CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp

Size: px
Start display at page:

Download "CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp"

Transcription

1 CoSaMP Iterative signal recovery from incomplete and inaccurate samples Joel A. Tropp Applied & Computational Mathematics California Institute of Technology Joint with D. Needell (UC-Davis). Research supported in part by NSF and DARPA 1

2 The Sparsity Heuristic A sparse signal has fewer degrees of freedom than its nominal dimension Sparse signal Nearly sparse signal CoSaMP (SIAM IS08, 8 July 2008) 2

3 Example: Wavelet Sparsity Courtesy of J. Romberg CoSaMP (SIAM IS08, 8 July 2008) 3

4 Example: Time Frequency Sparsity 0.01 Frequency (MHz) Time (µ s) Data provided by L3 Communications CoSaMP (SIAM IS08, 8 July 2008) 4

5 Quantifying Sparsity Let {ψ k : k = 1, 2,..., N} be an orthobasis for R N The coefficients of x with respect to the basis are f k = x, ψ k for k = 1, 2,..., N The signal is s-sparse when #{k : f k 0} s Generalization: the signal is p-compressible with magnitude R if f (k) R k 1/p for k = 1, 2,..., N p-compressible is slightly weaker than in l p for each p > 0 CoSaMP (SIAM IS08, 8 July 2008) 5

6 Approximating Compressible Signals Consider a signal p-compressible w.r.t. the standard basis x (k) R k 1/p for k = 1, 2, 3,... Approximating x by its s largest terms gives error x x s 2 R R [ k>s k 2/p] 1/2 [ s ] 1/2 u 2/p du R s 1/2 1/p Compressible signals are well approximated by sparse signals Fundamental idea behind transform coding CoSaMP (SIAM IS08, 8 July 2008) 6

7 Counting Bits Consider the class of 0 1 signals in R N with exactly s ones Clearly need at least log 2 ( N s ) bits to distinguish signals By Stirling s approximation, about s log(n/s) bits When s N, signals contain much less information than the ambient dimension suggests A simple adaptive coding scheme can achieve this rate CoSaMP (SIAM IS08, 8 July 2008) 7

8 What is a Sample? A sample is the value of a linear functional applied to the signal Examples: CCD: Point intensity of an image ADC: Voltage of an electrical signal at a point in time MRI: Frequency in the 2D Fourier transform of an image CAT: Line integral of density in one direction Some of these technologies acquire samples in batches We wish to acquire signals with as few samples as possible CoSaMP (SIAM IS08, 8 July 2008) 8

9 Compressive Sampling and Signal Recovery Design linear sampling operator Φ : C N C m Suppose x is an unknown (compressible) signal in C N Collect noisy samples u = Φx + e Problem: Given samples u, approximate x CoSaMP (SIAM IS08, 8 July 2008) 9

10 Restricted Isometries Abstract property of sampling operator supports efficient sampling Φ has the restricted isometry property of order 2s when (1 c) x 2 2 Φx 2 2 (1 + c) x 2 2 whenever x 0 2s Φ preserves geometry of s-sparse signals (take x = y z) W.h.p., a Gaussian sampling operator has RIP(2s) when m Cs log(n/s) Gaussian matrices are practically useless References: [Candès Tao 2006, Rudelson Vershynin 2006] CoSaMP (SIAM IS08, 8 July 2008) 10

11 Practical Sampling Operators Partial Fourier matrices [CRT 2006] Each row of Φ is chosen at random from rows of unitary DFT F N Random demodulator [Rice DSP 2006] Φ = m N ±1 ±1... N N F N W.h.p., both have RIP(2s) when m Cs log α N Certain technologies can acquire these samples efficiently Fast matrix vector multiplies! CoSaMP (SIAM IS08, 8 July 2008) 11

12 Desiderata for Recovery Algorithm Works for general sampling schemes Succeeds with minimal number of samples Tolerates noise in samples Produces approximations with optimal error bound Yields rigorous guarantees on resource requirements Exploits structured sampling matrices CoSaMP (SIAM IS08, 8 July 2008) 12

13 CoSaMP(Φ, u, s) Input: Sampling operator Φ, noisy sample vector u, sparsity level s Output: An s-sparse approximation a of the target signal k = 0 { Initialization } a k = 0 while halting criterion false v u Φa k { Update samples } y Φ v { Form signal proxy } Ω supp(y 2s ) { Identification } T Ω supp(a k ) { Merge supports } b T Φ T u { Signal estimation by least squares } b T c 0 a k+1 b s { Prune to obtain next approximation } k k + 1 end while a a k { Return final approximation } CoSaMP (SIAM IS08, 8 July 2008) 13

