Uncertainty quantification for sparse solutions of random PDEs

Size: px
Start display at page:

Download "Uncertainty quantification for sparse solutions of random PDEs"

Transcription

1 Uncertainty quantification for sparse solutions of random PDEs L. Mathelin 1 K.A. Gallivan 2 1 LIMSI - CNRS Orsay, France 2 Mathematics Dpt., Florida State University Tallahassee, FL, USA SIAM 10 July 12-16, 2010 Pittsburgh, PA

2 A waste of resources... An uncertain quantity f L 2 (Ω ξ, p ξ ; R) is usually represented as f (ξ) = k f k Ψ k (ξ) P f k Ψ k (ξ) = f (ξ), P N, ξ Ω ξ R d. k Given an approximation basis {Ψ k }, f is entirely determined from the P coefficients f k of the q-th order ( polynomials. ) q + d When q and/or d grows, P = gets large retrieving the q coefficients becomes a computational challenge. Standard approach: determine all P coefficients and possibly retain only the K most significant to speed-up subsequent treatments Waste of resources More sounded approach: determine only the K most significant coefficients.

3 Core philosophy of the method Let u be a signal lying in the time and frequency space. From the Weyl-Heisenberg principle, one knows that the signal can not be concentrated in a time and frequency support such as supp u supp û 1. where û is the Fourier transform of u.

4 Core philosophy of the method (cnt d) In the same line of reasoning, for u R N : T W N. (1) Let K be the cardinality of u in its time approximation basis {Φ m } and let one takes M measurements of û. If 2K W < N, holds, the sparsest u matching the M measures is unique and exactly recovers the non-zero coefficients. In a nutshell, if another solution u existed, δ = u u would lie in the nullspace of {Φ m} so that supp δ W. Since supp δ 2K, supp δ supp δ 2K W so that Eq. (1) is violated, establishing uniqueness of u. stable recovery of u from M N is possible with overwhelming probability.

5 Compressed sensing Formalized by Donoho, Candès, Romberg, etc. Allows to retrieve the exact compressible solution of a vastly undetermined linear system AX = Y + ω, A R M P, M P, X R P, supp (X) = K < M P. The solution X is determined from X = arg min X 0 s.t. Y AX 2 ε. X R P L 0 -norm L 1 -norm the problem becomes convex while the solution X remains the same (but M M log P).

6 Compressed sensing (cnt d) Recovery performance depends on the properties of A. Let δ K arg max 1 i K 1 λ i, with λ an eigenvalue of A T K A K and A K any submatrix A K R M K from A. If δ 2K < 2 1 holds, then [Candès (2009)], X X 2 c 1 X X K 1 / K + c 2 ε, the recovery is almost as good as the K -best term approximation X K. Evaluation of the Restricted Isometry Property constant δ K is NP-hard intractable. But : upper-bounded by the mutual incoherence µ between the set of linear information operators {Φ} and {Ψ} defining the frame in which f is approximated: δ K µ (Φ, Ψ) max m,k Φ m Ψ k Φ m 1 Ωξ Ψ k, Ψ k 1/2. One wants to use a set {Φ} as incoherent with {Ψ} as possible.

7 CS-like UQ? Let {Ψ} a d-dimensional, q-th total order, Polynomial Chaos basis of cardinality P = (d + q)!/ (d! q!). One wants to determine the significant modes of a random quantity f assumed compressible in {Ψ}. Let f be approximated as f (ξ) f (ξ) = P X k Ψ k (ξ). (2) Let {Φ} be a set incoherent with {Ψ}. Upon application on Eq. (2), look for sparsest X such that P Φ mf Φ m (Xk Ψ k ) ε, of the form k k 2 X = min X R P X 1 s.t. Y AX 2 ε.

8 Choice of the set of information operators {Φ} should lead to maximum incoherence when applied to {Ψ} (Legendre polynomials), should allow for a tractable estimation of Φ m f. The set {Φ 1... Φ M } is chosen at random from a linear combinaison of point-wise estimators in L 2 (Ω ξ, p ξ ; R): straightforward evaluation of the constraint vector Y : Y m = Φ m f = i I α i m f (ξ i ), 1 m M.

