Error-Correcting Codes:

Size: px
Start display at page:

Download "Error-Correcting Codes:"

Transcription

1 Error-Correcting Codes: Progress & Challenges Madhu Sudan Microsoft/MIT

2 Communication in presence of noise We are not ready Sender Noisy Channel We are now ready Receiver If information is digital, reliability is critical

3 Shannon s Model: Probabilistic Noise Sender Receiver Encode (expand) Noisy Channel Decode (compress?) E:Σ k Σ n D:Σ n Σ k Probabilistic Noise: E.g., every letter flipped to random other letter of Σ w.p. p Focus: Design good Encode/Decode algorithms.

4 Hamming Model: Worst-case error Errors: Upto t worst-case errors Focus: Code: C = Image(E) = {E(x) x Є Σ k } (Note: Not encoding/decoding) Goal: Design code to correct every possible pattern of t errors.

5 Problems in Coding Theory, Broadly Combinatorics: Design best possible errorcorrecting codes. Probability/Algorithms: Design algorithms correcting random/worst-case errors.

6 Part I (of III): Combinatorial Results

7 Hamming Notions Hamming Distance: (x,y) = {i x i y i } Distance of Code: (C) = min x,y 2 C { (x,y)} Code of distance 2t+1 corrects t errors. Main question: Four parameters: Length n, message length k, distance d, alphabet q = Σ. - How do they relate? - Want + n, " k, " d,? q Let: R = k/n; δ= d/n; How do R, δ, q relate?

8 Simple results Ball(x,r) = {y \in Σ n Δ(x,y) r} Volume of Ball:Vol(q,n,r) = Ball(x,r) Entropy function: H q (δ) = c s.t. Vol(q,n, δn) ¼ q cn Hamming (Packing) Bound: Balls of radius δn/2 around codewords are disjoint. q k q H q(δ/2)n q n R + H q (δ/2) 1

9 Simple results (contd.) Gilbert-Varshamov (Greedy) Bound: Let C:Σ k Σ n be maximal code of distance d. Then balls of radius d-1 around codewords cover Σ n So q k q H q(δn) q n Or R 1 Hq(δ)

10 Simple results (Summary) For the best code: 1 H q (δ) R 1 H q (δ/2) Which is right? After fifty years of research We still don t know.

11 Binary case (q =2): Case of large distance: δ = ½ - ², ² 0. Ω(² 2 ) R O * (² 2 ) GV/Cherno LP Bound Case of small (relative) distance: No bound better than R 1 (1-o(1)) H(δ/2) Hamming Case of constant distance d: (d/2) log n n-k (1-o(1)). (d/2) \log n BCH Hamming

12 Binary case (Closer look): For general n,d: # Codewords 2 n / Vol (2,n, d-1) Can we do better? Twice as many codewords? (won t change asymptotics of R, δ ) Recent progress [Jiang-Vardy]: # Codewords d 2 n / Vol(2,n,d-1)

13 Major questions in binary codes: Give explicit construction meeting GV bound. Specifically: Codes with δ = ½ - ² & R = Ω(² 2 ) Is Hamming tight when δ 0? Do there exist codes of distance δ with R = 1 [ c (1 o(1)) δ log 2 (1/δ) ] for c < 1? [Hamming: c > ½ ] Is LP Bound tight?

14 Combinatorics (contd.): q-ary case Fix δ and let q 1 (then fix q and let n 1) 1 δ O(1/log q) R 1 δ 1/q GV bound Plotkin Surprising result ( 80s): Algebraic Geometry yields: R 1 δ 1/( q 1) (Also a negative surprise: BCH codes only yield 1 R (q-1)/q log q n) Not Hamming

15 Major questions: q-ary case Suppose R = 1 δ f(q) What is the fastest decaying function f(.)? (somewhere between 1/ q and 1/q). Give a simple explanation for why f(q) 1/ q Fix d, and let q 1 How does (n-k)/(d log q n) grow in the limit? Is it 1 or ½? Or somewhere in between?

