Tutorial: Sparse Signal Recovery

Size: px
Start display at page:

Download "Tutorial: Sparse Signal Recovery"

Transcription

1 Tutorial: Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan

2 (Sparse) Signal recovery problem signal or population length N k important Φ x = y measurements or tests: length m features Under-determined linear system: Φx = y Given Φ and y, recover information about x Solving LS: arg min Φx y 2 returns a non-sparse x

3 Two main examples: group testing and compressed sensing Φ x = y Group testing Φ binary = pooling design x binary, 1 = defective, 0 = acceptable OUTPUT: defective set success = find defective set exactly Arithmetic: OR

4 Example: Combinatorial group testing Rat dies only 1 week after drinking poisoned wine

5 Being good (computer) scientists, they do the following:

6

7 Unique encoding of each bottle

8 If bottle 5 were poison...

9 ...after 1 week

10 Two main examples: group testing and compressed sensing Φ x = y Compressed sensing Φ = measurement matrix x signal, sparse/compressible OUTPUT: x good approximation to x success = x x p versus x x k q Arithmetic: R or C Head xk k Tail x xk N

11 Biological applications are a combination of these examples Sparse (binary?) matrices Quantitative (non-boolean) measurements Noisy or missing measurements Various signal models

12 Theoretical design problems: jointly design matrices and algorithms Design/Characterize Φ with m < N rows and recovery algorithm s.t. output x is close to good approximation of x: x x p C x x k q.

13 Algorithmic resources Computational time: return x in time proportional to N or to m? (impacts number of items returned) Computational memory: use working space proportional to N or to m? Small-space random constructions: can we generate rows/cols of Φ from collections of random vars with limited independence? Explicit constructions: how do we construct Φ? Randomly or deterministically? Time to calculate each entry? Matrix density: number of non-zero entries in Φ?

14 Signal models Adversarial or for all recover all x with guarantee x x 2 C k x x k 1. When x is compressible, or x x k 1 k x x k 2, obtain better result x x 2 C x x k 2. Probabilistic or for each : recover all x that satisfy a statistical constraint fixed signal x, recover with high probability over construction of Φ uniform distribution over k-sparse signals i.e., random signal model

15 Empirical algorithmic performance Polynomial time algorithms: typically fewer measurements required for desired accuracy, by constant factor 1 Convex optimization: constrained minimization (e.g., Bregman iteration) arg min x 1 s.t. y Φx 2 δ. Unconstrained minimization (e.g., l 1 -regularized LS) minimize L(x; γ, y) = 1 2 y Φx γ x 1. 2 Greedy algorithms: iterative thresholding, subspace iteration z = Φ y then threshold z, keep largest T entries Sublinear time algorithms: for sparse, binary matrices only (currently) Strive to work in space and time proportional to m, specially designed matrices/distributions and algorithms

16 Sparse matrices: Expander graphs S N(S) Adjacency matrix Φ of a d regular (1, ɛ) expander graph Graph G = (X, Y, E), X = n, Y = m For any S X, S k, the neighbor set Probabilistic construction: N(S) (1 ɛ)d S d = O(log(n/k)/ɛ), m = O(k log(n/k)/ɛ 2 ) Deterministic construction: d = O(2 O(log3 (log(n)/ɛ)) ), m = k/ɛ 2 O(log3 (log(n)/ɛ))

17 Bipartite graph Adjacency matrix Measurement matrix (larger example)

18 RIP(p) A measurement matrix Φ satisfies RIP(p, k, δ) property if for any k-sparse vector x, Examples: (1 δ) x p Φx p (1 + δ) x p. RIP(2): Gaussian random matrix, random rows of discrete Fourier matrix RIP(1): adjacency matrix of expander

19 RIP(p) expander Theorem (k, ɛ) expansion implies (1 2ɛ)d x 1 Φx 1 d x 1 for any k-sparse x. d = degree of expander. Theorem RIP(1) + binary sparse matrix implies (k, ɛ) expander for ɛ = 1 1/(1 + δ) 2. 2 Joint work with Berinde, Indyk, Karloff, Strauss

