Causality in Gauss-Bonnet Gravity

Size: px
Start display at page:

Download "Causality in Gauss-Bonnet Gravity"

Transcription

1 Causality in Gauss-Bonnet Gravity K.I. Phys. Rev. D 90, July Keisuke Izumi ( 泉圭介 ) (National Taiwan University, LeCosPA) -> (University of Barcelona, ICCUB)

2 From Newton to Einstein Newton s gravity theory (1687) Physics in solar system Perihelion precession of Mercury Dark Planet Vulcan?? Einstein s general relativity (1916) Cosmology Cosmic acceleration and galaxy rotation problem Dark energy and dark matter??? New gravity theory?? (20??)

3 High Energy physics of Gravity General relativity Singularity theorem (Hawking, Penrose 1970) Singularity inside BH Initial singularity of universe Quantization of Gravity Problem of renormalization Algebraic structure of generators

4 Modification of Gravity General relativity Singularity problem Quantum gravity Problem of renormalization Cosmology Dark energy, Dark matter Modified Gravity Modification of Lagrangian : f(r), Gauss-Bonnet Modification of vacuum state : ghost condensation Modification of concept of geometry higher dimension : Braneworld other manifold : Teleparallel gravity Introducing mass of graviton : massive gravity

5 Consistency Check of modified gravity 0-th order (of cosmology) : FLRW universe without perturbation Consistency with standard cosmology DM and DE?? 1-th order : perturbation on FLRW background Consistency with standard cosmology Consistency with solar system physics Stability Nonlinear property Causal structure Nonlinear stability Main topic in this talk Quantization

6 Gauss-Bonnet gravity action S = R d n x â ã 1 fr à 2Ë + ë(r 2 à 4R 2ô Dà2 AB R AB + R ABCD R ABCD )g + L m GB terms Matter contribution EoM G AB + Ëg AB à 2 ë H AB = 2ô Dà2 T AB H AB := (R 2 à4r CD R CD +R CDEF R CDEF )g AB à 4(RR AB à 2R AC R C B à 2R ACBDR CD + R ACDE R CDE ) B Higher curvature but no higher order derivative in EoN Defined in higher dimension (In 4-dim., GB term becomes surface term.)

7 Superluminal mode by curvature coupling Curvature coupling in kinetic term (g ö + ër ö )r ö r þ + V 0 (þ) = 0 GB gravity G ö + fr ã Rg ö = 0 linerlization g ö r ö r h ëì + frg ö r ö r h ëì = 0 Causal relation based on null curve is meaningless. We need to use the fastest propagation for analysis of causal structure. Questions When do superluminal modes appear? Are black holes well-defined? Where is the horizon in the sense of causality? C. Aragone (1988) Choquet-Bruhat (1988) Superluminal modes potentially appear. (GB gravity )

8 1,introduction 2, Origin of superluminal modes 3, Brief review of characteristic 3.1, intuitive understanding 3.2, Way of analysis 4,Characteristics in GB gravity 5,Summary Contents

9 1,introduction 2, Origin of superluminal modes 3, Brief review of characteristic 3.1, intuitive understanding 3.2, Way of analysis 4,Characteristics in GB gravity 5,Summary Contents

10 Example: Scalar field With canonical kinetic term g ö r ö r þ + V 0 (þ) = 0 High energy limit g ö k ö k þ k = 0 S. Mukohyama, J.-P. Uzan (2013) k ö is null for metric g ö With non-canonical kinetic term (g ö + ër ö r )r ö r þ + V 0 (þ) = 0 R ö High energy limit gà ö k ö k þ k = 0 gà ö := g ö + ër ö r R ö k ö is null for effective metric gà ö

11 Gravity theory Many complications h nonlinear kinetic terms h n :: : graviton ::@h :: Nonlinear kinetic terms make the discussion non-trivial. constraints The structures of kinetic term depend on constraints.. gauges Due to gauge, some variables are not physical. General Relativity The causal structure has been well studied, and gravitational waves propagate with speed of light.

12 Extension of GR Massive gravity, f(t) gravity Additional constraint No gauge Gauss-Bonnet gravity Superluminal modes, Acausality Y.C. Ong, K.I. J. M. Nester, P. Chen (2013) K.I., J.-A. Gu, Y.C. Ong (2013) K.I., Y.C. Ong (2013) S. Deser, K.I., Y.C. Ong, A. Waldron (2013) EOM : G ö + fr ã Rg ö = 0 linerlization g ö r ö r h ëì + frg ö r ö r h ëì = 0 Kinetic terms are modified. Superluminal modes C. Aragone (1988) Choquet-Bruhat (1988)

13 Superluminal mode and Acausality Superluminal mode Propagation the speed of which is higher than that of light time Light cone Acausality time Pathological causal structure Light cone Superluminal propagation Closed information propagation With Lorentz symmetry, superluminal modes space result in acausality. But without Lorentz symmetry, it is not always true. space

14 1,introduction 2, Origin of superluminal modes 3, Brief review of characteristic 3.1, intuitive understanding 3.2, Way of analysis 4,Characteristics in GB gravity 5,Summary Contents

15 CC Causal structure and Propagation Time evolution Time p Cauchy development CC Initial conditions

16 CC Causal structure and Propagation Time evolution Time Path of light q Superluminal mode Cauchy development Characteristic hypersurface CC Cauchy We can not solve development Initial conditions time evolution beyond this hypersurface

17 Characteristics Î is characteristic á propagation Î

18 1,introduction 2, Origin of superluminal modes 3, Brief review of characteristic 3.1, intuitive understanding 3.2, Way of analysis 4,Characteristics in GB gravity 5,Summary Contents