9 Choice of the measurement set {Φ} (cnt d) Rk1 If Φ m P δξm Doostan & Owhadi. Closely related to the solution from the statistical identification LASSO method, e.g. Blatman & Sudret for UQ. Rk2 If Φ m P Ψm Least-squares solution. The incoherence is minimal can not make a worse choice for {Φ}! Requires M = P samples!

10 Shallow Water Equations test problem Solve the SWE with several independent sources of uncertainty (source term location, strength, shape, ocean depth field, etc.) we want to quantify uncertainty associated with the level of water at a given location and time. Solution method: smoothed L 1 -norm around the origin C 1, weighted L 1 -norm (iterative procedure) to mimic L 0 -norm: 1 w k = better recovery properties, X k + ε memory-limited second-order quasi-newton approach for solving a reformulated problem [convex unconstrained problem]: X = arg min X R P X 1 + α Φ mf P Φ m (X k Ψ k ). k 2

11 Some results in 2D convergence rate Compressible case d = 2, q = 12, P = 91. Denser case (but still compressible) allows to very significantly reduce # of required deterministic solutions M to reach a given accuracy. ɛ f f. 2

12 Some results in 2D (cnt d) solution spectrum Compressible case Denser case M = 65 < 257 the most significant modes are effectively retrieved.

13 Excellent performance. About 2000 samples suffice to get maximal representation accuracy with 8-th order PC. 8D case Polynomial Chaos d = 8, q = 8, P =

14 Concluding remarks Efficient non-adaptive strategy to retrieve the most dominants modes and only them large computational resources savings, most quantities of physical interest are compressible in standard bases such as PC, nice features of a non-intrusive approach are retained.

15 Concluding remarks Efficient non-adaptive strategy to retrieve the most dominants modes and only them large computational resources savings, most quantities of physical interest are compressible in standard bases such as PC, nice features of a non-intrusive approach are retained. Future directions include better sensing operators for further improved recovery properties, adaptive redundant dictionary, application to model equations instead of response surfaces is straightforward,...

16 Appendix

17 8D case Stochastic collocation d = 8, q = 8, P = Reasonably good performance. Up to 1 order of magnitude less sampling for a given accuracy. f is only weakly compressible in the normalized Lagrange basis.

Rank reduction of parameterized time-dependent PDEs

Rank reduction of parameterized time-dependent PDEs Rank reduction of parameterized time-dependent PDEs A. Spantini 1, L. Mathelin 2, Y. Marzouk 1 1 AeroAstro Dpt., MIT, USA 2 LIMSI-CNRS, France UNCECOMP 2015 (MIT & LIMSI-CNRS) Rank reduction of parameterized

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Sparse polynomial chaos expansions in engineering applications

Sparse polynomial chaos expansions in engineering applications DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Sparse polynomial chaos expansions in engineering applications B. Sudret G. Blatman (EDF R&D,

More information

Compressed Sensing and Neural Networks

Compressed Sensing and Neural Networks and Jan Vybíral (Charles University & Czech Technical University Prague, Czech Republic) NOMAD Summer Berlin, September 25-29, 2017 1 / 31 Outline Lasso & Introduction Notation Training the network Applications

More information

Quantifying conformation fluctuation induced uncertainty in bio-molecular systems

Quantifying conformation fluctuation induced uncertainty in bio-molecular systems Quantifying conformation fluctuation induced uncertainty in bio-molecular systems Guang Lin, Dept. of Mathematics & School of Mechanical Engineering, Purdue University Collaborative work with Huan Lei,

More information

Uniqueness Conditions for A Class of l 0 -Minimization Problems

Uniqueness Conditions for A Class of l 0 -Minimization Problems Uniqueness Conditions for A Class of l 0 -Minimization Problems Chunlei Xu and Yun-Bin Zhao October, 03, Revised January 04 Abstract. We consider a class of l 0 -minimization problems, which is to search

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Sparse and Low-Rank Matrix Decompositions

Sparse and Low-Rank Matrix Decompositions Forty-Seventh Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 30 - October 2, 2009 Sparse and Low-Rank Matrix Decompositions Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo,

