Symmetry Reduction for a System of Nonlinear Evolution Equations

Size: px
Start display at page:

Download "Symmetry Reduction for a System of Nonlinear Evolution Equations"

Transcription

1 Nonlinear Mahemaical Physics 1996, V.3, N 3 4, Symmery Reducion for a Sysem of Nonlinear Evoluion Equaions Lyudmila BARANNYK Insiue of Mahemaics of he Naional Ukrainian Academy of Sciences, 3 Tereshchenkivs ka Sree, Kyiv 4, Ukraina Absrac In his paper we obain he maximal Lie symmery algebra of a sysem of PDEs. We reduce his sysem o a sysem of ODEs, using some rank hree subalgebras of he finie-dimensional par of he symmery algebra. The corresponding invarian soluions of he PDEs are obained. 1 Inroducion Sysems of evoluion equaions describe various processes in physics, chemisry and biology [1, 2]. In he papers [3, 4] classes of sysems of evoluion equaions are seleced which are invarian wih respec o some generalizaions of he classical Galilei algebra. We consider he sysem proposed by W. Fushchych u + m 1 u v + 2m 1 u v = 0, v + 2m 1 v2 2m h2 u 1 u = 0, in four-dimensional ime-space R1, 3, where h is he Planck s consan, m R, m 0. Sysem 1 is obained from he Schrödinger equaion iψ = h 2m ψ by he subsiuion ψ = ue iv/ h. From Theorem 1 i follows ha he maximal symmery algebra of sysem 1 conains he algebra L = AG 3 3 < Z >, where AG 3 3 is he special Galilei algebra. Using he classificaion of subalgebras of he algebra AG 3 3, carried ou in [5], we obain all up o Ad L-conjugacy I-maximal rank hree subalgebras of he algebra L. For symmery reducion of sysem 1 we use only subalgebras, whose projecions ono ASL2, R belong o < T >. In some cases considered he reduced sysem can be inegraed, so ha all corresponding soluions of sysem 1 can be consruced. Copyrigh c 1996 by Mahemaical Ukraina Publisher. All righs of reproducion in any form reserved.

2 448 L. BARANNYK 2 Maximal symmery algebra of sysem 1 We use he following noaions δ = δ δ, δ a = δ δx a, δ u = δ δu, δ v = δ δv a = 1, 2, 3. Theorem 1 The maximal Lie symmery algebra of sysem 1 is generaed by he vecor fields S = 2 + x a a 3 2 u u + m 2 x 2 v, D = 2 + x a a 3 2 u u, T =, P a = a, G a = a + mx a v, J ab = x a b x b a, M = m v, Z = u u, a < b; a, b = 1, 3 and he infinie-dimensional algebra X = ρ cos θ v h δ u + h u sin θ v h δ v, 3 where pair of funcions u = ρ, x, ρ, x 0 and v = θ, x is an arbirary soluions of sysem 1 summaion over repeaed indices is assumed wih a=1,2,3. By direc calculaions i is easy o verify ha he operaors M, P a, G a, J ab a, b = 1, 2, 3, D, S, T generae he special Galilei algebra AG 3 3 of he hree-dimensional space. The operaor Z commues wih each elemen of he algebra AG 3 3. Le U =< M, P 1, P 2, P 3, G 1, G 2, G 3 >. Then AG 3 3 = U +AO3 ASL2, R. The algebra AG 3 3 conains he Galilei algebras AG j 3 j = 0, 1, 2, where AG 0 3 = U +AO3, AG 1 3 = U +AO3 < T >, AG 2 3 = U +AO3 < D, T >. The symmeries can be used o build ansazes which hen reduce he equaions of 1 o parial differenial equaions wih fewer independen variables or even o ordinary differenial equaions. These ansazes and reducions are based on subalgebra analysis of a finie-dimensional par of he symmery algebra. 3 Classificaion of I-maximal subalgebras The concep of I-maximal subalgebra was inroduced in he paper [6]. Theorem 2 The I-maximal rank hree subalgebras of he algebra L = AG 3 3 < Z >, which have zero inersecion wih < M, Z >, are up o he Ad L-conjugacy: i Subalgebras of he algebra AG 0 3 < Z >: F 0 =< P 1, P 2, P 3 > +AO3; 2