19 Characteristics (1Dim-ODE) Quasi-linear n-th order differential equation t þ; á á á; (@ t ) nà1 þ](@ t ) n þ t þ; á á á; (@ t ) nà1 þ] = 0 Time evolution 1,Initial condition; t þ; á á á; (@ t ) nà1 þ at t = t 0 If t þ; á á á; (@ t ) nà1 þ]6=0 2, EoM (@ t ) n þj t=t0 ( (@ t ) n þj t=t0 is uniquely fixed) 3, (@ t ) kà1 þ[t = t 0 + Ét] = (@ t ) k þ[t = t 0 ]Ét + (@ t ) kà1 þ[t = t 0 ] (1 ô k ô n)

20 Characteristics (1Dim-ODE) Quasi-linear n-th order differential equation t þ; á á á; (@ t ) nà1 þ](@ t ) n þ t þ; á á á; (@ t ) nà1 þ] = 0 Time evolution 1,Initial condition; t þ; á á á; (@ t ) nà1 þ at t = t 0 If t þ; á á á; (@ t ) nà1 þ] = 0 2, EoM (@ t ) n þj t=t0 ( (@ t ) n þj t=t0 can be arbitrary) 3, (@ t ) kà1 þ[t = t 0 + Ét] = (@ t ) k þ[t = t 0 ]Ét + (@ t ) kà1 þ[t = t 0 ] (@ t ) nà1 þ[t = t 0 + Ét] =?? (1 ô k ô n à 1)

21 Characteristics (Single field PDE) Quasi-linear n-th order differential equation f 1á á á n ö þ; á á ö1 á á á@ önà1 þ]@ 1 á á á@ n þ ö þ; á á ö1 á á á@ önà1 þ] = 0 Time evolution If 1,Initial condition on initial hypersurface t þ; á á á; (@ t ) nà1 þ i i j þ; á á á Î : t = t 0 f tá á át ö þ; á á ö1 á á á@ önà1 þ]6=0 þ[x i ] à Î Î þ[x i + Éx i ] 3, EoM (@ t ) n þj t=t0 ( is uniquely fixed) (@ t ) n þj t=t0 Time evolution is i þ = lim Éx i! 0 þ[x i +Éx i ]àþ[x i ] Éx i

22 Characteristics (Single field PDE) Quasi-linear n-th order differential equation f 1á á á n ö þ; á á ö1 á á á@ önà1 þ]@ 1 á á á@ n þ ö þ; á á ö1 á á á@ önà1 þ] = 0 Time evolution If 1,Initial condition on initial hypersurface t þ; á á á; (@ t ) nà1 þ i i j þ; á á á f tá á át ö þ; á á ö1 á á á@ önà1 þ] = 0 3, EoM (@ t ) n þj t=t0 Î : t = t 0 ( can be arbitrary) (@ t ) n þj t=t0 Time evolution is not unique þ[x i i þ = lim à Éx i! 0 Î Î þ[x i + Éx i ] þ[x i +Éx i ]àþ[x i ] Éx i

23 1,introduction 2, Origin of superluminal modes 3, Brief review of characteristic 3.1, intuitive understanding 3.2, Way of analysis 4,Characteristics in GB gravity 5,Summary Contents

24 Gauss-Bonnet gravity action S = R d n x â ã 1 fr à 2Ë + ë(r 2 à 4R 2ô Dà2 AB R AB + R ABCD R ABCD )g + L m GB terms Matter contribution EoM G AB + Ëg AB à 2 ë H AB = 2ô Dà2 T AB H AB := (R 2 à4r CD R CD +R CDEF R CDEF )g AB à 4(RR AB à 2R AC R C B Check the characteristic for EoM à 2R ACBDR CD + R ACDE R CDE ) B Assumption : T AB does not involve the highest order derivatives of metric

25 First-order formalism EoM: Second order derivatives of metric Introducing new variables: Levi-Civita connection È ABC = g AD È D := 1 (@ BC 2 C g AB B g AC A g BC ) + F[È EFG ; g EF ] First order differential equation R ABCD C È ABD D È ABC + á á á # of variables (D+1)D g AB : 2 (D+1)D È CAB : 2 2 Symmetric w.r.t A ; B

26 Decomposition A ö are vectors 0 is independent vector ö ñ ø := ð A dx A = dt Projection operator P A B = îa B à øa ð B Decomposition of @x ö V A : V 0 := ø A V A ; V ö := P A ö V A V A : V 0 := ð A V A ; V ö := P ö A VA

27 Trivial characteristics From definition of Levi-Civita connection 2È g 00 2È ë00 = 2@ 0 g 0ë ë g 00 2È 0ëì =@ ë g 0ì ì g 0ë 0 g ëì Characteristics for g AB For Levi-Civita connection 0 = R 00ë0 0 È 00ë ë È á á á 0 = R ìí0ë à R 0ëìí 0 È ìíë ë È ìí0 ì È 0ëí í È 0ëì + á á á Using definition of Levi-Civita connection È ëì0 = à È 0ëì ì g ë0 Characteristics for È 00ë ; È ëìí Replace È ëì0 by à È 0ëì

28 Gauge modes We have fixed time evolution of g AB ; È 00ë ; È ëìí ; È ëì0 Remaining variables are È 000 ; È ë00 ; È 0ëì DoF: 1 ; (D à 1) ; (D à 1)D=2 Diff. inv. : # of gauge DoF is 0 È È ë00 never appear in EoM. Gauge modes È 0ëì are physical. Check the characteristics for È 0ëì!