20 RIP(2) and LP decoding Let Φ be an RIP(2) matrix and collect measurements Φx = y. Then LP recovers a good approximation to the top k entries of x: arg min x 1 s.t. Φx = y LP returns x with x 2 C k x x k 1. And, noise-resilient version too. [Candés, Tao, + Romberg; Donoho]

21 Expansion = LP decoding Theorem Φ adjacency matrix of (2k, ɛ) expander. Consider two vectors x, x such that Φx = Φx and x 1 x 1. Then x x α(ɛ) x x k 1 where x k is the optimal k-term representation for x and α(ɛ) = (2ɛ)/(1 2ɛ). Guarantees that Linear Program recovers good sparse approximation Noise-resilient version too

22 RIP(1) RIP(2) Any binary sparse matrix which satisfies RIP(2) must have Ω(k 2 ) rows [Chandar 07] Gaussian random matrix m = O(k log(n/k)) (scaled) satisfies RIP(2) but not RIP(1) x T = ( ) y T = ( 1/k 1/k 0 0 ) x 1 = y 1 but Gx 1 k Gy 1 For biological applications, it may be useful to use sparse, binary RIP(1)+RIP(2) matrices with many rows.

23 RIP(1) = LP decoding l 1 uncertainty principle Lemma Let y satisfy Φy = 0. Let S the set of k largest coordinates of y. Then y S 1 α(ɛ) y 1. LP guarantee Theorem Consider any two vectors u, v such that for y = u v we have Ay = 0, v 1 u 1. S set of k largest entries of u. Then y α(ɛ) u S c 1.

24 Greedy, iterative algorithms for sparse matrices Polynomial time algorithms: several variants, similar to IHT [Berinde, Indyk, Ruszic] Sublinear time algorithms: several variants, depend on norms, signal models, [Gilbert, Li, Porat, Strauss; Porat, Strauss; Ngo, Porat, Rudra; Price, Woodruff]

25 Motivation Pooling in HTS QUAPO Results High Throughput Screening (HTS) High Throughput Screening (HTS) HTS is an essential step in drug discovery (and HTS elsewhere in biology) is an essential step in drug discovery (and elsewhere in biology). Large chemical libraries screened on a biological targetscreened for activity. Large chemical libraries on a biologicalbasic target for type activity yes-no biological assays active compounds. to find Basic {0,to1}find type biological assays active compounds Usually a small number of Usually acompounds found.of compounds found small number One-at-a-time screening: automation One-at-a-time screening powerand miniaturization comes from automation and miniaturization. Noisy assays with false positives and negative Noisy errorsassays with false positive and negative errors. Conclus

26 Current HTS Design Current HTS uses one-at-a-time testing scheme (with repeated Current trials). HTS uses a one-at-a-time testing scheme.

27 Sparse Recovery Problem Mathematical set-up QUAPO Binary Binary measurement matrix: : adjacency Adjacency matrix of unbalanced expander graph. matrix of unbalanced expander graph a Appropriate linear biochemical model. Appropriate Decoding : linear via Linear biochemical Programming. model Decoding a Berinde et. al. (2008) Combining geometry and via linear programming combinatorics: A unified approach to sparse signal recovery

28 Pooled HTS Design Potential Advantages Pooled testing of compounds Uses fewer Propose tests the use of pooled testing of compounds. Work moved from testing (costly) Uses tofewer computational tests. analysis (cheap) Work is moved from testing Handles (costly) errorstoinanalysis testing(cheap). better due to built-in replication Handles errors in testing due to in-built redundancy. Additional quantitative information

29 Motivation Pooling in HTS QUAPO Results Conclusions HTS and signal recovery Analogy to HTS To use compressed sensing approach we need a linear model.