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011 Compressed Sensing Huichao Xue CS3750 Fall 2011 Table of Contents Introduction From News Reports Abstract Definition How it works A review of L 1 norm The Algorithm Backgrounds for underdetermined linear

More information

Sparse Solutions of an Undetermined Linear System

Sparse Solutions of an Undetermined Linear System 1 Sparse Solutions of an Undetermined Linear System Maddullah Almerdasy New York University Tandon School of Engineering arxiv:1702.07096v1 [math.oc] 23 Feb 2017 Abstract This work proposes a research

More information

Recovering overcomplete sparse representations from structured sensing

Recovering overcomplete sparse representations from structured sensing Recovering overcomplete sparse representations from structured sensing Deanna Needell Claremont McKenna College Feb. 2015 Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix

More information

Interpolation via weighted l 1 minimization

Interpolation via weighted l 1 minimization Interpolation via weighted l 1 minimization Rachel Ward University of Texas at Austin December 12, 2014 Joint work with Holger Rauhut (Aachen University) Function interpolation Given a function f : D C

More information

arxiv: v2 [math.na] 9 Jul 2014

arxiv: v2 [math.na] 9 Jul 2014 A least-squares method for sparse low rank approximation of multivariate functions arxiv:1305.0030v2 [math.na] 9 Jul 2014 M. Chevreuil R. Lebrun A. Nouy P. Rai Abstract In this paper, we propose a low-rank

More information

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar

More information

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5 CS 229r: Algorithms for Big Data Fall 215 Prof. Jelani Nelson Lecture 19 Nov 5 Scribe: Abdul Wasay 1 Overview In the last lecture, we started discussing the problem of compressed sensing where we are given

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE 5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009 Uncertainty Relations for Shift-Invariant Analog Signals Yonina C. Eldar, Senior Member, IEEE Abstract The past several years

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

Color Scheme. swright/pcmi/ M. Figueiredo and S. Wright () Inference and Optimization PCMI, July / 14

Color Scheme.   swright/pcmi/ M. Figueiredo and S. Wright () Inference and Optimization PCMI, July / 14 Color Scheme www.cs.wisc.edu/ swright/pcmi/ M. Figueiredo and S. Wright () Inference and Optimization PCMI, July 2016 1 / 14 Statistical Inference via Optimization Many problems in statistical inference

More information

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit arxiv:0707.4203v2 [math.na] 14 Aug 2007 Deanna Needell Department of Mathematics University of California,

More information

Thresholds for the Recovery of Sparse Solutions via L1 Minimization

Thresholds for the Recovery of Sparse Solutions via L1 Minimization Thresholds for the Recovery of Sparse Solutions via L Minimization David L. Donoho Department of Statistics Stanford University 39 Serra Mall, Sequoia Hall Stanford, CA 9435-465 Email: donoho@stanford.edu

More information

Polynomial chaos expansions for sensitivity analysis

Polynomial chaos expansions for sensitivity analysis c DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for sensitivity analysis B. Sudret Chair of Risk, Safety & Uncertainty

More information

Sparse Legendre expansions via l 1 minimization

Sparse Legendre expansions via l 1 minimization Sparse Legendre expansions via l 1 minimization Rachel Ward, Courant Institute, NYU Joint work with Holger Rauhut, Hausdorff Center for Mathematics, Bonn, Germany. June 8, 2010 Outline Sparse recovery

More information

Data Sparse Matrix Computation - Lecture 20

Data Sparse Matrix Computation - Lecture 20 Data Sparse Matrix Computation - Lecture 20 Yao Cheng, Dongping Qi, Tianyi Shi November 9, 207 Contents Introduction 2 Theorems on Sparsity 2. Example: A = [Φ Ψ]......................... 2.2 General Matrix

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information

Uncertainty principles and sparse approximation

Uncertainty principles and sparse approximation Uncertainty principles and sparse approximation In this lecture, we will consider the special case where the dictionary Ψ is composed of a pair of orthobases. We will see that our ability to find a sparse

More information

Super-resolution via Convex Programming

Super-resolution via Convex Programming Super-resolution via Convex Programming Carlos Fernandez-Granda (Joint work with Emmanuel Candès) Structure and Randomness in System Identication and Learning, IPAM 1/17/2013 1/17/2013 1 / 44 Index 1 Motivation