29 General 0 È 0ëì appears only in R 0ë0ì ( = à R ë00ì = á á á ) G AB = R 0ë0ì A AB;ëì +á á á (@ 0 È ëì0 = 0 È 0ëì + á á á ) A 0 È 0ëì + á á á = 0 Characteristic equation A 00;ëì = A 0ö;ëì = A ö0;ëì = 0 A ö ;ëì = g 00 (h ëö h ì à h ëì h ö ) h ö := g ö à g 0ö g 0 =g 00 ( h ö is induced metric of Σ) Null hypersurface g 00 = 0 h ö = diag (0; 1; 1; á á á) h 11 = O[(g 00 ) à1 ] à g 00 h 11 P 0È 0ii + á á á = 0 g 00 h 0 È 01i + á á á = 0 à g 00 h 0 È 011 î ij + á á á = 0 (1; 1) -component (1; i) -component (i; j) -component 1 :null direction i :normal to 1 All component have the same kinetic term D(D à 3)=2 degeneracies Gravitational wave

30 Gauss-Bonnet correction G AB + Ëg AB à 2 ë H AB = 2ô Dà2 T AB H AB = R 0ë0ì B AB;ëì + á á á B 00;ëì = B 0ö;ëì = B ö0;ëì = 0 GR: A 0 È 0ëì + á á á = 0 Null hypersurface à g 00 h 11 P 0È 0ii + á á á = 0 g 00 h 11 P 0È 01i + á á á = 0 à g 00 h 11 P 0È 011 î ij + á á á = 0 ða AB;ëì à 2 ë B AB;ëì 0 È 0ëì + á á á = 0 (1; 1) -component (1; i) -component (i; j) -component

31 Gauss-Bonnet correction Èö 0ëì 0 È 0ëì +á á á = 0 (1; 1) -component +á á á = 0 (1; i) -component (i; j) -component +á á á = 0

32 Example1: All degeneracies are resolved R ijkl = R 1ijk = 0 R 1i1j = Cî ij à g 00 h 11 P i È ö 0ii + á á á = 0 g 00 h 11 P i È ö 01i + á á á = 0 (1; 1) -component (1; i) -component +á á á = 0 Characteristic hypersurface is not null. (i; j) -component The speed of graviton is not that of light.

33 Expample2: still degenerated R 1i1j = R 1ijk = 0 ] +á á á = 0 (i; j) -component Only Èö 011 appears. Characteristic hypersurface is still null. Killing horizon R 1i1j = R 1ijk = 0 Killing horizon is exactly causal edge. It can be extended to Lovelock theory. (Reall, Tanahashi & Way 2014)

34 Dynamical case R AB U A U B = 0 (spherically symmetric case) U A : Radial null vector Null hypersurface tangent to U A is characteristics. R AB U A U B 6=0 Modification to characteristic equation G AB + Ëg AB à 2 ë H AB = 2ô Dà2 T AB Deviate from null balanced If curvature is enough small, we can neglect the contribution from GB term

35 Dynamical case R AB U A U B > 0 R AB U A U B < 0 Subluminal (spherically symmetric case) Superluminal Einstein Branch T AB U A U B õ 0 R AB U A U B õ 0 H. Maeda, M. Nozawa (2008) GB Branch T AB U A U B õ 0 R AB U A U B ô 0 On Einstein Branch with Null Energy condition (This might be physical condition) No superluminal mode, but subluminal modes appear No acausality, but gravitational Cherenkov happens

36 Dynamical case R AB U A U B > 0 R AB U A U B < 0 Subluminal (spherically symmetric case) Superluminal Einstein Branch T AB U A U B õ 0 R AB U A U B õ 0 H. Maeda, M. Nozawa (2008) GB Branch T AB U A U B õ 0 R AB U A U B ô 0 Evaporating BH Contraposition of Area-increasing low R AB U A U B < 0 Superluminal Graviton can escape from Evaporating BH defined by null curves

37 Summary In GB gravity, gravitational propagation potentially becomes superluminal. Causal structure based on null curve is meaningless. We need to analyze it by using the fastest propagation. Causal structure is analyzed with method of characteristics, which is powerful technique. Killing horizon is the event horizon in the sense of causality. On spherically symmetric background, R AB U A U B = 0 R AB U A U B > 0 R AB U A U B < 0 luminal. subluminal. superluminal. gravitational Cherenkov Acausality? Need to check it.

Causality, hyperbolicity, and shock formation in Lovelock theories

Causality, hyperbolicity, and shock formation in Lovelock theories Causality, hyperbolicity, and shock formation in Lovelock theories Harvey Reall DAMTP, Cambridge University HSR, N. Tanahashi and B. Way, arxiv:1406.3379, 1409.3874 G. Papallo, HSR arxiv:1508.05303 Lovelock

More information

Massive gravity and cosmology

Massive gravity and cosmology Massive gravity and cosmology Shinji Mukohyama (Kavli IPMU, U of Tokyo) Based on collaboration with Antonio DeFelice, Emir Gumrukcuoglu, Kurt Hinterbichler, Chunshan Lin, Mark Trodden Why alternative gravity

More information

Holographic c-theorems and higher derivative gravity

Holographic c-theorems and higher derivative gravity Holographic c-theorems and higher derivative gravity James Liu University of Michigan 1 May 2011, W. Sabra and Z. Zhao, arxiv:1012.3382 Great Lakes Strings 2011 The Zamolodchikov c-theorem In two dimensions,

More information

Massive gravity meets simulations?

Massive gravity meets simulations? Massive gravity meets simulations? Kazuya Koyama University of Portsmouth Non-linear massive gravity theory (de Rham, Gadadadze & Tolley 10) Two key features Self-acceleration A graviton mass accounts

More information

HAMILTONIAN FORMULATION OF f (Riemann) THEORIES OF GRAVITY

HAMILTONIAN FORMULATION OF f (Riemann) THEORIES OF GRAVITY ABSTRACT We present a canonical formulation of gravity theories whose Lagrangian is an arbitrary function of the Riemann tensor, which, for example, arises in the low-energy limit of superstring theories.