3 SYMMETRY REDUCTION FOR A SYSTEM 449 F 1 =< G 1 + αz, P 2, P 3, J 23 >, where α = 0, 1; F 2 =< G 1 + P 1 + αz, G 2 + βz, P 3 + γz > α 0, β 0; F 3 =< G 1 + αz, P 2 + Z, P 3 >; α 0 F 4 =< P 1 + Z, P 2, P 3, J 23 >. ii Subalgebras of he algebra AG 1 3 < Z > wih a nonzero projecion ono < T >: F 5 =< P 2, P 3, T + α m M + βz, J 23 >, where α = ±m or α = 0 and β = 0, ±1; F 6 =< P 2, P 3, T + G 1 + αz, J 23 >; F 7 =< P 3 + αz, J 12 + β m M + γz, T + δ Z + λz >; m F 8 = AO3 < T + α M + βz >; m F 9 =< T + G 1 + αz, P 2 + βz, P 3 > β > 0; F 10 =< T + α m M + βz, P 2 + Z, P 3 >. iii Subalgebras of he algebra AG 2 3 < Z > wih a nonzero projecion ono < D >: F 11 =< G 1, P 2, D + αm + βz >; F 12 =< P 3, D + αm + βz, T >; F 13 =< P 2, P 3, J 23, D + αm + βz >; F 14 =< J 12 + αm + βz, D + γm + δz, T >; F 15 =< P 3, J 12 + αd + βm + γz, T > α > 0; F 16 =< P 3, J 12 + αm + βz, D + γm + δz > α 0; F 17 = AO3 < D + αm + βz >. iv Subalgebras of he algebra AG 3 3 < Z >, whose projecions ono ASL2, R coincide wih < S + T >: F 18 = AO3 < S + T + αm + βz >; F 19 =< S + T + 2J 12 + αm + βz, G 1 + P 2 + 2P 3, G 2 P 1 2G 3 >.

4 450 L. BARANNYK 4 Reducion of sysem 1 by subalgebras of he algebra AG 1 3 < Z >. Exac soluions For each of he subalgebras F j j = 1, 10 we give he corresponding ansaz and he reduced sysem. In some cases we also poin ou soluions of sysem 1, which are invarian under F j. αx F 1 : u = exp ϕω, v = mx2 1 + ψω, ω =, 2 2ω ϕ + ϕ = 0, ψ h2 α 2 2mω 2 = 0. The corresponding invarian soluion of sysem 1 is of he form u = C 1 exp αx1, v = mx2 1 h2 α 2 2 2m + C 2. α 4.2. F 2 : u = exp 1 x 1 + β x 2 γx 3 ϕω, v = m 2 1 x2 1 + m 2 x2 2 + ψω, ω =, 2ωω 1 ϕ + 2ω 1ϕ = 0, ψ 2m h2 α 2 ω β2 ω 2 + γ2 = 0. In his case we obain he following invarian soluion of sysem 1: u = C exp αx1 1 + βx 2 γx 3, v = mx mx m h2 α2 1 β2 + γ2 + C 2. αx F 3 : u = exp x 2 ϕω, v = mx2 1 + ψω, ω =, 2 2ω ϕ + ϕ = 0, ψ h2 α 2 2m ω = 0. The corresponding invarian soluion is of he form: u = C 1 αx1 exp x 2, v = mx2 1 + h2 2 α 2 + C m