More information

Sparse solutions of underdetermined systems

Sparse solutions of underdetermined systems Sparse solutions of underdetermined systems I-Liang Chern September 22, 2016 1 / 16 Outline Sparsity and Compressibility: the concept for measuring sparsity and compressibility of data Minimum measurements

More information

2D X-Ray Tomographic Reconstruction From Few Projections

2D X-Ray Tomographic Reconstruction From Few Projections 2D X-Ray Tomographic Reconstruction From Few Projections Application of Compressed Sensing Theory CEA-LID, Thalès, UJF 6 octobre 2009 Introduction Plan 1 Introduction 2 Overview of Compressed Sensing Theory

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

Intro BCS/Low Rank Model Inference/Comparison Summary References. UQTk. A Flexible Python/C++ Toolkit for Uncertainty Quantification

Intro BCS/Low Rank Model Inference/Comparison Summary References. UQTk. A Flexible Python/C++ Toolkit for Uncertainty Quantification A Flexible Python/C++ Toolkit for Uncertainty Quantification Bert Debusschere, Khachik Sargsyan, Cosmin Safta, Prashant Rai, Kenny Chowdhary bjdebus@sandia.gov Sandia National Laboratories, Livermore,

More information

Optimization for Compressed Sensing

Optimization for Compressed Sensing Optimization for Compressed Sensing Robert J. Vanderbei 2014 March 21 Dept. of Industrial & Systems Engineering University of Florida http://www.princeton.edu/ rvdb Lasso Regression The problem is to solve

More information

Provable Alternating Minimization Methods for Non-convex Optimization

Provable Alternating Minimization Methods for Non-convex Optimization Provable Alternating Minimization Methods for Non-convex Optimization Prateek Jain Microsoft Research, India Joint work with Praneeth Netrapalli, Sujay Sanghavi, Alekh Agarwal, Animashree Anandkumar, Rashish

More information

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Prof. Emmanuel Candes and Prof. Wotao Yin

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Polynomial chaos expansions for structural reliability analysis

Polynomial chaos expansions for structural reliability analysis DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for structural reliability analysis B. Sudret & S. Marelli Incl.

More information

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Journal of Information & Computational Science 11:9 (214) 2933 2939 June 1, 214 Available at http://www.joics.com Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Jingfei He, Guiling Sun, Jie

More information

Lecture 24 May 30, 2018

Lecture 24 May 30, 2018 Stats 3C: Theory of Statistics Spring 28 Lecture 24 May 3, 28 Prof. Emmanuel Candes Scribe: Martin J. Zhang, Jun Yan, Can Wang, and E. Candes Outline Agenda: High-dimensional Statistical Estimation. Lasso

More information

On the coherence barrier and analogue problems in compressed sensing

On the coherence barrier and analogue problems in compressed sensing On the coherence barrier and analogue problems in compressed sensing Clarice Poon University of Cambridge June 1, 2017 Joint work with: Ben Adcock Anders Hansen Bogdan Roman (Simon Fraser) (Cambridge)

More information

Spectral methods for fuzzy structural dynamics: modal vs direct approach

Spectral methods for fuzzy structural dynamics: modal vs direct approach Spectral methods for fuzzy structural dynamics: modal vs direct approach S Adhikari Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Wales, UK IUTAM Symposium

More information

Conditions for Robust Principal Component Analysis

Conditions for Robust Principal Component Analysis Rose-Hulman Undergraduate Mathematics Journal Volume 12 Issue 2 Article 9 Conditions for Robust Principal Component Analysis Michael Hornstein Stanford University, mdhornstein@gmail.com Follow this and

More information

Algorithms for sparse analysis Lecture I: Background on sparse approximation

Algorithms for sparse analysis Lecture I: Background on sparse approximation Algorithms for sparse analysis Lecture I: Background on sparse approximation Anna C. Gilbert Department of Mathematics University of Michigan Tutorial on sparse approximations and algorithms Compress data

More information

Sparse Optimization Lecture: Sparse Recovery Guarantees

Sparse Optimization Lecture: Sparse Recovery Guarantees Those who complete this lecture will know Sparse Optimization Lecture: Sparse Recovery Guarantees Sparse Optimization Lecture: Sparse Recovery Guarantees Instructor: Wotao Yin Department of Mathematics,