More information

Holography and Unitarity in Gravitational Physics

Holography and Unitarity in Gravitational Physics Holography and Unitarity in Gravitational Physics Don Marolf 01/13/09 UCSB ILQG Seminar arxiv: 0808.2842 & 0808.2845 This talk is about: Diffeomorphism Invariance and observables in quantum gravity The

More information

Massive gravity and Caustics: A definitive covariant constraint analysis

Massive gravity and Caustics: A definitive covariant constraint analysis Massive gravity and Caustics: A definitive covariant constraint analysis Cosmo 2014 - Chicago George Zahariade UC Davis August 29, 2014 1 / 18 Goals Motivation and goals de Rham-Gabadadze-Tolley massive

More information

Galileon Cosmology ASTR448 final project. Yin Li December 2012

Galileon Cosmology ASTR448 final project. Yin Li December 2012 Galileon Cosmology ASTR448 final project Yin Li December 2012 Outline Theory Why modified gravity? Ostrogradski, Horndeski and scalar-tensor gravity; Galileon gravity as generalized DGP; Galileon in Minkowski

More information

Stable violation of the null energy condition and non-standard cosmologies

Stable violation of the null energy condition and non-standard cosmologies Paolo Creminelli (ICTP, Trieste) Stable violation of the null energy condition and non-standard cosmologies hep-th/0606090 with M. Luty, A. Nicolis and L. Senatore What is the NEC? Energy conditions: Singularity

More information

Nonlinear massive gravity and Cosmology

Nonlinear massive gravity and Cosmology Nonlinear massive gravity and Cosmology Shinji Mukohyama (Kavli IPMU, U of Tokyo) Based on collaboration with Antonio DeFelice, Emir Gumrukcuoglu, Chunshan Lin Why alternative gravity theories? Inflation

More information

Second law of black-hole thermodynamics in Lovelock theories of gravity

Second law of black-hole thermodynamics in Lovelock theories of gravity Second law of black-hole thermodynamics in Lovelock theories of gravity Nilay Kundu YITP, Kyoto Reference : 62.04024 ( JHEP 706 (207) 090 ) With : Sayantani Bhattacharyya, Felix Haehl, R. Loganayagam,

More information

f(t) Gravity and Cosmology

f(t) Gravity and Cosmology f(t) Gravity and Cosmology Emmanuel N. Saridakis Physics Department, National and Technical University of Athens, Greece Physics Department, Baylor University, Texas, USA E.N.Saridakis XXVII SRA, Dallas,

More information

Cosmological perturbations in nonlinear massive gravity

Cosmological perturbations in nonlinear massive gravity Cosmological perturbations in nonlinear massive gravity A. Emir Gümrükçüoğlu IPMU, University of Tokyo AEG, C. Lin, S. Mukohyama, JCAP 11 (2011) 030 [arxiv:1109.3845] AEG, C. Lin, S. Mukohyama, To appear

More information

Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th Claudia de Rham

Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th Claudia de Rham Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th 2014 Claudia de Rham Modified Gravity Lorentz-Violating LV-Massive Gravity Ghost Condensate Horava- Lifshitz Cuscuton Extended

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information

Quantum Gravity and Black Holes

Quantum Gravity and Black Holes Quantum Gravity and Black Holes Viqar Husain March 30, 2007 Outline Classical setting Quantum theory Gravitational collapse in quantum gravity Summary/Outlook Role of metrics In conventional theories the

More information

Non-local Modifications of Gravity and Cosmic Acceleration

Non-local Modifications of Gravity and Cosmic Acceleration Non-local Modifications of Gravity and Cosmic Acceleration Valeri Vardanyan Cargese-2017 In collaboration with: Yashar Akrami Luca Amendola Alessandra Silvestri arxiv:1702.08908 Late time cosmology The

More information

Gravitational scalar-tensor theory

Gravitational scalar-tensor theory Gravitational scalar-tensor theory Atsushi NARUKO (TiTech = To-Ko-Dai) with : Daisuke Yoshida (TiTech) Shinji Mukohyama (YITP) plan of my talk 1. Introduction 2. Model 3. Generalisation 4. Summary & Discussion

More information

Massive gravity and cosmology

Massive gravity and cosmology Massive gravity and cosmology Shinji Mukohyama Yukawa Institute for Theoretical Physics Kyoto University Based on collaborations with Katsuki Aoki, Antonio DeFelice, Garrett Goon, Emir Gumrukcuoglu, Lavinia

More information

Massive gravity and cosmology

Massive gravity and cosmology Massive gravity and cosmology Shinji Mukohyama (YITP Kyoto) Based on collaboration with Antonio DeFelice, Garrett Goon, Emir Gumrukcuoglu, Lavinia Heisenberg, Kurt Hinterbichler, David Langlois, Chunshan

More information

Thermodynamics in Modified Gravity Theories Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]]

Thermodynamics in Modified Gravity Theories Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]] Thermodynamics in Modified Gravity Theories Reference: Physics Letters B 688, 101 (2010) [e-print arxiv:0909.2159 [gr-qc]] 2nd International Workshop on Dark Matter, Dark Energy and Matter-antimatter Asymmetry

More information

Quantum Gravity with Linear Action and Gravitational Singularities. George Savvidy. Testing Fundamental Physical Principles

Quantum Gravity with Linear Action and Gravitational Singularities. George Savvidy. Testing Fundamental Physical Principles Quantum Gravity with Linear Action and Gravitational Singularities George Savvidy Demokritos National Research Centre Greece, Athens Testing Fundamental Physical Principles Corfu, September 22-28 (T he

More information

Black Holes. Jan Gutowski. King s College London

Black Holes. Jan Gutowski. King s College London Black Holes Jan Gutowski King s College London A Very Brief History John Michell and Pierre Simon de Laplace calculated (1784, 1796) that light emitted radially from a sphere of radius R and mass M would