30 Experimental set-up Deterministic binary matrix = Shifted Transversal Design (STD) STD based Time-resolved screen FRET screen to identify inhibitors of RGS4C Singleplex: 316 compounds screened twice Multiplex: Time-resolved 316 FRET compounds screen to identify screened inhibitors 4 per of RGS4C well using 316 Singleplex: 316 compounds screened twice pooled wells Motivation poolhits QUAPO poolmc Summary Multiplex: 316 compounds screened 4 per well using 316 pooled wells (4X)

31 Motivation poolhits QUAPO poolmc Summary Experimental results QUAPO screen results Multiplex results match Singleplex 1 very closely Decoding Multiplex results in the match presence Singleplex of large 1 very errors closely. Decoding in the presence of large errors. 34 / 47

32 Theoretical Practical challenges in HTS applications Accuracy of output not speed of algorithm Joint matrix and algorithm design, maximize recovered information within budget Incorporate prior information Incorporate noise Incorporate measurement device configuration

Combining geometry and combinatorics

Combining geometry and combinatorics Combining geometry and combinatorics A unified approach to sparse signal recovery Anna C. Gilbert University of Michigan joint work with R. Berinde (MIT), P. Indyk (MIT), H. Karloff (AT&T), M. Strauss

More information

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Anna C. Gilbert Department of Mathematics University of Michigan Sparse signal recovery measurements:

More information

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan Connection between... Sparse Approximation and Compressed

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Algorithms for sparse analysis Lecture I: Background on sparse approximation

Algorithms for sparse analysis Lecture I: Background on sparse approximation Algorithms for sparse analysis Lecture I: Background on sparse approximation Anna C. Gilbert Department of Mathematics University of Michigan Tutorial on sparse approximations and algorithms Compress data

More information

Sparse recovery using sparse random matrices

Sparse recovery using sparse random matrices Sparse recovery using sparse random matrices Radu Berinde MIT texel@mit.edu Piotr Indyk MIT indyk@mit.edu April 26, 2008 Abstract We consider the approximate sparse recovery problem, where the goal is

More information

CS on CS: Computer Science insights into Compresive Sensing (and vice versa) Piotr Indyk MIT

CS on CS: Computer Science insights into Compresive Sensing (and vice versa) Piotr Indyk MIT CS on CS: Computer Science insights into Compresive Sensing (and vice versa) Piotr Indyk MIT Sparse Approximations Goal: approximate a highdimensional vector x by x that is sparse, i.e., has few nonzero

More information

Sparse Recovery Using Sparse (Random) Matrices

Sparse Recovery Using Sparse (Random) Matrices Sparse Recovery Using Sparse (Random) Matrices Piotr Indyk MIT Joint work with: Radu Berinde, Anna Gilbert, Howard Karloff, Martin Strauss and Milan Ruzic Linear Compression (learning Fourier coeffs, linear

More information

Compressed Sensing and Linear Codes over Real Numbers

Compressed Sensing and Linear Codes over Real Numbers Compressed Sensing and Linear Codes over Real Numbers Henry D. Pfister (joint with Fan Zhang) Texas A&M University College Station Information Theory and Applications Workshop UC San Diego January 31st,

More information

An Adaptive Sublinear Time Block Sparse Fourier Transform

An Adaptive Sublinear Time Block Sparse Fourier Transform An Adaptive Sublinear Time Block Sparse Fourier Transform Volkan Cevher Michael Kapralov Jonathan Scarlett Amir Zandieh EPFL February 8th 217 Given x C N, compute the Discrete Fourier Transform (DFT) of

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Jorge F. Silva and Eduardo Pavez Department of Electrical Engineering Information and Decision Systems Group Universidad

More information

Linear Sketches A Useful Tool in Streaming and Compressive Sensing

Linear Sketches A Useful Tool in Streaming and Compressive Sensing Linear Sketches A Useful Tool in Streaming and Compressive Sensing Qin Zhang 1-1 Linear sketch Random linear projection M : R n R k that preserves properties of any v R n with high prob. where k n. M =

More information

Tutorial: Sparse Recovery Using Sparse Matrices. Piotr Indyk MIT

Tutorial: Sparse Recovery Using Sparse Matrices. Piotr Indyk MIT Tutorial: Sparse Recovery Using Sparse Matrices Piotr Indyk MIT Problem Formulation (approximation theory, learning Fourier coeffs, linear sketching, finite rate of innovation, compressed sensing...) Setup:

More information

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit arxiv:0707.4203v2 [math.na] 14 Aug 2007 Deanna Needell Department of Mathematics University of California,