14 Cost per Iteration Update samples and form signal proxy: y u Φa k and y Φ v One matrix vector multiplication each Signal approximation by least squares: b T Φ T u Use conjugate gradient to apply pseudoinverse Each iteration requires two matrix vector mulitplies Assuming RIP(2s), constant number of iterations for fixed accuracy Constant number of matrix vector multiplies per CoSaMP iteration! CoSaMP (SIAM IS08, 8 July 2008) 14

15 Performance Guarantee Theorem 1. [CoSaMP] Suppose that the sampling matrix Φ has RIP(2s), the sample vector u = Φx + e, η is a precision parameter, L bounds cost of a matrix vector multiply with Φ or Φ. Then CoSaMP produces a 2s-sparse approximation a such that x a 2 C max { η, } 1 x x s s 1 + e 2 with execution time O(L log( x 2 /η)). Need m Cs log α N samples for restricted isometry hypothesis CoSaMP (SIAM IS08, 8 July 2008) 15

16 Error Bound for Compressible Signals Corollary 2. [Compressible signals] Suppose the sampling matrix Φ has RIP(2s), the signal x is p-compressible with magnitude R, the sample vector u = Φx + e, L bounds cost of a matrix vector multiply with Φ or Φ. Then CoSaMP produces a 2s-sparse approximation a such that ] x a 2 C [Rp 1 s 1/2 1/p + e 2 with execution time O(L p 1 log s). CoSaMP (SIAM IS08, 8 July 2008) 16

17 To learn more Web: Relevant Papers: NTV, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, accepted to ACHA T and Rice DSP, Beyond Nyquist: Efficient sampling of sparse, bandlimited signals, in preparation N and Vershynin, Stable signal recovery from incomplete and inaccurate samples, submitted T and Gilbert, Signal recovery from random measurements via Orthogonal Matching Pursuit, Trans. IT, Dec CoSaMP (SIAM IS08, 8 July 2008) 17

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles SIAM Student Research Conference Deanna Needell Joint work with Roman Vershynin and Joel Tropp UC Davis, May 2008 CoSaMP: Greedy Signal

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk Model-Based Compressive Sensing for Signal Ensembles Marco F. Duarte Volkan Cevher Richard G. Baraniuk Concise Signal Structure Sparse signal: only K out of N coordinates nonzero model: union of K-dimensional

More information

CoSaMP: Iterative Signal Recovery From Incomplete and Inaccurate Samples

CoSaMP: Iterative Signal Recovery From Incomplete and Inaccurate Samples Claremont Colleges Scholarship @ Claremont CMC Faculty Publications and Research CMC Faculty Scholarship 7-16-008 CoSaMP: Iterative Signal Recovery From Incomplete and Inaccurate Samples Deanna Needell

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

Exponential decay of reconstruction error from binary measurements of sparse signals

Exponential decay of reconstruction error from binary measurements of sparse signals Exponential decay of reconstruction error from binary measurements of sparse signals Deanna Needell Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters Outline Introduction Mathematical Formulation

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan Connection between... Sparse Approximation and Compressed

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information

Noisy Signal Recovery via Iterative Reweighted L1-Minimization

Noisy Signal Recovery via Iterative Reweighted L1-Minimization Noisy Signal Recovery via Iterative Reweighted L1-Minimization Deanna Needell UC Davis / Stanford University Asilomar SSC, November 2009 Problem Background Setup 1 Suppose x is an unknown signal in R d.

More information

Multipath Matching Pursuit

Multipath Matching Pursuit Multipath Matching Pursuit Submitted to IEEE trans. on Information theory Authors: S. Kwon, J. Wang, and B. Shim Presenter: Hwanchol Jang Multipath is investigated rather than a single path for a greedy

More information

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit arxiv:0707.4203v2 [math.na] 14 Aug 2007 Deanna Needell Department of Mathematics University of California,

More information

Iterative Hard Thresholding for Compressed Sensing

Iterative Hard Thresholding for Compressed Sensing Iterative Hard Thresholding for Compressed Sensing Thomas lumensath and Mike E. Davies 1 Abstract arxiv:0805.0510v1 [cs.it] 5 May 2008 Compressed sensing is a technique to sample compressible signals below

