analysis and gradient instabilities Kazufumi Takahashi (JSPS fellow) Rikkyo University Based on KT, H. Motohashi, T. Suyama, and T. Kobayashi Phys. Rev. D 95, 084053

More information

Closed Universes, de Sitter Space and Inflation

Closed Universes, de Sitter Space and Inflation Closed Universes, de Sitter Space and Inflation Chris Doran Cavendish Laboratory Based on astro-ph/0307311 by Lasenby and Doran The Cosmological Constant Dark energy responsible for around 70% of the total

More information

Three-form Cosmology

Three-form Cosmology Three-form Cosmology Nelson Nunes Centro de Astronomia e Astrofísica Universidade de Lisboa Koivisto & Nunes, PLB, arxiv:97.3883 Koivisto & Nunes, PRD, arxiv:98.92 Mulryne, Noller & Nunes, JCAP, arxiv:29.256

More information

Gravitational scalar-tensor theory

Gravitational scalar-tensor theory Gravitational scalar-tensor theory Atsushi NARUKO (TiTech = To-Ko-Dai) with : Daisuke Yoshida (TiTech) Shinji Mukohyama (YITP) plan of my talk 1. Introduction 2. Model 3. Generalisation 4. Summary & Discussion

More information

The general form of the coupled Horndeski Lagrangian that allows cosmological scaling solutions

The general form of the coupled Horndeski Lagrangian that allows cosmological scaling solutions The general form of the coupled Horndeski Lagrangian that allows cosmological scaling solutions Adalto R. Gomes Universidade Federal do Maranhão UFMA Based on a collaboration with Luca Amendola, Heidelberg

More information

Alternatives To Inflation. Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute

Alternatives To Inflation. Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute Alternatives To Inflation Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute PLANCK data A simple universe: approximately homogeneous, isotropic, flat With, in addition, nearly scale-invariant,

More information

The Theory of Inflationary Perturbations

The Theory of Inflationary Perturbations The Theory of Inflationary Perturbations Jérôme Martin Institut d Astrophysique de Paris (IAP) Indian Institute of Technology, Chennai 03/02/2012 1 Introduction Outline A brief description of inflation

More information

Sergei D. Odintsov (ICREA and IEEC-CSIC) Misao Sasaki (YITP, Kyoto University and KIAS) Presenter : Kazuharu Bamba (KMI, Nagoya University)

Sergei D. Odintsov (ICREA and IEEC-CSIC) Misao Sasaki (YITP, Kyoto University and KIAS) Presenter : Kazuharu Bamba (KMI, Nagoya University) Screening scenario for cosmological constant in de Sitter solutions, phantom-divide crossing and finite-time future singularities in non-local gravity Reference: K. Bamba, S. Nojiri, S. D. Odintsov and

More information

The Big Crunch/Big Bang Transition. 1. Measure for inflation 2. Passing through singularities - no beginning proposal

The Big Crunch/Big Bang Transition. 1. Measure for inflation 2. Passing through singularities - no beginning proposal The Big Crunch/Big Bang Transition Neil Turok, Perimeter Institute 1. Measure for inflation 2. Passing through singularities - no beginning proposal 2 inflation * initial conditions * fine-tuned potentials

More information

Graceful exit from inflation for minimally coupled Bianchi A scalar field models

Graceful exit from inflation for minimally coupled Bianchi A scalar field models Graceful exit from inflation for minimally coupled Bianchi A scalar field models Florian Beyer Reference: F.B. and Leon Escobar (2013), CQG, 30(19), p.195020. University of Otago, Dunedin, New Zealand

More information

with Matter and Radiation By: Michael Solway

with Matter and Radiation By: Michael Solway Interactions of Dark Energy with Matter and Radiation By: Michael Solway Advisor: Professor Mike Berger What is Dark Energy? Dark energy is the energy needed to explain the observed accelerated expansion