More information

Bondi mass of Einstein-Maxwell-Klein-Gordon spacetimes

Bondi mass of Einstein-Maxwell-Klein-Gordon spacetimes of of Institute of Theoretical Physics, Charles University in Prague April 28th, 2014 scholtz@troja.mff.cuni.cz 1 / 45 Outline of 1 2 3 4 5 2 / 45 Energy-momentum in special Lie algebra of the Killing

More information

Bimetric Massive Gravity

Bimetric Massive Gravity Bimetric Massive Gravity Tomi Koivisto / Nordita (Stockholm) 21.11.2014 Outline Introduction Bimetric gravity Cosmology Matter coupling Conclusion Motivations Why should the graviton be massless? Large

More information

Introduction to the Vainshtein mechanism

Introduction to the Vainshtein mechanism Introduction to the Vainshtein mechanism Eugeny Babichev LPT, Orsay School Paros 23-28 September 2013 based on arxiv:1107.1569 with C.Deffayet OUTLINE Introduction and motivation k-mouflage Galileons Non-linear

More information

Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]]

Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]] Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv:0909.2159 [gr-qc]] HORIBA INTERNATIONAL CONFERENCE COSMO/CosPA 2010 Hongo campus (Koshiba Hall), The University

More information

Non-local infrared modifications of gravity and dark energy

Non-local infrared modifications of gravity and dark energy Non-local infrared modifications of gravity and dark energy Michele Maggiore Los Cabos, Jan. 2014 based on M. Jaccard, MM and E. Mitsou, 1305.3034, PR D88 (2013) MM, arxiv: 1307.3898 S. Foffa, MM and E.

More information

Lorentz violations: from quantum gravity to black holes. Thomas P. Sotiriou

Lorentz violations: from quantum gravity to black holes. Thomas P. Sotiriou Lorentz violations: from quantum gravity to black holes Thomas P. Sotiriou Motivation Test Lorentz symmetry Motivation Old problem: Can we make gravity renormalizable? Possible solution: Add higher-order

More information

General Relativity in AdS

General Relativity in AdS General Relativity in AdS Akihiro Ishibashi 3 July 2013 KIAS-YITP joint workshop 1-5 July 2013, Kyoto Based on work 2012 w/ Kengo Maeda w/ Norihiro Iizuka, Kengo Maeda - work in progress Plan 1. Classical

More information

Gravitational waves, solitons, and causality in modified gravity

Gravitational waves, solitons, and causality in modified gravity Gravitational waves, solitons, and causality in modified gravity Arthur Suvorov University of Melbourne December 14, 2017 1 of 14 General ideas of causality Causality as a hand wave Two events are causally

More information

On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity)

On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity) On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity) Andrew J. Tolley Case Western Reserve University Based on: de Rham, Matas, Tolley, ``New Kinetic Terms for Massive Gravity

More information

Cosmological and astrophysical applications of vector-tensor theories

Cosmological and astrophysical applications of vector-tensor theories Cosmological and astrophysical applications of vector-tensor theories Shinji Tsujikawa (Tokyo University of Science) Collaboration with A.De Felice, L.Heisenberg, R.Kase, M.Minamitsuji, S.Mukohyama, S.

More information

Quantum Black Holes and Global Symmetries

Quantum Black Holes and Global Symmetries Quantum Black Holes and Global Symmetries Daniel Klaewer Max-Planck-Institute for Physics, Munich Young Scientist Workshop 217, Schloss Ringberg Outline 1) Quantum fields in curved spacetime 2) The Unruh

More information

An Overview of Mathematical General Relativity

An Overview of Mathematical General Relativity An Overview of Mathematical General Relativity José Natário (Instituto Superior Técnico) Geometria em Lisboa, 8 March 2005 Outline Lorentzian manifolds Einstein s equation The Schwarzschild solution Initial

More information

Vainshtein mechanism. Lecture 3

Vainshtein mechanism. Lecture 3 Vainshtein mechanism Lecture 3 Screening mechanism Screening mechanisms The fifth force should act only on large scales and it should be hidden on small scales This implies that these mechanisms should

More information

Quantising Gravitational Instantons

Quantising Gravitational Instantons Quantising Gravitational Instantons Kirill Krasnov (Nottingham) GARYFEST: Gravitation, Solitons and Symmetries MARCH 22, 2017 - MARCH 24, 2017 Laboratoire de Mathématiques et Physique Théorique Tours This

More information

Towards a manifestly diffeomorphism invariant Exact Renormalization Group

Towards a manifestly diffeomorphism invariant Exact Renormalization Group Towards a manifestly diffeomorphism invariant Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for UK QFT-V, University of Nottingham,

More information

Extended mimetic gravity:

Extended mimetic gravity: Extended mimetic gravity: Hamiltonian analysis and gradient instabilities Kazufumi Takahashi (JSPS fellow) Rikkyo University Based on KT, H. Motohashi, T. Suyama, and T. Kobayashi Phys. Rev. D 95, 084053

More information

Diffeomorphism Invariant Gauge Theories

Diffeomorphism Invariant Gauge Theories Diffeomorphism Invariant Gauge Theories Kirill Krasnov (University of Nottingham) Oxford Geometry and Analysis Seminar 25 Nov 2013 Main message: There exists a large new class of gauge theories in 4 dimensions

More information

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Hisaaki Shinkai 1, and Takashi Torii 2, 1 Department of Information Systems, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan

More information

Minimalism in Modified Gravity

Minimalism in Modified Gravity Minimalism in Modified Gravity Shinji Mukohyama (YITP, Kyoto U) Based on collaborations with Katsuki Aoki, Nadia Bolis, Antonio De Felice, Tomohiro Fujita, Sachiko Kuroyanagi, Francois Larrouturou, Chunshan