5 SYMMETRY REDUCTION FOR A SYSTEM F 4 : u = exp x 1 ϕω, v = ψω, ω =, ϕ = 0, ψ h2 2m = 0. The corresponding invarian soluion is u = C 1 exp x 1, v = h2 2m + C F 5 : u = expβϕω, v = α + ψω, ω = x 1. 2βmϕ + 2 ϕ ψ + ϕ ψ = 0, 2αmϕ + ϕ ψ 2 h 2 ϕ = F 6 : u = expαϕω, v = mx 1 m ψω, ω = 2 2x 1. αmϕ + 4 ϕ ψ + 2ϕ ψ = 0, m 2 ωϕ + 4ϕ ψ 2 4 h 2 ϕ = F 7 : u = exp λ αx 3 γ arcan x 1 x 2 ϕω, v = β arcan x 1 x 2 + δ + ψω, ω = x x 2 2. λm + βγϕ + 4ω ϕ ψ + 2ϕ ψ + 2ωϕ ψ = 0, β 2 h 2 α 2 ω + γ 2 + 2δmωϕ 4 h 2 ω ϕ 4 h 2 ω 2 ϕ + 4ω 2 ϕ ψ 2 = F 8 : u = expβϕω, v = α + ψω, ω = x x x 2 3. mβϕ + 4ω ϕ ψ + 3ϕ ψ + 2ωϕ ψ = 0, αmϕ + 2ωϕ ψ 2 h 2 3 ϕ + 2ω ϕ = 0.

6 452 L. BARANNYK 4.9. F 9 : u = expα βx 2 ϕω, v = m x ψω, ω = 2 2x 1. 3 αmϕ + 4 ϕ ψ + 2ϕ ψ = 0, m 2 ω + h 2 β 2 ϕ + 4ϕ ψ 2 4 h 2 ϕ = F 10 : u = expβ x 2 ϕω, v = α + ψω, ω = x 1. 2βmϕ + 2 ϕ ψ + ϕ ψ = 0, References 2αm h 2 ϕ + ϕ ψ 2 h 2 ϕ = 0. [1] Aris R., The Theory of Reacion and Diffusion in Permeable Caalys, Oxford, 1975, 300p. [2] Wilhelmsson H., Oscillaions and relaxaion o equilibrium provided by inerconnecion of emperaure and densiy in hermonuclear plasmas, Ukrain. Phys. J., 1993, V.38, N 1, [3] Fushchych W. I., Cherniha R. M., Sysems of nonlinear evoluion equaions of he second order invarian wih respec o he Galilei algebra and is exensions, Dopovidi Akademii Nauk Ukrainy Repors of he Academy of Sciences of Ukraine, 1993, N 8, [4] Fushchych W. I., Cherniha R. M., Galilei-invarian sysems of nonlinear equaions of he Hamilon- Jacobi ype, Dopovidi Akademii Nauk Ukrainy Repors of he Academy of Sciences of Ukraine, 1994, N 3, [5] Barannyk L. F., Fushchych W. I., On coninuous subgroups of he generalized Schrödinger groups, J. Mah. Phys., 1989, V.30, N 2, [6] Barannyk A. F., Barannyk L. F., Fushchych W. I., Reducion of he mulidimensional d Alember equaion o wo-dimensional equaions, Ukrain. Mah. J., 1994, V.46, N 6,

Symmetry and Numerical Solutions for Systems of Non-linear Reaction Diffusion Equations

Symmetry and Numerical Solutions for Systems of Non-linear Reaction Diffusion Equations Symmery and Numerical Soluions for Sysems of Non-linear Reacion Diffusion Equaions Sanjeev Kumar* and Ravendra Singh Deparmen of Mahemaics, (Dr. B. R. Ambedkar niversiy, Agra), I. B. S. Khandari, Agra-8

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

arxiv:math-ph/ v1 1 Jan 1998

arxiv:math-ph/ v1 1 Jan 1998 Journal of Nonlinear Mahemaical Physics 1998, V.5, N 1, 8 1. Leer Classical and Nonclassical Symmeries of a Generalied Boussinesq Equaion M.L. GANDARIAS and M.S. BRUZON arxiv:mah-ph/980106v1 1 Jan 1998