More information

Sparse recovery for spherical harmonic expansions

Sparse recovery for spherical harmonic expansions Rachel Ward 1 1 Courant Institute, New York University Workshop Sparsity and Cosmology, Nice May 31, 2011 Cosmic Microwave Background Radiation (CMB) map Temperature is measured as T (θ, ϕ) = k k=0 l=

More information

Compressive Sensing of Streams of Pulses

Compressive Sensing of Streams of Pulses Compressive Sensing of Streams of Pulses Chinmay Hegde and Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University Abstract Compressive Sensing (CS) has developed as an enticing

More information

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Journal of Information & Computational Science 11:9 (214) 2933 2939 June 1, 214 Available at http://www.joics.com Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Jingfei He, Guiling Sun, Jie

More information

Combining geometry and combinatorics

Combining geometry and combinatorics Combining geometry and combinatorics A unified approach to sparse signal recovery Anna C. Gilbert University of Michigan joint work with R. Berinde (MIT), P. Indyk (MIT), H. Karloff (AT&T), M. Strauss

More information

Recovering overcomplete sparse representations from structured sensing

Recovering overcomplete sparse representations from structured sensing Recovering overcomplete sparse representations from structured sensing Deanna Needell Claremont McKenna College Feb. 2015 Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

COMPRESSED SENSING IN PYTHON

COMPRESSED SENSING IN PYTHON COMPRESSED SENSING IN PYTHON Sercan Yıldız syildiz@samsi.info February 27, 2017 OUTLINE A BRIEF INTRODUCTION TO COMPRESSED SENSING A BRIEF INTRODUCTION TO CVXOPT EXAMPLES A Brief Introduction to Compressed

More information

A new method on deterministic construction of the measurement matrix in compressed sensing

A new method on deterministic construction of the measurement matrix in compressed sensing A new method on deterministic construction of the measurement matrix in compressed sensing Qun Mo 1 arxiv:1503.01250v1 [cs.it] 4 Mar 2015 Abstract Construction on the measurement matrix A is a central

More information

ORTHOGONAL matching pursuit (OMP) is the canonical

ORTHOGONAL matching pursuit (OMP) is the canonical IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 9, SEPTEMBER 2010 4395 Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property Mark A. Davenport, Member, IEEE, and Michael

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Deanna Needell and Roman Vershynin Abstract We demonstrate a simple greedy algorithm that can reliably

More information

Recovery of Compressible Signals in Unions of Subspaces

Recovery of Compressible Signals in Unions of Subspaces 1 Recovery of Compressible Signals in Unions of Subspaces Marco F. Duarte, Chinmay Hegde, Volkan Cevher, and Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University Abstract

More information

The Fundamentals of Compressive Sensing

The Fundamentals of Compressive Sensing The Fundamentals of Compressive Sensing Mark A. Davenport Georgia Institute of Technology School of Electrical and Computer Engineering Sensor Explosion Data Deluge Digital Revolution If we sample a signal

More information

Thresholds for the Recovery of Sparse Solutions via L1 Minimization

Thresholds for the Recovery of Sparse Solutions via L1 Minimization Thresholds for the Recovery of Sparse Solutions via L Minimization David L. Donoho Department of Statistics Stanford University 39 Serra Mall, Sequoia Hall Stanford, CA 9435-465 Email: donoho@stanford.edu

More information

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Anna C. Gilbert Department of Mathematics University of Michigan Sparse signal recovery measurements:

More information

of Orthogonal Matching Pursuit

of Orthogonal Matching Pursuit A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit Qun Mo arxiv:50.0708v [cs.it] 8 Jan 205 Abstract We shall show that if the restricted isometry constant (RIC) δ s+ (A) of the measurement

More information

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit Claremont Colleges Scholarship @ Claremont CMC Faculty Publications and Research CMC Faculty Scholarship 6-5-2008 Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

More information

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011 Compressed Sensing Huichao Xue CS3750 Fall 2011 Table of Contents Introduction From News Reports Abstract Definition How it works A review of L 1 norm The Algorithm Backgrounds for underdetermined linear

More information

Solving Underdetermined Linear Equations and Overdetermined Quadratic Equations (using Convex Programming)