More information

Coupled Dark Energy and Dark Matter from dilatation symmetry

Coupled Dark Energy and Dark Matter from dilatation symmetry Coupled Dark Energy and Dark Matter from dilatation symmetry Cosmological Constant - Einstein - Constant λ compatible with all symmetries Constant λ compatible with all observations No time variation in

More information

Cosmic Bubble Collisions

Cosmic Bubble Collisions Outline Background Expanding Universe: Einstein s Eqn with FRW metric Inflationary Cosmology: model with scalar field QFTà Bubble nucleationà Bubble collisions Bubble Collisions in Single Field Theory

More information

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE Francisco Torrentí - IFT/UAM Valencia Students Seminars - December 2014 Contents 1. The Friedmann equations 2. Inflation 2.1. The problems of hot Big

More information

arxiv: v1 [hep-th] 1 Oct 2008

arxiv: v1 [hep-th] 1 Oct 2008 Cascading Gravity and Degravitation Claudia de Rham Dept. of Physics & Astronomy, McMaster University, Hamilton ON, Canada Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada arxiv:0810.069v1

More information

Cosmology: An Introduction. Eung Jin Chun

Cosmology: An Introduction. Eung Jin Chun Cosmology: An Introduction Eung Jin Chun Cosmology Hot Big Bang + Inflation. Theory of the evolution of the Universe described by General relativity (spacetime) Thermodynamics, Particle/nuclear physics

More information

An all-scale exploration of alternative theories of gravity. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste

An all-scale exploration of alternative theories of gravity. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste An all-scale exploration of alternative theories of gravity Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste General Outline Beyond GR: motivation and pitfalls Alternative

More information

Massive gravity meets simulations?

Massive gravity meets simulations? Massive gravity meets simulations? Kazuya Koyama University of Portsmouth Non-linear massive gravity theory (de Rham, Gadadadze & Tolley 10) Two key features Self-acceleration A graviton mass accounts

More information

Introduction to the Vainshtein mechanism

Introduction to the Vainshtein mechanism Introduction to the Vainshtein mechanism Eugeny Babichev LPT, Orsay School Paros 23-28 September 2013 based on arxiv:1107.1569 with C.Deffayet OUTLINE Introduction and motivation k-mouflage Galileons Non-linear

More information

Scalar perturbations of Galileon cosmologies in the mechanical approach in the late Universe

Scalar perturbations of Galileon cosmologies in the mechanical approach in the late Universe Scalar perturbations of Galileon cosmologies in the mechanical approach in the late Universe Perturbation theory as a probe of viable cosmological models Jan Novák Department of physics Technical University

More information

Towards a new scenario of inflationary magnetogenesis. Shinji Mukohyama (YITP, Kyoto U) Based on PRD94, 12302(R) (2016)

Towards a new scenario of inflationary magnetogenesis. Shinji Mukohyama (YITP, Kyoto U) Based on PRD94, 12302(R) (2016) Towards a new scenario of inflationary magnetogenesis Shinji Mukohyama (YITP, Kyoto U) Based on PRD94, 12302(R) (2016) Why modified gravity? Inflation Dark Energy Big Bang Singularity Dark Matter http://map.gsfc.nasa.gov/

More information

CHAPTER 3 THE INFLATIONARY PARADIGM. 3.1 The hot Big Bang paradise Homogeneity and isotropy

CHAPTER 3 THE INFLATIONARY PARADIGM. 3.1 The hot Big Bang paradise Homogeneity and isotropy CHAPTER 3 THE INFLATIONARY PARADIGM Ubi materia, ibi geometria. Johannes Kepler 3.1 The hot Big Bang paradise In General Relativity, the Universe as a whole becomes a dynamical entity that can be modeled

More information

Modified gravity. Kazuya Koyama ICG, University of Portsmouth

Modified gravity. Kazuya Koyama ICG, University of Portsmouth Modified gravity Kazuya Koyama ICG, University of Portsmouth Cosmic acceleration Cosmic acceleration Big surprise in cosmology Simplest best fit model LCDM 4D general relativity + cosmological const. H