More information

Constrained BF theory as gravity

Constrained BF theory as gravity Constrained BF theory as gravity (Remigiusz Durka) XXIX Max Born Symposium (June 2010) 1 / 23 Content of the talk 1 MacDowell-Mansouri gravity 2 BF theory reformulation 3 Supergravity 4 Canonical analysis

More information

Gravitational Waves modes in Extended Teleparallel Gravity

Gravitational Waves modes in Extended Teleparallel Gravity Gravitational Waves modes in Extended Teleparallel Gravity Salvatore Capozziello based on H. Abedi & S. Capozziello EPJC78(2018)474 Plan of the talk Ø Gravitational waves in General Relativity Ø Extended

More information

Black-hole binaries in Einstein-dilaton Gauss Bonnet gravity

Black-hole binaries in Einstein-dilaton Gauss Bonnet gravity Black-hole binaries in Einstein-dilaton Gauss Bonnet gravity Helvi Witek Theoretical Particle Physics and Cosmology Department of Physics, King s College London work in progress with L. Gualtieri, P. Pani,

More information

NONLOCAL MODIFIED GRAVITY AND ITS COSMOLOGY

NONLOCAL MODIFIED GRAVITY AND ITS COSMOLOGY NONLOCAL MODIFIED GRAVITY AND ITS COSMOLOGY Branko Dragovich http://www.ipb.ac.rs/ dragovich email: dragovich@ipb.ac.rs Institute of Physics, University of Belgrade, and Mathematical Institute SANU Belgrade,

More information

D. f(r) gravity. φ = 1 + f R (R). (48)

D. f(r) gravity. φ = 1 + f R (R). (48) 5 D. f(r) gravity f(r) gravity is the first modified gravity model proposed as an alternative explanation for the accelerated expansion of the Universe [9]. We write the gravitational action as S = d 4

More information

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris)

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris) Dark energy & Modified gravity in scalar-tensor theories David Langlois (APC, Paris) Introduction So far, GR seems compatible with all observations. Several motivations for exploring modified gravity Quantum

More information

Casimir effect on a quantum geometry

Casimir effect on a quantum geometry Casimir effect on a quantum geometry Javier Olmedo Horace Hearne Institute for Theoretical Physics, Louisiana State University, & Institute of Physics, Science Faculty, University of the Republic of Uruguay.

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

Fundamental Theories of Physics in Flat and Curved Space-Time

Fundamental Theories of Physics in Flat and Curved Space-Time Fundamental Theories of Physics in Flat and Curved Space-Time Zdzislaw Musielak and John Fry Department of Physics The University of Texas at Arlington OUTLINE General Relativity Our Main Goals Basic Principles

More information

Introduction to Modified Gravity and Potential Problems due to Non-linearity. Example: Massive Gravity. Analogy: Nonlinear Proca Field.

Introduction to Modified Gravity and Potential Problems due to Non-linearity. Example: Massive Gravity. Analogy: Nonlinear Proca Field. Ong Yen Chin 王元君 Krakow 53rd School of Theoretical Physics, Conformal Symmetry and Perspectives in Quantum and Mathematical Gravity. June 28- July 7, 2013. Introduction to Modified Gravity and Potential

More information

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY SAM KAUFMAN Abstract. The (Cauchy) initial value formulation of General Relativity is developed, and the maximal vacuum Cauchy development theorem is

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Lecture II: Hamiltonian formulation of general relativity

Lecture II: Hamiltonian formulation of general relativity Lecture II: Hamiltonian formulation of general relativity (Courses in canonical gravity) Yaser Tavakoli December 16, 2014 1 Space-time foliation The Hamiltonian formulation of ordinary mechanics is given

More information

Gravitational Waves. GR: 2 polarizations

Gravitational Waves. GR: 2 polarizations Gravitational Waves GR: 2 polarizations Gravitational Waves GR: 2 polarizations In principle GW could have 4 other polarizations 2 vectors 2 scalars Potential 4 `new polarizations Massive Gravity When

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

Black Holes. A Cursory Introduction to General Relativity

Black Holes. A Cursory Introduction to General Relativity Black Holes A Cursory Introduction to General Relativity A Little History At the turn of the 20th century, the laws of electrodynamics and mechanics contradicted each other. Galiean mechanics contained

More information

Quantum Gravity and the Renormalization Group

Quantum Gravity and the Renormalization Group Nicolai Christiansen (ITP Heidelberg) Schladming Winter School 2013 Quantum Gravity and the Renormalization Group Partially based on: arxiv:1209.4038 [hep-th] (NC,Litim,Pawlowski,Rodigast) and work in

More information

Special Relativity: The laws of physics must be the same in all inertial reference frames.

Special Relativity: The laws of physics must be the same in all inertial reference frames. Special Relativity: The laws of physics must be the same in all inertial reference frames. Inertial Reference Frame: One in which an object is observed to have zero acceleration when no forces act on it

More information

Stephen Blaha, Ph.D. M PubHsMtw

Stephen Blaha, Ph.D. M PubHsMtw Quantum Big Bang Cosmology: Complex Space-time General Relativity, Quantum Coordinates,"Dodecahedral Universe, Inflation, and New Spin 0, 1 / 2,1 & 2 Tachyons & Imagyons Stephen Blaha, Ph.D. M PubHsMtw

More information

Canonical Cosmological Perturbation Theory using Geometrical Clocks

Canonical Cosmological Perturbation Theory using Geometrical Clocks Canonical Cosmological Perturbation Theory using Geometrical Clocks joint work with Adrian Herzog, Param Singh arxiv: 1712.09878 and arxiv:1801.09630 International Loop Quantum Gravity Seminar 17.04.2018