More information

Omega-limit sets and bounded solutions

Omega-limit sets and bounded solutions arxiv:3.369v [mah.gm] 3 May 6 Omega-limi ses and bounded soluions Dang Vu Giang Hanoi Insiue of Mahemaics Vienam Academy of Science and Technology 8 Hoang Quoc Vie, 37 Hanoi, Vienam e-mail: dangvugiang@yahoo.com

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation Commun Theor Phys Beijing, China 43 2005 pp 591 596 c Inernaional Academic Publishers Vol 43, No 4, April 15, 2005 An Invariance for 2+1-Eension of Burgers Equaion Formulae o Obain Soluions of KP Equaion

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

A GENERALIZED COLE-HOPF TRANSFORMATION FOR A TWO-DIMENSIONAL BURGERS EQUATION WITH A VARIABLE COEFFICIENT

A GENERALIZED COLE-HOPF TRANSFORMATION FOR A TWO-DIMENSIONAL BURGERS EQUATION WITH A VARIABLE COEFFICIENT Indian J. Pure Appl. Mah., 43(6: 591-600, December 2012 c Indian Naional Science Academy A GENERALIZED COLE-HOPF TRANSFORMATION FOR A TWO-DIMENSIONAL BURGERS EQUATION WITH A VARIABLE COEFFICIENT B. Mayil

More information

CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang

CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS Professor Dae Ryook Yang Fall 200 Dep. of Chemical and Biological Engineering Korea Universiy CHE302 Process Dynamics and Conrol Korea Universiy

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

ItsApplication To Derivative Schrödinger Equation

ItsApplication To Derivative Schrödinger Equation IOSR Journal of Mahemaics (IOSR-JM) e-issn: 78-578, p-issn: 19-765X. Volume 1, Issue 5 Ver. II (Sep. - Oc.016), PP 41-54 www.iosrjournals.org The Generalized of cosh() Expansion Mehod And IsApplicaion

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang

CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS Professor Dae Ryook Yang Spring 208 Dep. of Chemical and Biological Engineering CHBE320 Process Dynamics and Conrol 4- Road Map of he Lecure

More information

On the Stability of the n-dimensional Quadratic and Additive Functional Equation in Random Normed Spaces via Fixed Point Method

On the Stability of the n-dimensional Quadratic and Additive Functional Equation in Random Normed Spaces via Fixed Point Method In. Journal of Mah. Analysis, Vol. 7, 013, no. 49, 413-48 HIKARI Ld, www.m-hikari.com hp://d.doi.org/10.1988/ijma.013.36165 On he Sabiliy of he n-dimensional Quadraic and Addiive Funcional Equaion in Random

More information

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University THE MYSTERY OF STOCHASTIC MECHANICS Edward Nelson Deparmen of Mahemaics Princeon Universiy 1 Classical Hamilon-Jacobi heory N paricles of various masses on a Euclidean space. Incorporae he masses in he

More information

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS SARAJEVO JOURNAL OF MATHEMATICS Vol.10 (22 (2014, 67 76 DOI: 10.5644/SJM.10.1.09 CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS ALMA OMERSPAHIĆ AND VAHIDIN HADŽIABDIĆ Absrac. This paper presens sufficien

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

Lie and Non-Lie Symmetries of Nonlinear Diffusion Equations with Convection Term

Lie and Non-Lie Symmetries of Nonlinear Diffusion Equations with Convection Term Symmetry in Nonlinear Mathematical Physics 1997, V.2, 444 449. Lie and Non-Lie Symmetries of Nonlinear Diffusion Equations with Convection Term Roman CHERNIHA and Mykola SEROV Institute of Mathematics

More information

Waveform Transmission Method, A New Waveform-relaxation Based Algorithm. to Solve Ordinary Differential Equations in Parallel

Waveform Transmission Method, A New Waveform-relaxation Based Algorithm. to Solve Ordinary Differential Equations in Parallel Waveform Transmission Mehod, A New Waveform-relaxaion Based Algorihm o Solve Ordinary Differenial Equaions in Parallel Fei Wei Huazhong Yang Deparmen of Elecronic Engineering, Tsinghua Universiy, Beijing,

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation.