More information

Chapter 4. COSMOLOGICAL PERTURBATION THEORY

Chapter 4. COSMOLOGICAL PERTURBATION THEORY Chapter 4. COSMOLOGICAL PERTURBATION THEORY 4.1. NEWTONIAN PERTURBATION THEORY Newtonian gravity is an adequate description on small scales (< H 1 ) and for non-relativistic matter (CDM + baryons after

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 9 Inflation - part I Having discussed the thermal history of our universe and in particular its evolution at times larger than 10 14 seconds

More information

A brain teaser: The anthropic principle! Last lecture I said Is cosmology a science given that we only have one Universe? Weak anthropic principle: "T

A brain teaser: The anthropic principle! Last lecture I said Is cosmology a science given that we only have one Universe? Weak anthropic principle: T Observational cosmology: The Friedman equations 1 Filipe B. Abdalla Kathleen Lonsdale Building G.22 http://zuserver2.star.ucl.ac.uk/~hiranya/phas3136/phas3136 A brain teaser: The anthropic principle! Last

More information

TESTING GRAVITY WITH COSMOLOGY

TESTING GRAVITY WITH COSMOLOGY 21 IV. TESTING GRAVITY WITH COSMOLOGY We now turn to the different ways with which cosmological observations can constrain modified gravity models. We have already seen that Solar System tests provide

More information

Dark Matter and Dark Energy

Dark Matter and Dark Energy Dark Matter and Dark Energy Sean Carroll, University of Chicago Our universe, as inventoried over the last ten years: 5% Ordinary Matter 25% D ark M atter 70% Dark Energy Dark Energy Dark Matter Ordinary

More information

Detecting Dark Energy Perturbations

Detecting Dark Energy Perturbations H. K. Jassal IISER Mohali Ftag 2013, IIT Gandhinagar Outline 1 Overview Present day Observations Constraints on cosmological parameters 2 Theoretical Issues Clustering dark energy Integrated Sachs Wolfe

More information

Gravitation: Cosmology

Gravitation: Cosmology An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

From inflation to the CMB to today s universe. I - How it all begins

From inflation to the CMB to today s universe. I - How it all begins From inflation to the CMB to today s universe I - How it all begins Raul Abramo Physics Institute - University of São Paulo abramo@fma.if.usp.br redshift Very brief cosmic history 10 9 200 s BBN 1 MeV

More information

BIANCHI TYPE I ANISOTROPIC UNIVERSE WITHOUT BIG SMASH DRIVEN BY LAW OF VARIATION OF HUBBLE S PARAMETER ANIL KUMAR YADAV

BIANCHI TYPE I ANISOTROPIC UNIVERSE WITHOUT BIG SMASH DRIVEN BY LAW OF VARIATION OF HUBBLE S PARAMETER ANIL KUMAR YADAV BIANCHI TYPE I ANISOTROPIC UNIVERSE WITHOUT BIG SMASH DRIVEN BY LAW OF VARIATION OF HUBBLE S PARAMETER ANIL KUMAR YADAV Department of Physics, Anand Engineering College, Keetham, Agra -282 007, India E-mail:

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

QUINTESSENTIAL INFLATION

QUINTESSENTIAL INFLATION QUINTESSENTIAL INFLATION Relic gravity waves M. SAMI Centre for Theoretical Physics Jamia Millia University New Delhi GC-2018 BRIEF OVER VIEW Acceleration Generic feature of cosmic history Late time acceleration:

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY MATHEMATICAL TRIPOS Part III Wednesday, 8 June, 2011 9:00 am to 12:00 pm PAPER 53 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Primordial perturbations from inflation. David Langlois (APC, Paris)

Primordial perturbations from inflation. David Langlois (APC, Paris) Primordial perturbations from inflation David Langlois (APC, Paris) Cosmological evolution Homogeneous and isotropic Universe Einstein s equations Friedmann equations The Universe in the Past The energy