16 Part II (of III): Correcting Random Errors

17 Recall Shannon 1948 Σ-symmetric channel w. error prob. p: Transmits σ 2 Σ as σ w.p. 1-p; Shannon s Coding Theorem: and as 2 Σ- {σ} w.p. p/(q-1). Can transmit at rate R = 1 H q (p) - ², 8 ² > 0 If R = 1 H q (p) - ², then for every n and k = Rn, there exist E:Σ k Σ n and D:Σ n Σ k s.t. Pr Channel,x [D(Channel(E(x)) x] exp(-n). Converse Coding Theorem: Can not transmit at rate R = 1 H q (p) + ² So: No mysteries?

18 Constructive versions Shannon s functions: E random, D brute force search. Can we get poly time E, D? [Forney 66]: Yes! (Using Reed-Solomon codes correcting ²-fraction error + composition.) [Sipser-Spielman 92, Spielman 94, Barg- Zemor 97]: Even in linear time! Still didn t satisfy practical needs. Why? [Berrou et al. 92] Turbo codes + belief propagation: No theorems; Much excitement

19 What is satisfaction? Articulated by [Luby,Mitzenmacher,Shokrollahi,Spielman 96] Practically interesting question: n = 10000; q = 2, p =.1; Desired error prob. = 10-6 ; k =? [Forney 66]: Decoding time: exp(1/(1 H(p) (k/n))); Rate = 90% ) decoding time 2 100; Right question: reduce decoding time to poly(n,1/ ²); where ² = 1 H(p) (k/n)

20 Current state of the art Luby et al.: Propose study of codes based on irregular graphs ( Irregular LDPC Codes ). No theorems so far for erroneous channels. Strong analysis for (much) simpler case of erasure channels (symbols are erased); decoding time = O(n log (1/²)) (Easy to get composition based algorithms with decoding time = O(n poly(1/²)) Do have some proposals for errors as well (with analysis by Luby et al., Richardson & Urbanke), but none known to converge to Shannon limit.

21 Part III: Correcting Adversarial Errors

22 Motivation: As notions of communication/storage get more complex, modeling error as oblivious (to message/encoding/decoding) may be too simplistic. Need more general models of error + encoding/decoding for such models. Most pessimistic model: errors are worst-case.

23 Gap between worst-case & random errors In Shannon model, with binary channel: Can correct upto 50% (random) errors. ( 1-1/q fraction errors, if channel q-ary.) In Hamming model, for binary channel: Code with more than n codewords has distance at most 50%. So it corrects at most 25% worst-case errors. ( ½(1 1/q) errors in q-ary case.) Shannon model corrects twice as many errors: Need new approaches to bridge gap.

24 Approach: List-decoding Main reason for gap between Shannon & Hamming: The insistence on uniquely recovering message. List-decoding: Relaxed notion of recovery from error. Decoder produces small list (of L) codewords, such that it includes message. Code is (p,l) list-decodable if it corrects p fraction error with lists of size L.

25 List-decoding Main reason for gap between Shannon & Hamming: The insistence on uniquely recovering message. List-decoding [Elias 57, Wozencraft 58]: Relaxed notion of recovery from error. Decoder produces small list (of L) codewords, such that it includes message. Code is (p,l) list-decodable if it corrects p fraction error with lists of size L.

26 What to do with list? Probabilistic error: List has size one w.p. nearly 1 General channel: Need side information of only O(log n) bits to disambiguate [Guruswami 03] (Alt ly if sender and receiver share O(log n) bits, then they can disambiguate [Langberg 04]). Computationally bounded error: Model introduced by [Lipton, Ding Gopalan L.] List-decoding results can be extended (assuming PKI and some memory at sender) [Micali et al.]