More information

arxiv: v1 [cs.it] 9 Jan 2019

arxiv: v1 [cs.it] 9 Jan 2019 Simple Codes and Sparse Recovery with Fast Decoding Mahdi Cheraghchi João Ribeiro arxiv:1901.02852v1 [cs.it] 9 Jan 2019 Abstract Construction of error-correcting codes achieving a designated minimum distance

More information

Conditions for a Unique Non-negative Solution to an Underdetermined System

Conditions for a Unique Non-negative Solution to an Underdetermined System Conditions for a Unique Non-negative Solution to an Underdetermined System Meng Wang and Ao Tang School of Electrical and Computer Engineering Cornell University Ithaca, NY 14853 Abstract This paper investigates

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

Advances in Sparse Signal Recovery Methods. Radu Berinde

Advances in Sparse Signal Recovery Methods. Radu Berinde Advances in Sparse Signal Recovery Methods by Radu Berinde Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master

More information

Lecture 16 Oct. 26, 2017

Lecture 16 Oct. 26, 2017 Sketching Algorithms for Big Data Fall 2017 Prof. Piotr Indyk Lecture 16 Oct. 26, 2017 Scribe: Chi-Ning Chou 1 Overview In the last lecture we constructed sparse RIP 1 matrix via expander and showed that

More information

Combining geometry and combinatorics: a unified approach to sparse signal recovery

Combining geometry and combinatorics: a unified approach to sparse signal recovery Combining geometry and combinatorics: a unified approach to sparse signal recovery R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, and M. J. Strauss Abstract There are two main algorithmic approaches

More information

Tutorial: Sparse Recovery Using Sparse Matrices. Piotr Indyk MIT

Tutorial: Sparse Recovery Using Sparse Matrices. Piotr Indyk MIT Tutorial: Sparse Recovery Using Sparse Matrices Piotr Indyk MIT Problem Formulation (approximation theory, learning Fourier coeffs, linear sketching, finite rate of innovation, compressed sensing...) Setup:

More information

Near-Optimal Sparse Recovery in the L 1 norm

Near-Optimal Sparse Recovery in the L 1 norm Near-Optimal Sparse Recovery in the L 1 norm Piotr Indyk MIT indyk@mit.edu Milan Ružić ITU Copenhagen milan@itu.dk Abstract We consider the approximate sparse recovery problem, where the goal is to (approximately)

More information

Sparse Expander-like Real-valued Projection (SERP) matrices for compressed sensing

Sparse Expander-like Real-valued Projection (SERP) matrices for compressed sensing Sparse Expander-like Real-valued Projection (SERP) matrices for compressed sensing Abdolreza Abdolhosseini Moghadam and Hayder Radha Department of Electrical and Computer Engineering, Michigan State University,

More information

Solution Recovery via L1 minimization: What are possible and Why?

Solution Recovery via L1 minimization: What are possible and Why? Solution Recovery via L1 minimization: What are possible and Why? Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Eighth US-Mexico Workshop on Optimization

More information

Rapidly Computing Sparse Chebyshev and Legendre Coefficient Expansions via SFTs

Rapidly Computing Sparse Chebyshev and Legendre Coefficient Expansions via SFTs Rapidly Computing Sparse Chebyshev and Legendre Coefficient Expansions via SFTs Mark Iwen Michigan State University October 18, 2014 Work with Janice (Xianfeng) Hu Graduating in May! M.A. Iwen (MSU) Fast

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

A For-all Sparse Recovery in Near-Optimal Time

A For-all Sparse Recovery in Near-Optimal Time A For-all Sparse Recovery in Near-Optimal Time ANNA C. GILBERT, Department of Mathematics. University of Michigan, Ann Arbor YI LI, Division of Mathematics, SPMS. Nanyang Technological University ELY PORAT,

More information

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Deanna Needell and Roman Vershynin Abstract We demonstrate a simple greedy algorithm that can reliably

More information

Simultaneous Sparsity

Simultaneous Sparsity Simultaneous Sparsity Joel A. Tropp Anna C. Gilbert Martin J. Strauss {jtropp annacg martinjs}@umich.edu Department of Mathematics The University of Michigan 1 Simple Sparse Approximation Work in the d-dimensional,