More information

Theoretical implications of detecting gravitational waves

Theoretical implications of detecting gravitational waves Theoretical implications of detecting gravitational waves Ghazal Geshnizjani Department of Applied Mathematics University of Waterloo ggeshniz@uwaterloo.ca In collaboration with: William H. Kinney arxiv:1410.4968

More information

arxiv:gr-qc/ v1 6 Nov 2006

arxiv:gr-qc/ v1 6 Nov 2006 Different faces of the phantom K.A. Bronnikov, J.C. Fabris and S.V.B. Gonçalves Departamento de Física, Universidade Federal do Espírito Santo, Vitória, ES, Brazil arxiv:gr-qc/0611038v1 6 Nov 2006 1. Introduction

More information

CMB Polarization in Einstein-Aether Theory

CMB Polarization in Einstein-Aether Theory CMB Polarization in Einstein-Aether Theory Masahiro Nakashima (The Univ. of Tokyo, RESCEU) With Tsutomu Kobayashi (RESCEU) COSMO/CosPa 2010 Introduction Two Big Mysteries of Cosmology Dark Energy & Dark

More information

Inflation and the Primordial Perturbation Spectrum

Inflation and the Primordial Perturbation Spectrum PORTILLO 1 Inflation and the Primordial Perturbation Spectrum Stephen K N PORTILLO Introduction The theory of cosmic inflation is the leading hypothesis for the origin of structure in the universe. It

More information

Testing Gravity Cosmologically

Testing Gravity Cosmologically Testing Gravity Cosmologically Philippe Brax IPhT Saclay Asphon Toulouse March 2013 The Big Puzzle How do we know? measuring distances! Absolute luminosity. Received flux: what we see in the telescope

More information

Set 3: Cosmic Dynamics

Set 3: Cosmic Dynamics Set 3: Cosmic Dynamics FRW Dynamics This is as far as we can go on FRW geometry alone - we still need to know how the scale factor a(t) evolves given matter-energy content General relativity: matter tells

More information

Could dark energy be modified gravity or related to matter?

Could dark energy be modified gravity or related to matter? Could dark energy be modified gravity or related to matter? Rachel Bean Cornell University In collaboration with: David Bernat (Cornell) Michel Liguori (Cambridge) Scott Dodelson (Fermilab) Levon Pogosian

More information

One of the problems in modern physics

One of the problems in modern physics The Cosmological Constant One of the problems in modern physics Hendrik van Hees Fakultät für Physik Universität Bielefeld The Cosmological Constant p.1 Contents Fundamentals from General relativity: The

More information

The multi-field facets of inflation. David Langlois (APC, Paris)

The multi-field facets of inflation. David Langlois (APC, Paris) The multi-field facets of inflation David Langlois (APC, Paris) Introduction After 25 years of existence, inflation has been so far very successful to account for observational data. The nature of the

More information

Lecture 12. Inflation. What causes inflation. Horizon problem Flatness problem Monopole problem. Physical Cosmology 2011/2012

Lecture 12. Inflation. What causes inflation. Horizon problem Flatness problem Monopole problem. Physical Cosmology 2011/2012 Lecture 1 Inflation Horizon problem Flatness problem Monopole problem What causes inflation Physical Cosmology 11/1 Inflation What is inflation good for? Inflation solves 1. horizon problem. flatness problem

More information

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile.

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. Emergent Universe by Tunneling Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. The Emergent Universe scenario Is Eternal Inflation, past eternal?