Solving Underdetermined Linear Equations and Overdetermined Quadratic Equations (using Convex Programming) Solving Underdetermined Linear Equations and Overdetermined Quadratic Equations (using Convex Programming) Justin Romberg Georgia Tech, ECE Caltech ROM-GR Workshop June 7, 2013 Pasadena, California Linear

More information

ANALOG-TO-DIGITAL converters (ADCs) are an essential. Democracy in Action: Quantization, Saturation, and Compressive Sensing

ANALOG-TO-DIGITAL converters (ADCs) are an essential. Democracy in Action: Quantization, Saturation, and Compressive Sensing Democracy in Action: Quantization, Saturation, and Compressive Sensing Jason N. Laska, Petros T. Boufounos, Mark A. Davenport, and Richard G. Baraniuk Abstract Recent theoretical developments in the area

More information

Compressed Sensing: Extending CLEAN and NNLS

Compressed Sensing: Extending CLEAN and NNLS Compressed Sensing: Extending CLEAN and NNLS Ludwig Schwardt SKA South Africa (KAT Project) Calibration & Imaging Workshop Socorro, NM, USA 31 March 2009 Outline 1 Compressed Sensing (CS) Introduction

More information

Gradient Descent with Sparsification: An iterative algorithm for sparse recovery with restricted isometry property

Gradient Descent with Sparsification: An iterative algorithm for sparse recovery with restricted isometry property : An iterative algorithm for sparse recovery with restricted isometry property Rahul Garg grahul@us.ibm.com Rohit Khandekar rohitk@us.ibm.com IBM T. J. Watson Research Center, 0 Kitchawan Road, Route 34,

More information

The Sparsity Gap. Joel A. Tropp. Computing & Mathematical Sciences California Institute of Technology

The Sparsity Gap. Joel A. Tropp. Computing & Mathematical Sciences California Institute of Technology The Sparsity Gap Joel A. Tropp Computing & Mathematical Sciences California Institute of Technology jtropp@acm.caltech.edu Research supported in part by ONR 1 Introduction The Sparsity Gap (Casazza Birthday

More information

Recovery of Sparse Signals Using Multiple Orthogonal Least Squares

Recovery of Sparse Signals Using Multiple Orthogonal Least Squares Recovery of Sparse Signals Using Multiple Orthogonal east Squares Jian Wang, Ping i Department of Statistics and Biostatistics arxiv:40.505v [stat.me] 9 Oct 04 Department of Computer Science Rutgers University

More information

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5 CS 229r: Algorithms for Big Data Fall 215 Prof. Jelani Nelson Lecture 19 Nov 5 Scribe: Abdul Wasay 1 Overview In the last lecture, we started discussing the problem of compressed sensing where we are given

More information

Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice

Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice Jason N. Laska, Mark A. Davenport, Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

Stopping Condition for Greedy Block Sparse Signal Recovery

Stopping Condition for Greedy Block Sparse Signal Recovery Stopping Condition for Greedy Block Sparse Signal Recovery Yu Luo, Ronggui Xie, Huarui Yin, and Weidong Wang Department of Electronics Engineering and Information Science, University of Science and Technology

More information

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016 Lecture notes 5 February 9, 016 1 Introduction Random projections Random projections are a useful tool in the analysis and processing of high-dimensional data. We will analyze two applications that use

More information

Acceleration of Randomized Kaczmarz Method

Acceleration of Randomized Kaczmarz Method Acceleration of Randomized Kaczmarz Method Deanna Needell [Joint work with Y. Eldar] Stanford University BIRS Banff, March 2011 Problem Background Setup Setup Let Ax = b be an overdetermined consistent

More information

The Analysis Cosparse Model for Signals and Images

The Analysis Cosparse Model for Signals and Images The Analysis Cosparse Model for Signals and Images Raja Giryes Computer Science Department, Technion. The research leading to these results has received funding from the European Research Council under

More information

Greedy Sparsity-Constrained Optimization

Greedy Sparsity-Constrained Optimization Greedy Sparsity-Constrained Optimization Sohail Bahmani, Petros Boufounos, and Bhiksha Raj 3 sbahmani@andrew.cmu.edu petrosb@merl.com 3 bhiksha@cs.cmu.edu Department of Electrical and Computer Engineering,

More information

Interpolation via weighted l 1 minimization

Interpolation via weighted l 1 minimization Interpolation via weighted l 1 minimization Rachel Ward University of Texas at Austin December 12, 2014 Joint work with Holger Rauhut (Aachen University) Function interpolation Given a function f : D C