More information

Sample Optimal Fourier Sampling in Any Constant Dimension

Sample Optimal Fourier Sampling in Any Constant Dimension 1 / 26 Sample Optimal Fourier Sampling in Any Constant Dimension Piotr Indyk Michael Kapralov MIT IBM Watson October 21, 2014 Fourier Transform and Sparsity Discrete Fourier Transform Given x C n, compute

More information

A Note on the Complexity of L p Minimization

A Note on the Complexity of L p Minimization Mathematical Programming manuscript No. (will be inserted by the editor) A Note on the Complexity of L p Minimization Dongdong Ge Xiaoye Jiang Yinyu Ye Abstract We discuss the L p (0 p < 1) minimization

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

LIMITATION OF LEARNING RANKINGS FROM PARTIAL INFORMATION. By Srikanth Jagabathula Devavrat Shah

LIMITATION OF LEARNING RANKINGS FROM PARTIAL INFORMATION. By Srikanth Jagabathula Devavrat Shah 00 AIM Workshop on Ranking LIMITATION OF LEARNING RANKINGS FROM PARTIAL INFORMATION By Srikanth Jagabathula Devavrat Shah Interest is in recovering distribution over the space of permutations over n elements

More information

Interpolation-Based Trust-Region Methods for DFO

Interpolation-Based Trust-Region Methods for DFO Interpolation-Based Trust-Region Methods for DFO Luis Nunes Vicente University of Coimbra (joint work with A. Bandeira, A. R. Conn, S. Gratton, and K. Scheinberg) July 27, 2010 ICCOPT, Santiago http//www.mat.uc.pt/~lnv

More information

Stochastic geometry and random matrix theory in CS

Stochastic geometry and random matrix theory in CS Stochastic geometry and random matrix theory in CS IPAM: numerical methods for continuous optimization University of Edinburgh Joint with Bah, Blanchard, Cartis, and Donoho Encoder Decoder pair - Encoder/Decoder

More information

Near Optimal Signal Recovery from Random Projections

Near Optimal Signal Recovery from Random Projections 1 Near Optimal Signal Recovery from Random Projections Emmanuel Candès, California Institute of Technology Multiscale Geometric Analysis in High Dimensions: Workshop # 2 IPAM, UCLA, October 2004 Collaborators:

More information

COMBINING GEOMETRY AND COMBINATORICS: A UNIFIED APPROACH TO SPARSE SIGNAL RECOVERY

COMBINING GEOMETRY AND COMBINATORICS: A UNIFIED APPROACH TO SPARSE SIGNAL RECOVERY COMBINING GEOMETRY AND COMBINATORICS: A UNIFIED APPROACH TO SPARSE SIGNAL RECOVERY R. BERINDE, A. C. GILBERT, P. INDYK, H. KARLOFF, AND M. J. STRAUSS Abstract. There are two main algorithmic approaches

More information

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit Claremont Colleges Scholarship @ Claremont CMC Faculty Publications and Research CMC Faculty Scholarship 6-5-2008 Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk Model-Based Compressive Sensing for Signal Ensembles Marco F. Duarte Volkan Cevher Richard G. Baraniuk Concise Signal Structure Sparse signal: only K out of N coordinates nonzero model: union of K-dimensional

More information

Noisy Signal Recovery via Iterative Reweighted L1-Minimization

Noisy Signal Recovery via Iterative Reweighted L1-Minimization Noisy Signal Recovery via Iterative Reweighted L1-Minimization Deanna Needell UC Davis / Stanford University Asilomar SSC, November 2009 Problem Background Setup 1 Suppose x is an unknown signal in R d.

More information

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011 Compressed Sensing Huichao Xue CS3750 Fall 2011 Table of Contents Introduction From News Reports Abstract Definition How it works A review of L 1 norm The Algorithm Backgrounds for underdetermined linear

More information

Sparse Legendre expansions via l 1 minimization

Sparse Legendre expansions via l 1 minimization Sparse Legendre expansions via l 1 minimization Rachel Ward, Courant Institute, NYU Joint work with Holger Rauhut, Hausdorff Center for Mathematics, Bonn, Germany. June 8, 2010 Outline Sparse recovery