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation. Mah 36. Rumbos Spring 1 1 Soluions o Assignmen #6 1. Suppose he growh of a populaion is governed by he differenial equaion where k is a posiive consan. d d = k (a Explain why his model predics ha he populaion

More information

GENERALIZATION OF THE FORMULA OF FAA DI BRUNO FOR A COMPOSITE FUNCTION WITH A VECTOR ARGUMENT

GENERALIZATION OF THE FORMULA OF FAA DI BRUNO FOR A COMPOSITE FUNCTION WITH A VECTOR ARGUMENT Inerna J Mah & Mah Sci Vol 4, No 7 000) 48 49 S0670000970 Hindawi Publishing Corp GENERALIZATION OF THE FORMULA OF FAA DI BRUNO FOR A COMPOSITE FUNCTION WITH A VECTOR ARGUMENT RUMEN L MISHKOV Received

More information

A New Perturbative Approach in Nonlinear Singularity Analysis

A New Perturbative Approach in Nonlinear Singularity Analysis Journal of Mahemaics and Saisics 7 (: 49-54, ISSN 549-644 Science Publicaions A New Perurbaive Approach in Nonlinear Singulariy Analysis Ta-Leung Yee Deparmen of Mahemaics and Informaion Technology, The

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

Homework Solution Set # 3. Thursday, September 22, Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Lalo, Second Volume Complement G X

Homework Solution Set # 3. Thursday, September 22, Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Lalo, Second Volume Complement G X Deparmen of Physics Quanum Mechanics II, 570 Temple Universiy Insrucor: Z.-E. Meziani Homework Soluion Se # 3 Thursday, Sepember, 06 Texbook: Claude Cohen Tannoudji, Bernard Diu and Franck Lalo, Second

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

BBP-type formulas, in general bases, for arctangents of real numbers

BBP-type formulas, in general bases, for arctangents of real numbers Noes on Number Theory and Discree Mahemaics Vol. 19, 13, No. 3, 33 54 BBP-ype formulas, in general bases, for arcangens of real numbers Kunle Adegoke 1 and Olawanle Layeni 2 1 Deparmen of Physics, Obafemi

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

1 st order ODE Initial Condition

1 st order ODE Initial Condition Mah-33 Chapers 1-1 s Order ODE Sepember 1, 17 1 1 s order ODE Iniial Condiion f, sandard form LINEAR NON-LINEAR,, p g differenial form M x dx N x d differenial form is equivalen o a pair of differenial

More information

Selective peracetic acid determination in the presence of hydrogen peroxide using the molecular absorption properties of catalase

Selective peracetic acid determination in the presence of hydrogen peroxide using the molecular absorption properties of catalase Analyical and Bioanalyical Chemisry Elecronic Supplemenary Maerial Selecive peraceic acid deerminaion in he presence of hydrogen peroxide using he molecular absorpion properies of caalase Javier Galbán,

More information

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations arxiv:mah/0602323v1 [mah.pr] 15 Feb 2006 Dual Represenaion as Sochasic Differenial Games of Backward Sochasic Differenial Equaions and Dynamic Evaluaions Shanjian Tang Absrac In his Noe, assuming ha he

More information

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations Hindawi Publishing Corporaion Boundary Value Problems Volume 11, Aricle ID 19156, 11 pages doi:1.1155/11/19156 Research Aricle Exisence and Uniqueness of Periodic Soluion for Nonlinear Second-Order Ordinary

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Multi-component Levi Hierarchy and Its Multi-component Integrable Coupling System

Multi-component Levi Hierarchy and Its Multi-component Integrable Coupling System Commun. Theor. Phys. (Beijing, China) 44 (2005) pp. 990 996 c Inernaional Academic Publishers Vol. 44, No. 6, December 5, 2005 uli-componen Levi Hierarchy and Is uli-componen Inegrable Coupling Sysem XIA