More information

Attractor Structure of Gauged Nambu-Jona-Lasinio Model

Attractor Structure of Gauged Nambu-Jona-Lasinio Model Attractor Structure of Gauged ambu-jona-lasinio Model Department of Physics, Hiroshima University E-mail: h-sakamoto@hiroshima-u.ac.jp We have studied the inflation theory in the gauged ambu-jona-lasinio

More information

Cosmology and the origin of structure

Cosmology and the origin of structure 1 Cosmology and the origin of structure ocy I: The universe observed ocy II: Perturbations ocy III: Inflation Primordial perturbations CB: a snapshot of the universe 38, AB correlations on scales 38, light

More information

JHEP11(2013)135. Mimetic dark matter. Ali H. Chamseddine a,b and Viatcheslav Mukhanov c,d,e

JHEP11(2013)135. Mimetic dark matter. Ali H. Chamseddine a,b and Viatcheslav Mukhanov c,d,e Published for SISSA by Springer Received: September 23, 2013 Revised: October 24, 2013 Accepted: October 25, 2013 Published: November 18, 2013 Mimetic dark matter Ali H. Chamseddine a,b and Viatcheslav

More information

Chapter - 3. Analytical solutions of the evolution of mass of black holes and. worm holes immersed in a Generalized Chaplygin Gas model

Chapter - 3. Analytical solutions of the evolution of mass of black holes and. worm holes immersed in a Generalized Chaplygin Gas model Chapter - 3 Analytical solutions of the evolution of mass of black holes and worm holes immersed in a Generalized Chaplygin Gas model (Published in International Journal of Pure and Applied Sciences and

More information

Analyzing WMAP Observation by Quantum Gravity

Analyzing WMAP Observation by Quantum Gravity COSMO 07 Conference 21-25 August, 2007 Analyzing WMAP Observation by Quantum Gravity Ken-ji Hamada (KEK) with Shinichi Horata, Naoshi Sugiyama, and Tetsuyuki Yukawa arxiv:0705.3490[astro-ph], Phys. Rev.

More information

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris Braneworlds: gravity & cosmology David Langlois APC & IAP, Paris Outline Introduction Extra dimensions and gravity Large (flat) extra dimensions Warped extra dimensions Homogeneous brane cosmology Brane

More information

Decaying Dark Matter, Bulk Viscosity, and Dark Energy

Decaying Dark Matter, Bulk Viscosity, and Dark Energy Decaying Dark Matter, Bulk Viscosity, and Dark Energy Dallas, SMU; April 5, 2010 Outline Outline Standard Views Dark Matter Standard Views of Dark Energy Alternative Views of Dark Energy/Dark Matter Dark

More information

4 Evolution of density perturbations

4 Evolution of density perturbations Spring term 2014: Dark Matter lecture 3/9 Torsten Bringmann (torsten.bringmann@fys.uio.no) reading: Weinberg, chapters 5-8 4 Evolution of density perturbations 4.1 Statistical description The cosmological

More information

Dark energy. P. Binétruy AstroParticule et Cosmologie, Paris. Zakopane, 15 June 2007

Dark energy. P. Binétruy AstroParticule et Cosmologie, Paris. Zakopane, 15 June 2007 Dark energy P. Binétruy AstroParticule et Cosmologie, Paris Zakopane, 15 June 2007 Context : the twentieth century legacy Two very successful theories : General relativity A single equation, Einstein s

More information

Dark inflation. Micha l Artymowski. Jagiellonian University. January 29, Osaka University. arxiv:

Dark inflation. Micha l Artymowski. Jagiellonian University. January 29, Osaka University. arxiv: Dark inflation Micha l Artymowski Jagiellonian University January 29, 2018 Osaka University arxiv:1711.08473 (with Olga Czerwińska, M. Lewicki and Z. Lalak) Cosmic microwave background Cosmic microwave

More information

Cosmology (Cont.) Lecture 19

Cosmology (Cont.) Lecture 19 Cosmology (Cont.) Lecture 19 1 General relativity General relativity is the classical theory of gravitation, and as the gravitational interaction is due to the structure of space-time, the mathematical

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

Gravity and scalar fields. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste (...soon at the University of Nottingham)

Gravity and scalar fields. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste (...soon at the University of Nottingham) Gravity and scalar fields Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste (...soon at the University of Nottingham) µm 1AU 15Mpc Quantum Gravity General Relativity plus unknown

More information

MASAHIDE YAMAGUCHI. Quantum generation of density perturbations in the early Universe. (Tokyo Institute of Technology)