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

arxiv: v3 [cs.dm] 22 Jul 2011

arxiv: v3 [cs.dm] 22 Jul 2011 Noise-Resilient Group Testing: Limitations and Constructions Mahdi Cheraghchi arxiv:0811.2609v3 [cs.dm] 22 Jul 2011 Abstract We study combinatorial group testing schemes for learning d-sparse Boolean vectors

More information

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

Optimization for Compressed Sensing

Optimization for Compressed Sensing Optimization for Compressed Sensing Robert J. Vanderbei 2014 March 21 Dept. of Industrial & Systems Engineering University of Florida http://www.princeton.edu/ rvdb Lasso Regression The problem is to solve

More information

Compressive Sensing with Random Matrices

Compressive Sensing with Random Matrices Compressive Sensing with Random Matrices Lucas Connell University of Georgia 9 November 017 Lucas Connell (University of Georgia) Compressive Sensing with Random Matrices 9 November 017 1 / 18 Overview

More information

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Journal of Information & Computational Science 11:9 (214) 2933 2939 June 1, 214 Available at http://www.joics.com Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Jingfei He, Guiling Sun, Jie

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

Sparse Fourier Transform (lecture 4)

Sparse Fourier Transform (lecture 4) 1 / 5 Sparse Fourier Transform (lecture 4) Michael Kapralov 1 1 IBM Watson EPFL St. Petersburg CS Club November 215 2 / 5 Given x C n, compute the Discrete Fourier Transform of x: x i = 1 n x j ω ij, j

More information

Exponential decay of reconstruction error from binary measurements of sparse signals

Exponential decay of reconstruction error from binary measurements of sparse signals Exponential decay of reconstruction error from binary measurements of sparse signals Deanna Needell Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters Outline Introduction Mathematical Formulation

More information

Multipath Matching Pursuit

Multipath Matching Pursuit Multipath Matching Pursuit Submitted to IEEE trans. on Information theory Authors: S. Kwon, J. Wang, and B. Shim Presenter: Hwanchol Jang Multipath is investigated rather than a single path for a greedy

More information

Compressed Sensing with Very Sparse Gaussian Random Projections

Compressed Sensing with Very Sparse Gaussian Random Projections Compressed Sensing with Very Sparse Gaussian Random Projections arxiv:408.504v stat.me] Aug 04 Ping Li Department of Statistics and Biostatistics Department of Computer Science Rutgers University Piscataway,

More information

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method CS 395T: Sublinear Algorithms Fall 2016 Prof. Eric Price Lecture 13 October 6, 2016 Scribe: Kiyeon Jeon and Loc Hoang 1 Overview In the last lecture we covered the lower bound for p th moment (p > 2) and

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information

Nearly Optimal Deterministic Algorithm for Sparse Walsh-Hadamard Transform

Nearly Optimal Deterministic Algorithm for Sparse Walsh-Hadamard Transform Electronic Colloquium on Computational Complexity, Report No. 76 (2015) Nearly Optimal Deterministic Algorithm for Sparse Walsh-Hadamard Transform Mahdi Cheraghchi University of California Berkeley, CA

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Sketching Sparse Covariance Matrices and Graphs

Sketching Sparse Covariance Matrices and Graphs Sketching Sparse Covariance Matrices and Graphs Gautam Dasarathy 1, Pariskhit Shah 2, Badri Narayan Bhaskar 1, and Robert Nowak 1 1 Department of Electrical and Computer Engineering, University of Wisconsin

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

Optimal Deterministic Compressed Sensing Matrices

Optimal Deterministic Compressed Sensing Matrices Optimal Deterministic Compressed Sensing Matrices Arash Saber Tehrani email: saberteh@usc.edu Alexandros G. Dimakis email: dimakis@usc.edu Giuseppe Caire email: caire@usc.edu Abstract We present the first

More information

Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach

Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach Boaz Nadler The Weizmann Institute of Science Israel Joint works with Inbal Horev, Ronen Basri, Meirav Galun and Ery Arias-Castro

More information

Three Generalizations of Compressed Sensing

Three Generalizations of Compressed Sensing Thomas Blumensath School of Mathematics The University of Southampton June, 2010 home prev next page Compressed Sensing and beyond y = Φx + e x R N or x C N x K is K-sparse and x x K 2 is small y R M or

More information

New Applications of Sparse Methods in Physics. Ra Inta, Centre for Gravitational Physics, The Australian National University

New Applications of Sparse Methods in Physics. Ra Inta, Centre for Gravitational Physics, The Australian National University New Applications of Sparse Methods in Physics Ra Inta, Centre for Gravitational Physics, The Australian National University 2 Sparse methods A vector is S-sparse if it has at most S non-zero coefficients.