More information

Compressed Sensing via Partial l 1 Minimization

Compressed Sensing via Partial l 1 Minimization WORCESTER POLYTECHNIC INSTITUTE Compressed Sensing via Partial l 1 Minimization by Lu Zhong A thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements

More information

Minimizing the Difference of L 1 and L 2 Norms with Applications

Minimizing the Difference of L 1 and L 2 Norms with Applications 1/36 Minimizing the Difference of L 1 and L 2 Norms with Department of Mathematical Sciences University of Texas Dallas May 31, 2017 Partially supported by NSF DMS 1522786 2/36 Outline 1 A nonconvex approach:

More information

COMPRESSED SENSING IN PYTHON

COMPRESSED SENSING IN PYTHON COMPRESSED SENSING IN PYTHON Sercan Yıldız syildiz@samsi.info February 27, 2017 OUTLINE A BRIEF INTRODUCTION TO COMPRESSED SENSING A BRIEF INTRODUCTION TO CVXOPT EXAMPLES A Brief Introduction to Compressed

More information

Tutorial: Sparse Signal Recovery

Tutorial: Sparse Signal Recovery Tutorial: Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan (Sparse) Signal recovery problem signal or population length N k important Φ x = y measurements or tests:

More information

Compressed Sensing and Related Learning Problems

Compressed Sensing and Related Learning Problems Compressed Sensing and Related Learning Problems Yingzhen Li Dept. of Mathematics, Sun Yat-sen University Advisor: Prof. Haizhang Zhang Advisor: Prof. Haizhang Zhang 1 / Overview Overview Background Compressed

More information

Restricted Strong Convexity Implies Weak Submodularity

Restricted Strong Convexity Implies Weak Submodularity Restricted Strong Convexity Implies Weak Submodularity Ethan R. Elenberg Rajiv Khanna Alexandros G. Dimakis Department of Electrical and Computer Engineering The University of Texas at Austin {elenberg,rajivak}@utexas.edu

More information

The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008

The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008 The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008 Emmanuel Candés (Caltech), Terence Tao (UCLA) 1 Uncertainty principles A basic principle

More information

Stable Signal Recovery from Incomplete and Inaccurate Measurements

Stable Signal Recovery from Incomplete and Inaccurate Measurements Stable Signal Recovery from Incomplete and Inaccurate Measurements EMMANUEL J. CANDÈS California Institute of Technology JUSTIN K. ROMBERG California Institute of Technology AND TERENCE TAO University

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

Supremum of simple stochastic processes

Supremum of simple stochastic processes Subspace embeddings Daniel Hsu COMS 4772 1 Supremum of simple stochastic processes 2 Recap: JL lemma JL lemma. For any ε (0, 1/2), point set S R d of cardinality 16 ln n S = n, and k N such that k, there

More information

TRACKING SOLUTIONS OF TIME VARYING LINEAR INVERSE PROBLEMS

TRACKING SOLUTIONS OF TIME VARYING LINEAR INVERSE PROBLEMS TRACKING SOLUTIONS OF TIME VARYING LINEAR INVERSE PROBLEMS Martin Kleinsteuber and Simon Hawe Department of Electrical Engineering and Information Technology, Technische Universität München, München, Arcistraße

More information

Optimization Algorithms for Compressed Sensing

Optimization Algorithms for Compressed Sensing Optimization Algorithms for Compressed Sensing Stephen Wright University of Wisconsin-Madison SIAM Gator Student Conference, Gainesville, March 2009 Stephen Wright (UW-Madison) Optimization and Compressed

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

Sparsity in Underdetermined Systems

Sparsity in Underdetermined Systems Sparsity in Underdetermined Systems Department of Statistics Stanford University August 19, 2005 Classical Linear Regression Problem X n y p n 1 > Given predictors and response, y Xβ ε = + ε N( 0, σ 2

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

Convex Optimization and l 1 -minimization

Convex Optimization and l 1 -minimization Convex Optimization and l 1 -minimization Sangwoon Yun Computational Sciences Korea Institute for Advanced Study December 11, 2009 2009 NIMS Thematic Winter School Outline I. Convex Optimization II. l