More information

The mass of dark scalar and phase space analysis of realistic models of static spherically symmetric

The mass of dark scalar and phase space analysis of realistic models of static spherically symmetric The mass of dark scalar and phase space analysis of realistic models of static spherically symmetric objects (NS) Plamen Fiziev BLTF, JINR, Dubna and Sofia University Talk at the MG14, 12-19 July 2015,

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory Anisotropic Interior Solutions in and Einstein-Æther Theory CENTRA, Instituto Superior Técnico based on DV and S. Carloni, arxiv:1706.06608 [gr-qc] Gravity and Cosmology 2018 Yukawa Institute for Theoretical

More information

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013 Department of Physics Baylor University Waco, TX 76798-7316, based on my paper with J Greenwald, J Lenells and A Wang Phys. Rev. D 88 (2013) 024044 with XXVII Texas Symposium, Dallas, TX December 8 13,

More information

Hyperbolic Geometric Flow

Hyperbolic Geometric Flow Hyperbolic Geometric Flow Kefeng Liu Zhejiang University UCLA Page 1 of 41 Outline Introduction Hyperbolic geometric flow Local existence and nonlinear stability Wave character of metrics and curvatures

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

Proper curvature collineations in Bianchi type-ii space-times( )

Proper curvature collineations in Bianchi type-ii space-times( ) IL NUOVO CIMENTO Vol. 121 B, N. 3 Marzo 2006 DOI 10.1393/ncb/i2006-10044-7 Proper curvature collineations in Bianchi type-ii space-times( G. Shabbir( Faculty of Engineering Sciences, GIK Institute of Engineering

More information

Tailoring BKL to Loop Quantum Cosmology

Tailoring BKL to Loop Quantum Cosmology Tailoring BKL to Loop Quantum Cosmology Adam D. Henderson Institute for Gravitation and the Cosmos Pennsylvania State University LQC Workshop October 23-25 2008 Introduction Loop Quantum Cosmology: Big

More information

General Relativity. IV Escuela Mexicana de Cuerdas y Supersimetría. Gustavo Niz June 2015

General Relativity. IV Escuela Mexicana de Cuerdas y Supersimetría. Gustavo Niz June 2015 General Relativity IV Escuela Mexicana de Cuerdas y Supersimetría Gustavo Niz June 2015 General Relativity Based on: Sean Carrol's notes (short ones) John Stewart course/book Personal notes/talks GR as

More information

Expanding plasmas from Anti de Sitter black holes

Expanding plasmas from Anti de Sitter black holes Expanding plasmas from Anti de Sitter black holes (based on 1609.07116 [hep-th]) Giancarlo Camilo University of São Paulo Giancarlo Camilo (IFUSP) Expanding plasmas from AdS black holes 1 / 15 Objective

More information

arxiv: v1 [hep-th] 3 Feb 2016

arxiv: v1 [hep-th] 3 Feb 2016 Noname manuscript No. (will be inserted by the editor) Thermodynamics of Asymptotically Flat Black Holes in Lovelock Background N. Abbasvandi M. J. Soleimani Shahidan Radiman W.A.T. Wan Abdullah G. Gopir

More information

The nonlinear dynamical stability of infrared modifications of gravity

The nonlinear dynamical stability of infrared modifications of gravity The nonlinear dynamical stability of infrared modifications of gravity Aug 2014 In collaboration with Richard Brito, Vitor Cardoso and Matthew Johnson Why Study Modifications to Gravity? General relativity

More information

Black holes in massive gravity

Black holes in massive gravity Black holes in massive gravity Eugeny Babichev LPT, Orsay IAP PARIS, MARCH 14 2016 REVIEW: in collaboration with: R. Brito, M. Crisostomi, C. Deffayet, A. Fabbri,P. Pani, ARXIV:1503.07529 1512.04058 1406.6096

More information

Connection Variables in General Relativity

Connection Variables in General Relativity Connection Variables in General Relativity Mauricio Bustamante Londoño Instituto de Matemáticas UNAM Morelia 28/06/2008 Mauricio Bustamante Londoño (UNAM) Connection Variables in General Relativity 28/06/2008

More information

En búsqueda del mundo cuántico de la gravedad

En búsqueda del mundo cuántico de la gravedad En búsqueda del mundo cuántico de la gravedad Escuela de Verano 2015 Gustavo Niz Grupo de Gravitación y Física Matemática Grupo de Gravitación y Física Matemática Hoy y Viernes Mayor información Quantum

More information

The initial value problem in general relativity

The initial value problem in general relativity LC Physics Colloquium, Spring 2015 Abstract In 1915, Einstein introduced equations describing a theory of gravitation known as general relativity. The Einstein equations, as they are now called, are at

More information

arxiv:hep-th/ v2 15 Jan 2004

arxiv:hep-th/ v2 15 Jan 2004 hep-th/0311240 A Note on Thermodynamics of Black Holes in Lovelock Gravity arxiv:hep-th/0311240v2 15 Jan 2004 Rong-Gen Cai Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735,

More information

Newman-Penrose formalism in higher dimensions

Newman-Penrose formalism in higher dimensions Newman-Penrose formalism in higher dimensions V. Pravda various parts in collaboration with: A. Coley, R. Milson, M. Ortaggio and A. Pravdová Introduction - algebraic classification in four dimensions

More information

Stable bouncing universe in Hořava-Lifshitz Gravity

Stable bouncing universe in Hořava-Lifshitz Gravity Stable bouncing universe in Hořava-Lifshitz Gravity (Waseda Univ.) Collaborate with Yosuke MISONOH (Waseda Univ.) & Shoichiro MIYASHITA (Waseda Univ.) Based on Phys. Rev. D95 044044 (2017) 1 Inflation

More information

Jose Luis Blázquez Salcedo

Jose Luis Blázquez Salcedo Jose Luis Blázquez Salcedo In collaboration with Jutta Kunz, Francisco Navarro Lérida, and Eugen Radu GR Spring School, March 2015, Brandenburg an der Havel 1. Introduction 2. General properties of EMCS-AdS

More information

Global properties of solutions to the Einstein-matter equations

Global properties of solutions to the Einstein-matter equations Global properties of solutions to the Einstein-matter equations Makoto Narita Okinawa National College of Technology 12/Nov./2012 @JGRG22, Tokyo Singularity theorems and two conjectures Theorem 1 (Penrose)

More information

A loop quantum multiverse?