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

Fast Hard Thresholding with Nesterov s Gradient Method

Fast Hard Thresholding with Nesterov s Gradient Method Fast Hard Thresholding with Nesterov s Gradient Method Volkan Cevher Idiap Research Institute Ecole Polytechnique Federale de ausanne volkan.cevher@epfl.ch Sina Jafarpour Department of Computer Science

More information

Uncertainty quantification for sparse solutions of random PDEs

Uncertainty quantification for sparse solutions of random PDEs Uncertainty quantification for sparse solutions of random PDEs L. Mathelin 1 K.A. Gallivan 2 1 LIMSI - CNRS Orsay, France 2 Mathematics Dpt., Florida State University Tallahassee, FL, USA SIAM 10 July

More information

Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization

Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization Lingchen Kong and Naihua Xiu Department of Applied Mathematics, Beijing Jiaotong University, Beijing, 100044, People s Republic of China E-mail:

More information

Noisy Group Testing and Boolean Compressed Sensing

Noisy Group Testing and Boolean Compressed Sensing Noisy Group Testing and Boolean Compressed Sensing Venkatesh Saligrama Boston University Collaborator: George Atia Outline Examples Problem Setup Noiseless Problem Average error, Worst case error Approximate

More information

Combinatorial Group Testing for DNA Library Screening

Combinatorial Group Testing for DNA Library Screening 0-0 Combinatorial Group Testing for DNA Library Screening Ying Miao University of Tsukuba 0-1 Contents 1. Introduction 2. An Example 3. General Case 4. Consecutive Positives Case 5. Bayesian Network Pool

More information

Graph-based codes for flash memory

Graph-based codes for flash memory 1/28 Graph-based codes for flash memory Discrete Mathematics Seminar September 3, 2013 Katie Haymaker Joint work with Professor Christine Kelley University of Nebraska-Lincoln 2/28 Outline 1 Background

More information

Tutorial: Locally decodable codes. UT Austin

Tutorial: Locally decodable codes. UT Austin Tutorial: Locally decodable codes Anna Gál UT Austin Locally decodable codes Error correcting codes with extra property: Recover (any) one message bit, by reading only a small number of codeword bits.

More information

Fast Reconstruction Algorithms for Deterministic Sensing Matrices and Applications

Fast Reconstruction Algorithms for Deterministic Sensing Matrices and Applications Fast Reconstruction Algorithms for Deterministic Sensing Matrices and Applications Program in Applied and Computational Mathematics Princeton University NJ 08544, USA. Introduction What is Compressive

More information

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Prof. Emmanuel Candes and Prof. Wotao Yin

More information

Bias-free Sparse Regression with Guaranteed Consistency

Bias-free Sparse Regression with Guaranteed Consistency Bias-free Sparse Regression with Guaranteed Consistency Wotao Yin (UCLA Math) joint with: Stanley Osher, Ming Yan (UCLA) Feng Ruan, Jiechao Xiong, Yuan Yao (Peking U) UC Riverside, STATS Department March

More information

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles SIAM Student Research Conference Deanna Needell Joint work with Roman Vershynin and Joel Tropp UC Davis, May 2008 CoSaMP: Greedy Signal

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

Ma/CS 6b Class 25: Error Correcting Codes 2

Ma/CS 6b Class 25: Error Correcting Codes 2 Ma/CS 6b Class 25: Error Correcting Codes 2 By Adam Sheffer Recall: Codes V n the set of binary sequences of length n. For example, V 3 = 000,001,010,011,100,101,110,111. Codes of length n are subsets