More information

Intuitionistic Fuzzy 2-norm

Intuitionistic Fuzzy 2-norm In. Journal of Mah. Analysis, Vol. 5, 2011, no. 14, 651-659 Inuiionisic Fuzzy 2-norm B. Surender Reddy Deparmen of Mahemaics, PGCS, Saifabad, Osmania Universiy Hyderabad - 500004, A.P., India bsrmahou@yahoo.com

More information

Existence of multiple positive periodic solutions for functional differential equations

Existence of multiple positive periodic solutions for functional differential equations J. Mah. Anal. Appl. 325 (27) 1378 1389 www.elsevier.com/locae/jmaa Exisence of muliple posiive periodic soluions for funcional differenial equaions Zhijun Zeng a,b,,libi a, Meng Fan a a School of Mahemaics

More information

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Novi Sad J. Mah. Vol. 32, No. 2, 2002, 95-108 95 POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Hajnalka Péics 1, János Karsai 2 Absrac. We consider he scalar nonauonomous neural delay differenial

More information

SYMMETRY ANALYSIS AND LINEARIZATION OF THE (2+1) DIMENSIONAL BURGERS EQUATION

SYMMETRY ANALYSIS AND LINEARIZATION OF THE (2+1) DIMENSIONAL BURGERS EQUATION SYMMETRY ANALYSIS AND LINEARIZATION OF THE 2+ DIMENSIONAL BURGERS EQUATION M. SENTHILVELAN Cenre for Nonlinear Dynamics, School of Physics, Bharahidasan Universiy, Tiruchirapalli 620 024, India Email:

More information

Application of Homotopy Analysis Method for Solving various types of Problems of Partial Differential Equations

Application of Homotopy Analysis Method for Solving various types of Problems of Partial Differential Equations Applicaion of Hooopy Analysis Mehod for olving various ypes of Probles of Parial Differenial Equaions V.P.Gohil, Dr. G. A. anabha,assisan Professor, Deparen of Maheaics, Governen Engineering College, Bhavnagar,

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX J Korean Mah Soc 45 008, No, pp 479 49 THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX Gwang-yeon Lee and Seong-Hoon Cho Reprined from he Journal of he

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

On Gronwall s Type Integral Inequalities with Singular Kernels

On Gronwall s Type Integral Inequalities with Singular Kernels Filoma 31:4 (217), 141 149 DOI 1.2298/FIL17441A Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma On Gronwall s Type Inegral Inequaliies

More information

An Iterative Method for Solving Two Special Cases of Nonlinear PDEs

An Iterative Method for Solving Two Special Cases of Nonlinear PDEs Conemporary Engineering Sciences, Vol. 10, 2017, no. 11, 55-553 HIKARI Ld, www.m-hikari.com hps://doi.org/10.12988/ces.2017.7651 An Ieraive Mehod for Solving Two Special Cases of Nonlinear PDEs Carlos

More information

arxiv: v1 [math.na] 23 Feb 2016

arxiv: v1 [math.na] 23 Feb 2016 EPJ Web of Conferences will be se by he publisher DOI: will be se by he publisher c Owned by he auhors, published by EDP Sciences, 16 arxiv:163.67v1 [mah.na] 3 Feb 16 Numerical Soluion of a Nonlinear Inegro-Differenial

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Existence of positive solutions for second order m-point boundary value problems

Existence of positive solutions for second order m-point boundary value problems ANNALES POLONICI MATHEMATICI LXXIX.3 (22 Exisence of posiive soluions for second order m-poin boundary value problems by Ruyun Ma (Lanzhou Absrac. Le α, β, γ, δ and ϱ := γβ + αγ + αδ >. Le ψ( = β + α,

More information

Application of variational iteration method for solving the nonlinear generalized Ito system

Application of variational iteration method for solving the nonlinear generalized Ito system Applicaion of variaional ieraion mehod for solving he nonlinear generalized Io sysem A.M. Kawala *; Hassan A. Zedan ** *Deparmen of Mahemaics, Faculy of Science, Helwan Universiy, Cairo, Egyp **Deparmen