MASAHIDE YAMAGUCHI. Quantum generation of density perturbations in the early Universe. (Tokyo Institute of Technology) Quantum generation of density perturbations in the early Universe MASAHIDE YAMAGUCHI (Tokyo Institute of Technology) 03/07/16@Symposium: New Generation Quantum Theory -Particle Physics, Cosmology, and

More information

1. De Sitter Space. (b) Show that the line element for a positively curved FRW model (k = +1) with only vacuum energy (P = ) is

1. De Sitter Space. (b) Show that the line element for a positively curved FRW model (k = +1) with only vacuum energy (P = ) is 1. De Sitter Space (a) Show in the context of expanding FRW models that if the combination +3P is always positive, then there was a Big Bang singularity in the past. [A sketch of a(t) vs.t may be helpful.]

More information

Dark Matter Dark Energy Interactions

Dark Matter Dark Energy Interactions E.N.Saridakis 9 th Aegean Sifnos. Sept 07 Dark Matter Dark Energy Interactions Emmanuel N. Saridakis Physics Department National and Technical University of Athens reece Physics Department Baylor University

More information

Astro 321 Set 3: Relativistic Perturbation Theory. Wayne Hu

Astro 321 Set 3: Relativistic Perturbation Theory. Wayne Hu Astro 321 Set 3: Relativistic Perturbation Theory Wayne Hu Covariant Perturbation Theory Covariant = takes same form in all coordinate systems Invariant = takes the same value in all coordinate systems

More information

Tachyon scalar field in DBI and RSII cosmological context

Tachyon scalar field in DBI and RSII cosmological context Tachyon scalar field in DBI and RSII cosmological context Neven Bilic, Goran S. Djordjevic, Milan Milosevic and Dragoljub D. Dimitrijevic RBI, Zagreb, Croatia and FSM, University of Nis, Serbia 9th MATHEMATICAL

More information

The State of the Universe [2010] There is only data and the interpretation of data (green text = assumptions)

The State of the Universe [2010] There is only data and the interpretation of data (green text = assumptions) The State of the Universe [2010] There is only data and the interpretation of data (green text = assumptions) Current thinking in cosmology says that the universe is filled with dark matter and dark energy.

More information

Massive gravity and cosmology

Massive gravity and cosmology Massive gravity and cosmology Shinji Mukohyama (YITP Kyoto) Based on collaboration with Antonio DeFelice, Garrett Goon, Emir Gumrukcuoglu, Lavinia Heisenberg, Kurt Hinterbichler, David Langlois, Chunshan

More information

Quintessence - a fifth force from variation of the fundamental scale

Quintessence - a fifth force from variation of the fundamental scale Quintessence - a fifth force from variation of the fundamental scale Ω m + X = 1? Ω m : 25% Ω h : 75% Dark Energy Quintessence C.Wetterich A.Hebecker,M.Doran,M.Lilley,J.Schwindt, C.Müller,G.Sch ller,g.schäfer,e.thommes,

More information

Bimetric Massive Gravity

Bimetric Massive Gravity Bimetric Massive Gravity Tomi Koivisto / Nordita (Stockholm) 21.11.2014 Outline Introduction Bimetric gravity Cosmology Matter coupling Conclusion Motivations Why should the graviton be massless? Large

More information

The cosmological constant puzzle

The cosmological constant puzzle The cosmological constant puzzle Steven Bass Cosmological constant puzzle: Accelerating Universe: believed to be driven by energy of nothing (vacuum) Vacuum energy density (cosmological constant or dark

More information

Theoretical Models of the Brans-Dicke Parameter for Time Independent Deceleration Parameters

Theoretical Models of the Brans-Dicke Parameter for Time Independent Deceleration Parameters Theoretical Models of the Brans-Dicke Parameter for Time Independent Deceleration Parameters Sudipto Roy 1, Soumyadip Chowdhury 2 1 Assistant Professor, Department of Physics, St. Xavier s College, Kolkata,

More information