More information

Introduction to Uncertainty Quantification in Computational Science Handout #3

Introduction to Uncertainty Quantification in Computational Science Handout #3 Introduction to Uncertainty Quantification in Computational Science Handout #3 Gianluca Iaccarino Department of Mechanical Engineering Stanford University June 29 - July 1, 2009 Scuola di Dottorato di

More information

Greedy Sparsity-Constrained Optimization

Greedy Sparsity-Constrained Optimization Greedy Sparsity-Constrained Optimization Sohail Bahmani, Petros Boufounos, and Bhiksha Raj 3 sbahmani@andrew.cmu.edu petrosb@merl.com 3 bhiksha@cs.cmu.edu Department of Electrical and Computer Engineering,

More information

Uncertainty Quantification in Computational Models

Uncertainty Quantification in Computational Models Uncertainty Quantification in Computational Models Habib N. Najm Sandia National Laboratories, Livermore, CA, USA Workshop on Understanding Climate Change from Data (UCC11) University of Minnesota, Minneapolis,

More information

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit Claremont Colleges Scholarship @ Claremont CMC Faculty Publications and Research CMC Faculty Scholarship 6-5-2008 Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

More information

Exponential decay of reconstruction error from binary measurements of sparse signals

Exponential decay of reconstruction error from binary measurements of sparse signals Exponential decay of reconstruction error from binary measurements of sparse signals Deanna Needell Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters Outline Introduction Mathematical Formulation

More information

The Sparsity Gap. Joel A. Tropp. Computing & Mathematical Sciences California Institute of Technology

The Sparsity Gap. Joel A. Tropp. Computing & Mathematical Sciences California Institute of Technology The Sparsity Gap Joel A. Tropp Computing & Mathematical Sciences California Institute of Technology jtropp@acm.caltech.edu Research supported in part by ONR 1 Introduction The Sparsity Gap (Casazza Birthday

More information

Accelerated Block-Coordinate Relaxation for Regularized Optimization

Accelerated Block-Coordinate Relaxation for Regularized Optimization Accelerated Block-Coordinate Relaxation for Regularized Optimization Stephen J. Wright Computer Sciences University of Wisconsin, Madison October 09, 2012 Problem descriptions Consider where f is smooth

More information

Sparse recovery for spherical harmonic expansions

Sparse recovery for spherical harmonic expansions Rachel Ward 1 1 Courant Institute, New York University Workshop Sparsity and Cosmology, Nice May 31, 2011 Cosmic Microwave Background Radiation (CMB) map Temperature is measured as T (θ, ϕ) = k k=0 l=

More information

Interpolation-Based Trust-Region Methods for DFO

Interpolation-Based Trust-Region Methods for DFO Interpolation-Based Trust-Region Methods for DFO Luis Nunes Vicente University of Coimbra (joint work with A. Bandeira, A. R. Conn, S. Gratton, and K. Scheinberg) July 27, 2010 ICCOPT, Santiago http//www.mat.uc.pt/~lnv

More information

Low-Dimensional Signal Models in Compressive Sensing

Low-Dimensional Signal Models in Compressive Sensing University of Colorado, Boulder CU Scholar Electrical, Computer & Energy Engineering Graduate Theses & Dissertations Electrical, Computer & Energy Engineering Spring 4-1-2013 Low-Dimensional Signal Models

More information

Lecture Notes 9: Constrained Optimization

Lecture Notes 9: Constrained Optimization Optimization-based data analysis Fall 017 Lecture Notes 9: Constrained Optimization 1 Compressed sensing 1.1 Underdetermined linear inverse problems Linear inverse problems model measurements of the form

More information

Towards a Mathematical Theory of Super-resolution

Towards a Mathematical Theory of Super-resolution Towards a Mathematical Theory of Super-resolution Carlos Fernandez-Granda www.stanford.edu/~cfgranda/ Information Theory Forum, Information Systems Laboratory, Stanford 10/18/2013 Acknowledgements This