A loop quantum multiverse? Space-time structure p. 1 A loop quantum multiverse? Martin Bojowald The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA arxiv:1212.5150 Space-time structure

More information

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris Braneworlds: gravity & cosmology David Langlois APC & IAP, Paris Outline Introduction Extra dimensions and gravity Large (flat) extra dimensions Warped extra dimensions Homogeneous brane cosmology Brane

More information

General relativity and the Einstein equations

General relativity and the Einstein equations April 23, 2013 Special relativity 1905 Let S and S be two observers moving with velocity v relative to each other along the x-axis and let (t, x) and (t, x ) be the coordinate systems used by these observers.

More information

Entanglement and the Bekenstein-Hawking entropy

Entanglement and the Bekenstein-Hawking entropy Entanglement and the Bekenstein-Hawking entropy Eugenio Bianchi relativity.phys.lsu.edu/ilqgs International Loop Quantum Gravity Seminar Black hole entropy Bekenstein-Hawking 1974 Process: matter falling

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

General Relativity (2nd part)

General Relativity (2nd part) General Relativity (2nd part) Electromagnetism Remember Maxwell equations Conservation Electromagnetism Can collect E and B in a tensor given by And the charge density Can be constructed from and current

More information

Status of Hořava Gravity

Status of Hořava Gravity Status of Institut d Astrophysique de Paris based on DV & T. P. Sotiriou, PRD 85, 064003 (2012) [arxiv:1112.3385 [hep-th]] DV & T. P. Sotiriou, JPCS 453, 012022 (2013) [arxiv:1212.4402 [hep-th]] DV, arxiv:1502.06607

More information

Singularity formation in black hole interiors

Singularity formation in black hole interiors Singularity formation in black hole interiors Grigorios Fournodavlos DPMMS, University of Cambridge Heraklion, Crete, 16 May 2018 Outline The Einstein equations Examples Initial value problem Large time

More information

Graviton and cosmology equations, before the Big Bang

Graviton and cosmology equations, before the Big Bang Hossen Javadi Invited professor of the Faculty of Science at Azad Islamic University, Tehran campuses Tehran, Iran Javadi_hossein@hotmail.com Abstract: For long time seemed the Friedmann equation is able

More information

Minimal theory of massive gravity

Minimal theory of massive gravity Minimal theory of massive gravity Antonio De Felice Yukawa Institute for Theoretical Physics, YITP, Kyoto U. 2-nd APCTP-TUS Workshop Tokyo, Aug 4, 2015 [with prof. Mukohyama] Introduction drgt theory:

More information

arxiv: v1 [gr-qc] 11 Sep 2014

arxiv: v1 [gr-qc] 11 Sep 2014 Frascati Physics Series Vol. 58 (2014) Frontier Objects in Astrophysics and Particle Physics May 18-24, 2014 arxiv:1409.3370v1 [gr-qc] 11 Sep 2014 OPEN PROBLEMS IN GRAVITATIONAL PHYSICS S. Capozziello

More information

From Quantum Mechanics to String Theory

From Quantum Mechanics to String Theory From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics: measurements and uncertainty Smashing things together: from Rutherford to the LHC Particle Interactions Quarks

More information

Einstein Double Field Equations

Einstein Double Field Equations Einstein Double Field Equations Stephen Angus Ewha Woman s University based on arxiv:1804.00964 in collaboration with Kyoungho Cho and Jeong-Hyuck Park (Sogang Univ.) KIAS Workshop on Fields, Strings and

More information

Mimetic dark matter. The mimetic DM is of gravitational origin. Consider a conformal transformation of the type:

Mimetic dark matter. The mimetic DM is of gravitational origin. Consider a conformal transformation of the type: Mimetic gravity Frederico Arroja FA, N. Bartolo, P. Karmakar and S. Matarrese, JCAP 1509 (2015) 051 [arxiv:1506.08575 [gr-qc]] and JCAP 1604 (2016) no.04, 042 [arxiv:1512.09374 [gr-qc]]; S. Ramazanov,

More information

1. Introduction. [Arkani-Hamed, Dimopoulos, Dvali]

1. Introduction. [Arkani-Hamed, Dimopoulos, Dvali] 2014 Ï Ò (í «) Ò Ò Ù Åǽ À 20145 7 Content 1. Introduction and Motivation 2. f(r)-brane model and solutions 3. Localization of gravity on f(r)-brane 4. Gravity resonances on f(r)-brane 5. Corrections to

More information

Cosmology in generalized Proca theories

Cosmology in generalized Proca theories 3-rd Korea-Japan workshop on dark energy, April, 2016 Cosmology in generalized Proca theories Shinji Tsujikawa (Tokyo University of Science) Collaboration with A.De Felice, L.Heisenberg, R.Kase, S.Mukohyama,

More information

A Brief Introduction to Mathematical Relativity

A Brief Introduction to Mathematical Relativity A Brief Introduction to Mathematical Relativity Arick Shao Imperial College London Arick Shao (Imperial College London) Mathematical Relativity 1 / 31 Special Relativity Postulates and Definitions Einstein

More information