More information

THE SINE INTEGRAL. x dt t

THE SINE INTEGRAL. x dt t THE SINE INTEGRAL As one learns in elemenary calculus, he limi of sin(/ as vanishes is uniy. Furhermore he funcion is even and has an infinie number of zeros locaed a ±n for n1,,3 Is plo looks like his-

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT

Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT Lecure 9: Advanced DFT conceps: The Exchange-correlaion funcional and ime-dependen DFT Marie Curie Tuorial Series: Modeling Biomolecules December 6-11, 2004 Mark Tuckerman Dep. of Chemisry and Couran Insiue

More information

New effective moduli of isotropic viscoelastic composites. Part I. Theoretical justification

New effective moduli of isotropic viscoelastic composites. Part I. Theoretical justification IOP Conference Series: Maerials Science and Engineering PAPE OPEN ACCESS New effecive moduli of isoropic viscoelasic composies. Par I. Theoreical jusificaion To cie his aricle: A A Sveashkov and A A akurov

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Existence Theory of Second Order Random Differential Equations

Existence Theory of Second Order Random Differential Equations Global Journal of Mahemaical Sciences: Theory and Pracical. ISSN 974-32 Volume 4, Number 3 (22), pp. 33-3 Inernaional Research Publicaion House hp://www.irphouse.com Exisence Theory of Second Order Random

More information

Random motion with uniformly distributed directions and random velocity

Random motion with uniformly distributed directions and random velocity Noname manuscrip No. (will be insered by he edior) Anaoliy A. Pogorui Ramón M. Rodríguez-Dagnino Random moion wih uniformly disribued direcions and random velociy Received: dae / Acceped: dae Absrac In

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 35 Chaper 8: Second Order Circuis Daniel M. Liynski, Ph.D. ECE 1 Circui Analysis Lesson 3-34 Chaper 7: Firs Order Circuis (Naural response RC & RL circuis, Singulariy funcions,

More information

Ordinary differential equations. Phys 750 Lecture 7

Ordinary differential equations. Phys 750 Lecture 7 Ordinary differenial equaions Phys 750 Lecure 7 Ordinary Differenial Equaions Mos physical laws are expressed as differenial equaions These come in hree flavours: iniial-value problems boundary-value problems

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

A Limit Symmetry of Modified KdV Equation and Its Applications

A Limit Symmetry of Modified KdV Equation and Its Applications Commun. Theor. Phys. 55 011 960 964 Vol. 55 No. 6 June 15 011 A Limi Symmery o Modiied KdV Equaion and Is Applicaions ZHANG Jian-Bing Ï 1 JI Jie SHEN Qing ã 3 and ZHANG Da-Jun 3 1 School o Mahemaical Sciences

More information

Application of He s Variational Iteration Method for Solving Seventh Order Sawada-Kotera Equations

Application of He s Variational Iteration Method for Solving Seventh Order Sawada-Kotera Equations Applied Mahemaical Sciences, Vol. 2, 28, no. 1, 471-477 Applicaion of He s Variaional Ieraion Mehod for Solving Sevenh Order Sawada-Koera Equaions Hossein Jafari a,1, Allahbakhsh Yazdani a, Javad Vahidi

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION. Jian-Guo ZHANG a,b *

THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION. Jian-Guo ZHANG a,b * Zhang, J.-G., e al.: The Fourier-Yang Inegral Transform for Solving he -D... THERMAL SCIENCE: Year 07, Vol., Suppl., pp. S63-S69 S63 THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE -D HEAT DIFFUSION

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations Concourse Mah 80 Spring 0 Worked Examples: Marix Mehods for Solving Sysems of s Order Linear Differenial Equaions The Main Idea: Given a sysem of s order linear differenial equaions d x d Ax wih iniial

More information

Parametrics and Vectors (BC Only)

Parametrics and Vectors (BC Only) Paramerics and Vecors (BC Only) The following relaionships should be learned and memorized. The paricle s posiion vecor is r() x(), y(). The velociy vecor is v(),. The speed is he magniude of he velociy

More information

Kinematics and kinematic functions

Kinematics and kinematic functions Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables and vice versa Direc Posiion