More information

AN INTRODUCTION TO COMPRESSIVE SENSING

AN INTRODUCTION TO COMPRESSIVE SENSING AN INTRODUCTION TO COMPRESSIVE SENSING Rodrigo B. Platte School of Mathematical and Statistical Sciences APM/EEE598 Reverse Engineering of Complex Dynamical Networks OUTLINE 1 INTRODUCTION 2 INCOHERENCE

More information

LEARNING DATA TRIAGE: LINEAR DECODING WORKS FOR COMPRESSIVE MRI. Yen-Huan Li and Volkan Cevher

LEARNING DATA TRIAGE: LINEAR DECODING WORKS FOR COMPRESSIVE MRI. Yen-Huan Li and Volkan Cevher LARNING DATA TRIAG: LINAR DCODING WORKS FOR COMPRSSIV MRI Yen-Huan Li and Volkan Cevher Laboratory for Information Inference Systems École Polytechnique Fédérale de Lausanne ABSTRACT The standard approach

More information

A Note on the Complexity of L p Minimization

A Note on the Complexity of L p Minimization Mathematical Programming manuscript No. (will be inserted by the editor) A Note on the Complexity of L p Minimization Dongdong Ge Xiaoye Jiang Yinyu Ye Abstract We discuss the L p (0 p < 1) minimization

More information

Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector

Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector Muhammad Salman Asif Thesis Committee: Justin Romberg (Advisor), James McClellan, Russell Mersereau School of Electrical and Computer

More information

L-statistics based Modification of Reconstruction Algorithms for Compressive Sensing in the Presence of Impulse Noise

L-statistics based Modification of Reconstruction Algorithms for Compressive Sensing in the Presence of Impulse Noise L-statistics based Modification of Reconstruction Algorithms for Compressive Sensing in the Presence of Impulse Noise Srdjan Stanković, Irena Orović and Moeness Amin 1 Abstract- A modification of standard

More information

Dinesh Kumar, Mehrdad Raisee and Chris Lacor

Dinesh Kumar, Mehrdad Raisee and Chris Lacor Dinesh Kumar, Mehrdad Raisee and Chris Lacor Fluid Mechanics and Thermodynamics Research Group Vrije Universiteit Brussel, BELGIUM dkumar@vub.ac.be; m_raisee@yahoo.com; chris.lacor@vub.ac.be October, 2014

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

Introduction to Sparsity. Xudong Cao, Jake Dreamtree & Jerry 04/05/2012

Introduction to Sparsity. Xudong Cao, Jake Dreamtree & Jerry 04/05/2012 Introduction to Sparsity Xudong Cao, Jake Dreamtree & Jerry 04/05/2012 Outline Understanding Sparsity Total variation Compressed sensing(definition) Exact recovery with sparse prior(l 0 ) l 1 relaxation

More information

A regularized least-squares method for sparse low-rank approximation of multivariate functions

A regularized least-squares method for sparse low-rank approximation of multivariate functions Workshop Numerical methods for high-dimensional problems April 18, 2014 A regularized least-squares method for sparse low-rank approximation of multivariate functions Mathilde Chevreuil joint work with

More information

Tractable Upper Bounds on the Restricted Isometry Constant

Tractable Upper Bounds on the Restricted Isometry Constant Tractable Upper Bounds on the Restricted Isometry Constant Alex d Aspremont, Francis Bach, Laurent El Ghaoui Princeton University, École Normale Supérieure, U.C. Berkeley. Support from NSF, DHS and Google.

More information

Lecture 22: More On Compressed Sensing

Lecture 22: More On Compressed Sensing Lecture 22: More On Compressed Sensing Scribed by Eric Lee, Chengrun Yang, and Sebastian Ament Nov. 2, 207 Recap and Introduction Basis pursuit was the method of recovering the sparsest solution to an

More information

Overview. Bayesian assimilation of experimental data into simulation (for Goland wing flutter) Why not uncertainty quantification?

Overview. Bayesian assimilation of experimental data into simulation (for Goland wing flutter) Why not uncertainty quantification? Delft University of Technology Overview Bayesian assimilation of experimental data into simulation (for Goland wing flutter), Simao Marques 1. Why not uncertainty quantification? 2. Why uncertainty quantification?