More information

ANALOG-TO-DIGITAL converters (ADCs) are an essential. Democracy in Action: Quantization, Saturation, and Compressive Sensing

ANALOG-TO-DIGITAL converters (ADCs) are an essential. Democracy in Action: Quantization, Saturation, and Compressive Sensing Democracy in Action: Quantization, Saturation, and Compressive Sensing Jason N. Laska, Petros T. Boufounos, Mark A. Davenport, and Richard G. Baraniuk Abstract Recent theoretical developments in the area

More information

Interpolation via weighted l 1 -minimization

Interpolation via weighted l 1 -minimization Interpolation via weighted l 1 -minimization Holger Rauhut RWTH Aachen University Lehrstuhl C für Mathematik (Analysis) Mathematical Analysis and Applications Workshop in honor of Rupert Lasser Helmholtz

More information

Compressive Sensing Theory and L1-Related Optimization Algorithms

Compressive Sensing Theory and L1-Related Optimization Algorithms Compressive Sensing Theory and L1-Related Optimization Algorithms Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, USA CAAM Colloquium January 26, 2009 Outline:

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Sparse recovery using sparse random matrices

Sparse recovery using sparse random matrices Sparse recovery using sparse random matrices Radu Berinde MIT texel@mit.edu Piotr Indyk MIT indyk@mit.edu April 26, 2008 Abstract We consider the approximate sparse recovery problem, where the goal is

More information

Simultaneous Sparsity

Simultaneous Sparsity Simultaneous Sparsity Joel A. Tropp Anna C. Gilbert Martin J. Strauss {jtropp annacg martinjs}@umich.edu Department of Mathematics The University of Michigan 1 Simple Sparse Approximation Work in the d-dimensional,

More information

Sparse Signal Recovery Using Markov Random Fields

Sparse Signal Recovery Using Markov Random Fields Sparse Signal Recovery Using Markov Random Fields Volkan Cevher Rice University volkan@rice.edu Chinmay Hegde Rice University chinmay@rice.edu Marco F. Duarte Rice University duarte@rice.edu Richard G.

More information

A Review of Sparsity-Based Methods for Analysing Radar Returns from Helicopter Rotor Blades

A Review of Sparsity-Based Methods for Analysing Radar Returns from Helicopter Rotor Blades A Review of Sparsity-Based Methods for Analysing Radar Returns from Helicopter Rotor Blades Ngoc Hung Nguyen 1, Hai-Tan Tran 2, Kutluyıl Doğançay 1 and Rocco Melino 2 1 University of South Australia 2

More information

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar

More information

THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS

THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS YIN ZHANG Abstract. Compressive sensing (CS) is an emerging methodology in computational signal processing that has

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

Sparse Legendre expansions via l 1 minimization

Sparse Legendre expansions via l 1 minimization Sparse Legendre expansions via l 1 minimization Rachel Ward, Courant Institute, NYU Joint work with Holger Rauhut, Hausdorff Center for Mathematics, Bonn, Germany. June 8, 2010 Outline Sparse recovery

More information

Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing

Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing ibeltal F. Alem, Daniel H. Chae, and Rodney A. Kennedy The Australian National

More information

Signal Sparsity Models: Theory and Applications

Signal Sparsity Models: Theory and Applications Signal Sparsity Models: Theory and Applications Raja Giryes Computer Science Department, Technion Michael Elad, Technion, Haifa Israel Sangnam Nam, CMI, Marseille France Remi Gribonval, INRIA, Rennes France

More information

AN OVERVIEW OF ROBUST COMPRESSIVE SENSING OF SPARSE SIGNALS IN IMPULSIVE NOISE

AN OVERVIEW OF ROBUST COMPRESSIVE SENSING OF SPARSE SIGNALS IN IMPULSIVE NOISE AN OVERVIEW OF ROBUST COMPRESSIVE SENSING OF SPARSE SIGNALS IN IMPULSIVE NOISE Ana B. Ramirez, Rafael E. Carrillo, Gonzalo Arce, Kenneth E. Barner and Brian Sadler Universidad Industrial de Santander,

More information

Lecture Notes 9: Constrained Optimization

Lecture Notes 9: Constrained Optimization Optimization-based data analysis Fall 017 Lecture Notes 9: Constrained Optimization 1 Compressed sensing 1.1 Underdetermined linear inverse problems Linear inverse problems model measurements of the form