More information

AN INTRODUCTION TO COMPRESSIVE SENSING

AN INTRODUCTION TO COMPRESSIVE SENSING AN INTRODUCTION TO COMPRESSIVE SENSING Rodrigo B. Platte School of Mathematical and Statistical Sciences APM/EEE598 Reverse Engineering of Complex Dynamical Networks OUTLINE 1 INTRODUCTION 2 INCOHERENCE

More information

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp CoSaMP Iterative signal recovery from incomplete and inaccurate samples Joel A. Tropp Applied & Computational Mathematics California Institute of Technology jtropp@acm.caltech.edu Joint with D. Needell

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Covariance Sketching

Covariance Sketching Covariance Sketching Gautam Dasarathy, Parikshit Shah, Badri Narayan Bhaskar, Robert Nowak University of Wisconsin - Madison Abstract Learning covariance matrices from highdimensional data is an important

More information

Limitations in Approximating RIP

Limitations in Approximating RIP Alok Puranik Mentor: Adrian Vladu Fifth Annual PRIMES Conference, 2015 Outline 1 Background The Problem Motivation Construction Certification 2 Planted model Planting eigenvalues Analysis Distinguishing

More information

The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008

The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008 The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008 Emmanuel Candés (Caltech), Terence Tao (UCLA) 1 Uncertainty principles A basic principle

More information

A Non-sparse Tutorial on Sparse FFTs

A Non-sparse Tutorial on Sparse FFTs A Non-sparse Tutorial on Sparse FFTs Mark Iwen Michigan State University April 8, 214 M.A. Iwen (MSU) Fast Sparse FFTs April 8, 214 1 / 34 Problem Setup Recover f : [, 2π] C consisting of k trigonometric

More information

Binary Compressive Sensing via Analog. Fountain Coding

Binary Compressive Sensing via Analog. Fountain Coding Binary Compressive Sensing via Analog 1 Fountain Coding Mahyar Shirvanimoghaddam, Member, IEEE, Yonghui Li, Senior Member, IEEE, Branka Vucetic, Fellow, IEEE, and Jinhong Yuan, Senior Member, IEEE, arxiv:1508.03401v1

More information

Randomness-in-Structured Ensembles for Compressed Sensing of Images

Randomness-in-Structured Ensembles for Compressed Sensing of Images Randomness-in-Structured Ensembles for Compressed Sensing of Images Abdolreza Abdolhosseini Moghadam Dep. of Electrical and Computer Engineering Michigan State University Email: abdolhos@msu.edu Hayder

More information

Interpolation via weighted l 1 minimization

Interpolation via weighted l 1 minimization Interpolation via weighted l 1 minimization Rachel Ward University of Texas at Austin December 12, 2014 Joint work with Holger Rauhut (Aachen University) Function interpolation Given a function f : D C

More information

APPROXIMATE SPARSE RECOVERY: OPTIMIZING TIME AND MEASUREMENTS

APPROXIMATE SPARSE RECOVERY: OPTIMIZING TIME AND MEASUREMENTS SIAM J. COMPUT. Vol. 41, No. 2, pp. 436 453 c 2012 Society for Industrial and Applied Mathematics APPROXIMATE SPARSE RECOVERY: OPTIMIZING TIME AND MEASUREMENTS ANNA C. GILBERT, YI LI, ELY PORAT, AND MARTIN

More information

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5 CS 229r: Algorithms for Big Data Fall 215 Prof. Jelani Nelson Lecture 19 Nov 5 Scribe: Abdul Wasay 1 Overview In the last lecture, we started discussing the problem of compressed sensing where we are given

More information

Pooling designs for high-throughput biological experiments

Pooling designs for high-throughput biological experiments Pooling designs for high-throughput biological experiments by Raghunandan M. Kainkaryam A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical

More information

Performance Analysis for Sparse Support Recovery

Performance Analysis for Sparse Support Recovery Performance Analysis for Sparse Support Recovery Gongguo Tang and Arye Nehorai ESE, Washington University April 21st 2009 Gongguo Tang and Arye Nehorai (Institute) Performance Analysis for Sparse Support

More information

Error-Correcting Codes:

Error-Correcting Codes: Error-Correcting Codes: Progress & Challenges Madhu Sudan Microsoft/MIT Communication in presence of noise We are not ready Sender Noisy Channel We are now ready Receiver If information is digital, reliability

More information