More information

Collocation based high dimensional model representation for stochastic partial differential equations

Collocation based high dimensional model representation for stochastic partial differential equations Collocation based high dimensional model representation for stochastic partial differential equations S Adhikari 1 1 Swansea University, UK ECCM 2010: IV European Conference on Computational Mechanics,

More information

arxiv: v3 [math.na] 7 Dec 2018

arxiv: v3 [math.na] 7 Dec 2018 A data-driven framework for sparsity-enhanced surrogates with arbitrary mutually dependent randomness Huan Lei, 1, Jing Li, 1, Peiyuan Gao, 1 Panos Stinis, 1, 2 1, 3, and Nathan A. Baker 1 Pacific Northwest

More information

Interpolation via weighted l 1 -minimization

Interpolation via weighted l 1 -minimization Interpolation via weighted l 1 -minimization Holger Rauhut RWTH Aachen University Lehrstuhl C für Mathematik (Analysis) Mathematical Analysis and Applications Workshop in honor of Rupert Lasser Helmholtz

More information

Optimisation Combinatoire et Convexe.

Optimisation Combinatoire et Convexe. Optimisation Combinatoire et Convexe. Low complexity models, l 1 penalties. A. d Aspremont. M1 ENS. 1/36 Today Sparsity, low complexity models. l 1 -recovery results: three approaches. Extensions: matrix

More information

arxiv: v2 [physics.comp-ph] 15 Sep 2015

arxiv: v2 [physics.comp-ph] 15 Sep 2015 On Uncertainty Quantification of Lithium-ion Batteries: Application to an LiC 6 /LiCoO 2 cell arxiv:1505.07776v2 [physics.comp-ph] 15 Sep 2015 Mohammad Hadigol a, Kurt Maute a, Alireza Doostan a, a Aerospace

More information

Abstract This paper is about the efficient solution of large-scale compressed sensing problems.

Abstract This paper is about the efficient solution of large-scale compressed sensing problems. Noname manuscript No. (will be inserted by the editor) Optimization for Compressed Sensing: New Insights and Alternatives Robert Vanderbei and Han Liu and Lie Wang Received: date / Accepted: date Abstract

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

SPECTRAL COMPRESSIVE SENSING WITH POLAR INTERPOLATION. Karsten Fyhn, Hamid Dadkhahi, Marco F. Duarte

SPECTRAL COMPRESSIVE SENSING WITH POLAR INTERPOLATION. Karsten Fyhn, Hamid Dadkhahi, Marco F. Duarte SPECTRAL COMPRESSIVE SENSING WITH POLAR INTERPOLATION Karsten Fyhn, Hamid Dadkhahi, Marco F. Duarte Dept. of Electronic Systems, Aalborg University, Denmark. Dept. of Electrical and Computer Engineering,

More information

MATCHING PURSUIT WITH STOCHASTIC SELECTION

MATCHING PURSUIT WITH STOCHASTIC SELECTION 2th European Signal Processing Conference (EUSIPCO 22) Bucharest, Romania, August 27-3, 22 MATCHING PURSUIT WITH STOCHASTIC SELECTION Thomas Peel, Valentin Emiya, Liva Ralaivola Aix-Marseille Université

More information

Compressed Sensing and Redundant Dictionaries

Compressed Sensing and Redundant Dictionaries Compressed Sensing and Redundant Dictionaries Holger Rauhut, Karin Schnass and Pierre Vandergheynst Abstract This article extends the concept of compressed sensing to signals that are not sparse in an

More information

Sparsifying Transform Learning for Compressed Sensing MRI

Sparsifying Transform Learning for Compressed Sensing MRI Sparsifying Transform Learning for Compressed Sensing MRI Saiprasad Ravishankar and Yoram Bresler Department of Electrical and Computer Engineering and Coordinated Science Laborarory University of Illinois

More information

The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1

The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1 The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1 Simon Foucart Department of Mathematics Vanderbilt University Nashville, TN 3784. Ming-Jun Lai Department of Mathematics,

More information

Study Notes on the Latent Dirichlet Allocation

Study Notes on the Latent Dirichlet Allocation Study Notes on the Latent Dirichlet Allocation Xugang Ye 1. Model Framework A word is an element of dictionary {1,,}. A document is represented by a sequence of words: =(,, ), {1,,}. A corpus is a collection

More information