More information

A Structured Construction of Optimal Measurement Matrix for Noiseless Compressed Sensing via Polarization of Analog Transmission

A Structured Construction of Optimal Measurement Matrix for Noiseless Compressed Sensing via Polarization of Analog Transmission Li and Kang: A Structured Construction of Optimal Measurement Matrix for Noiseless Compressed Sensing 1 A Structured Construction of Optimal Measurement Matrix for Noiseless Compressed Sensing via Polarization

More information

Randomized projection algorithms for overdetermined linear systems

Randomized projection algorithms for overdetermined linear systems Randomized projection algorithms for overdetermined linear systems Deanna Needell Claremont McKenna College ISMP, Berlin 2012 Setup Setup Let Ax = b be an overdetermined, standardized, full rank system

More information

Compressive sensing in the analog world

Compressive sensing in the analog world Compressive sensing in the analog world Mark A. Davenport Georgia Institute of Technology School of Electrical and Computer Engineering Compressive Sensing A D -sparse Can we really acquire analog signals

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Stochastic geometry and random matrix theory in CS

Stochastic geometry and random matrix theory in CS Stochastic geometry and random matrix theory in CS IPAM: numerical methods for continuous optimization University of Edinburgh Joint with Bah, Blanchard, Cartis, and Donoho Encoder Decoder pair - Encoder/Decoder

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

Quantized Iterative Hard Thresholding:

Quantized Iterative Hard Thresholding: Quantized Iterative Hard Thresholding: ridging 1-bit and High Resolution Quantized Compressed Sensing Laurent Jacques, Kévin Degraux, Christophe De Vleeschouwer Louvain University (UCL), Louvain-la-Neuve,

More information

Analysis of Greedy Algorithms

Analysis of Greedy Algorithms Analysis of Greedy Algorithms Jiahui Shen Florida State University Oct.26th Outline Introduction Regularity condition Analysis on orthogonal matching pursuit Analysis on forward-backward greedy algorithm

More information

Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes

Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes Item Type text; Proceedings Authors Jagiello, Kristin M. Publisher International Foundation for Telemetering Journal International Telemetering

More information

Stable Signal Recovery from Incomplete and Inaccurate Measurements

Stable Signal Recovery from Incomplete and Inaccurate Measurements Stable Signal Recovery from Incomplete and Inaccurate Measurements EMMANUEL J. CANDÈS California Institute of Technology JUSTIN K. ROMBERG California Institute of Technology AND TERENCE TAO University

More information

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications Class 19: Data Representation by Design What is data representation? Let X be a data-space X M (M) F (M) X A data representation

More information

An Overview of Compressed Sensing

An Overview of Compressed Sensing An Overview of Compressed Sensing Nathan Schneider November 18, 2009 Abstract In a large number of applications, the system will be designed to sample at a rate equal to at least the frequency bandwidth

More information

Shannon-Theoretic Limits on Noisy Compressive Sampling Mehmet Akçakaya, Student Member, IEEE, and Vahid Tarokh, Fellow, IEEE

Shannon-Theoretic Limits on Noisy Compressive Sampling Mehmet Akçakaya, Student Member, IEEE, and Vahid Tarokh, Fellow, IEEE 492 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY 2010 Shannon-Theoretic Limits on Noisy Compressive Sampling Mehmet Akçakaya, Student Member, IEEE, Vahid Tarokh, Fellow, IEEE Abstract

More information

Exact Topology Identification of Large-Scale Interconnected Dynamical Systems from Compressive Observations

Exact Topology Identification of Large-Scale Interconnected Dynamical Systems from Compressive Observations Exact Topology Identification of arge-scale Interconnected Dynamical Systems from Compressive Observations Borhan M Sanandaji, Tyrone Vincent, and Michael B Wakin Abstract In this paper, we consider the

More information

Sigma Delta Quantization for Compressed Sensing

Sigma Delta Quantization for Compressed Sensing Sigma Delta Quantization for Compressed Sensing C. Sinan Güntürk, 1 Mark Lammers, 2 Alex Powell, 3 Rayan Saab, 4 Özgür Yılmaz 4 1 Courant Institute of Mathematical Sciences, New York University, NY, USA.