More information

GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION. Osaka Journal of Mathematics. 51(1) P.245-P.256

GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION. Osaka Journal of Mathematics. 51(1) P.245-P.256 Tile Auhor(s) GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION Zhao, Liang Ciaion Osaka Journal of Mahemaics. 51(1) P.45-P.56 Issue Dae 014-01 Tex Version publisher URL hps://doi.org/10.18910/9195

More information

Random Walk on Circle Imagine a Markov process governing the random motion of a particle on a circular

Random Walk on Circle Imagine a Markov process governing the random motion of a particle on a circular Random Walk on Circle Imagine a Markov process governing he random moion of a paricle on a circular laice: 1 2 γ γ γ The paricle moves o he righ or lef wih probabiliy γ and says where i is wih probabiliy

More information

STABILITY OF PEXIDERIZED QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPASES

STABILITY OF PEXIDERIZED QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPASES Novi Sad J. Mah. Vol. 46, No. 1, 2016, 15-25 STABILITY OF PEXIDERIZED QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPASES N. Eghbali 1 Absrac. We deermine some sabiliy resuls concerning

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

Math 315: Linear Algebra Solutions to Assignment 6

Math 315: Linear Algebra Solutions to Assignment 6 Mah 35: Linear Algebra s o Assignmen 6 # Which of he following ses of vecors are bases for R 2? {2,, 3, }, {4,, 7, 8}, {,,, 3}, {3, 9, 4, 2}. Explain your answer. To generae he whole R 2, wo linearly independen

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB EECS 6 Winer 7 Laboraory 3 Fourier series, Fourier ransform and Bode Plos in MATLAB Inroducion: The objecives of his lab are o use MATLAB:. To plo periodic signals wih Fourier series represenaion. To obain

More information

arxiv: v1 [math.pr] 23 Jan 2019

arxiv: v1 [math.pr] 23 Jan 2019 Consrucion of Liouville Brownian moion via Dirichle form heory Jiyong Shin arxiv:90.07753v [mah.pr] 23 Jan 209 Absrac. The Liouville Brownian moion which was inroduced in [3] is a naural diffusion process

More information

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS Elecronic Journal of Differenial Equaions, Vol. 206 (206, No. 39, pp.. ISSN: 072-669. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu fp ejde.mah.xsae.edu EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO

More information

Product Operators. Fundamentals of MR Alec Ricciuti 3 March 2011

Product Operators. Fundamentals of MR Alec Ricciuti 3 March 2011 Produc Operaors Fundamenals of MR Alec Ricciui 3 March 2011 Ouline Review of he classical vecor model Operaors Mahemaical definiion Quanum mechanics Densiy operaors Produc operaors Spin sysems Single spin-1/2

More information

THE GEOMETRY MONOID OF AN IDENTITY

THE GEOMETRY MONOID OF AN IDENTITY THE GEOMETRY MONOID OF AN IDENTITY Parick DEHORNOY Universié decaen Main idea: For each algebraic ideniy I, (more generally, for each family of algebraic ideniy, acually for each equaional variey), here

More information

Generalized Chebyshev polynomials

Generalized Chebyshev polynomials Generalized Chebyshev polynomials Clemene Cesarano Faculy of Engineering, Inernaional Telemaic Universiy UNINETTUNO Corso Viorio Emanuele II, 39 86 Roma, Ialy email: c.cesarano@unineunouniversiy.ne ABSTRACT

More information

NEW EXAMPLES OF CONVOLUTIONS AND NON-COMMUTATIVE CENTRAL LIMIT THEOREMS

NEW EXAMPLES OF CONVOLUTIONS AND NON-COMMUTATIVE CENTRAL LIMIT THEOREMS QUANTUM PROBABILITY BANACH CENTER PUBLICATIONS, VOLUME 43 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 998 NEW EXAMPLES OF CONVOLUTIONS AND NON-COMMUTATIVE CENTRAL LIMIT THEOREMS MAREK

More information