More information

Sparse Optimization Lecture: Sparse Recovery Guarantees

Sparse Optimization Lecture: Sparse Recovery Guarantees Those who complete this lecture will know Sparse Optimization Lecture: Sparse Recovery Guarantees Sparse Optimization Lecture: Sparse Recovery Guarantees Instructor: Wotao Yin Department of Mathematics,

More information

Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions

Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions Yin Zhang Technical Report TR05-06 Department of Computational and Applied Mathematics Rice University,

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

New Applications of Sparse Methods in Physics. Ra Inta, Centre for Gravitational Physics, The Australian National University

New Applications of Sparse Methods in Physics. Ra Inta, Centre for Gravitational Physics, The Australian National University New Applications of Sparse Methods in Physics Ra Inta, Centre for Gravitational Physics, The Australian National University 2 Sparse methods A vector is S-sparse if it has at most S non-zero coefficients.

More information

Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity

Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity Wei Dai and Olgica Milenkovic Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

More information

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Shuyang Ling Department of Mathematics, UC Davis Oct.18th, 2016 Shuyang Ling (UC Davis) 16w5136, Oaxaca, Mexico Oct.18th, 2016

More information

Compressed Sensing and Linear Codes over Real Numbers

Compressed Sensing and Linear Codes over Real Numbers Compressed Sensing and Linear Codes over Real Numbers Henry D. Pfister (joint with Fan Zhang) Texas A&M University College Station Information Theory and Applications Workshop UC San Diego January 31st,

More information

arxiv: v2 [cs.it] 21 Mar 2012

arxiv: v2 [cs.it] 21 Mar 2012 Compressive Sensing of Analog Signals Using Discrete Prolate Spheroidal Sequences Mark A. Davenport s and Michael B. Wakin c arxiv:1109.3649v [cs.it] 1 Mar 01 s Department of Statistics, Stanford University,

More information

Generalized greedy algorithms.

Generalized greedy algorithms. Generalized greedy algorithms. François-Xavier Dupé & Sandrine Anthoine LIF & I2M Aix-Marseille Université - CNRS - Ecole Centrale Marseille, Marseille ANR Greta Séminaire Parisien des Mathématiques Appliquées

More information

Lecture 22: More On Compressed Sensing

Lecture 22: More On Compressed Sensing Lecture 22: More On Compressed Sensing Scribed by Eric Lee, Chengrun Yang, and Sebastian Ament Nov. 2, 207 Recap and Introduction Basis pursuit was the method of recovering the sparsest solution to an

More information

COMPRESSIVE SAMPLING OF SOUND FIELDS USING MOVING MICROPHONES. Fabrice Katzberg, Radoslaw Mazur, Marco Maass, Philipp Koch, and Alfred Mertins

COMPRESSIVE SAMPLING OF SOUND FIELDS USING MOVING MICROPHONES. Fabrice Katzberg, Radoslaw Mazur, Marco Maass, Philipp Koch, and Alfred Mertins COMPRESSIVE SAMPLING OF SOUND FIELDS USING MOVING MICROPHONES Fabrice Katzberg, Radoslaw Mazur, Marco Maass, Philipp Koch, and Alfred Mertins Institute for Signal Processing University of Lübeck Ratzeburger

More information

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Structure of the tutorial Session 1: Introduction to inverse problems & sparse

More information

The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008

The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008 The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008 Emmanuel Candés (Caltech), Terence Tao (UCLA) 1 Uncertainty principles A basic principle

More information

ONE SKETCH FOR ALL: FAST ALGORITHMS FOR COMPRESSED SENSING

ONE SKETCH FOR ALL: FAST ALGORITHMS FOR COMPRESSED SENSING ONE SKETCH FOR ALL: FAST ALGORITHMS FOR COMPRESSED SENSING A C GILBERT, M J STRAUSS, J A TROPP, AND R VERSHYNIN Abstract Compressed Sensing is a new paradigm for acquiring the compressible signals that

More information

Structured Compressed Sensing: From Theory to Applications

Structured Compressed Sensing: From Theory to Applications Structured Compressed Sensing: From Theory to Applications 1 Marco F. Duarte Member, IEEE, and Yonina C. Eldar, Senior Member, IEEE Abstract arxiv:1106.6224v2 [cs.it] 28 Jul 2011 Compressed sensing (CS)

More information

Analog-to-Information Conversion

Analog-to-Information Conversion Analog-to-Information Conversion Sergiy A. Vorobyov Dept. Signal Processing and Acoustics, Aalto University February 2013 Winter School on Compressed Sensing, Ruka 1/55 Outline 1 Compressed Sampling (CS)

More information