27 List-decoding: State of the art [Zyablov-Pinsker/Blinovskii late 80s] There exist codes of rate 1 H q (p) - \epsilon that are (p,o(1))-list-decodable. Matches Shannon s converse perfectly! (So can t do better even for random error!) But [ZP/B] non-constructive!

28 Algorithms for List-decoding Not examined till 88. First results: [Goldreich-Levin] for Hadamard codes (non-trivial in their setting). More recent work: [S. 96, Shokrollahi-Wasserman 98, Guruswami-S. 99, Parvaresh-Vardy 05, Guruswami-Rudra 06] Decode algebraic codes. [Guruswami-Indyk 00-02] Decode graphtheoretic codes. 02/17/2010 ECC: Progress/Challenges

29 Results in List-decoding q-ary case: [Guruswami-Rudra 06] Codes of rate R correcting 1 R - ² fraction errors with q = q(²) Matches Shannon bound (except for q(²) ) 9 Codes of rate ²c correcting 1 ² fraction errors. 2 c = 4: Guruswami et al c! 3: Implied by Parvaresh-Vardy 05 c = 3: Guruswami Rudra

30 Major open question ² Construct (p; O(1)) list-decodable binary code of rate 1 H(p) ² with polytime list decoding.. ² Note: If running time is poly(1=²) then this implies a solution to the random error problem as well.

31 Conclusions Coding theory: Very practically motivated problems; solutions influence (if not directly alter) practice. Many mysteries remain in combinatorial setting. Significant progress in algorithmic setting, but many more questions to resolve.

List Decoding of Reed Solomon Codes

List Decoding of Reed Solomon Codes List Decoding of Reed Solomon Codes p. 1/30 List Decoding of Reed Solomon Codes Madhu Sudan MIT CSAIL Background: Reliable Transmission of Information List Decoding of Reed Solomon Codes p. 2/30 List Decoding

More information

Lecture 8: Shannon s Noise Models

Lecture 8: Shannon s Noise Models Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 8: Shannon s Noise Models September 14, 2007 Lecturer: Atri Rudra Scribe: Sandipan Kundu& Atri Rudra Till now we have

More information

Lecture 6: Expander Codes

Lecture 6: Expander Codes CS369E: Expanders May 2 & 9, 2005 Lecturer: Prahladh Harsha Lecture 6: Expander Codes Scribe: Hovav Shacham In today s lecture, we will discuss the application of expander graphs to error-correcting codes.

More information

Bridging Shannon and Hamming: List Error-Correction with Optimal Rate

Bridging Shannon and Hamming: List Error-Correction with Optimal Rate Proceedings of the International Congress of Mathematicians Hyderabad, India, 2010 Bridging Shannon and Hamming: List Error-Correction with Optimal Rate Venkatesan Guruswami Abstract. Error-correcting

More information

atri/courses/coding-theory/book/

atri/courses/coding-theory/book/ Foreword This chapter is based on lecture notes from coding theory courses taught by Venkatesan Guruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY and by Madhu

More information

An Introduction to Algorithmic Coding Theory

An Introduction to Algorithmic Coding Theory An Introduction to Algorithmic Coding Theory M. Amin Shokrollahi Bell Laboratories Part : Codes - A puzzle What do the following problems have in common? 2 Problem : Information Transmission MESSAGE G

More information

ECEN 655: Advanced Channel Coding

ECEN 655: Advanced Channel Coding ECEN 655: Advanced Channel Coding Course Introduction Henry D. Pfister Department of Electrical and Computer Engineering Texas A&M University ECEN 655: Advanced Channel Coding 1 / 19 Outline 1 History

More information

Limits to List Decoding Random Codes

Limits to List Decoding Random Codes Limits to List Decoding Random Codes Atri Rudra Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14620. atri@cse.buffalo.edu Abstract

More information

Lecture 4: Codes based on Concatenation

Lecture 4: Codes based on Concatenation Lecture 4: Codes based on Concatenation Error-Correcting Codes (Spring 206) Rutgers University Swastik Kopparty Scribe: Aditya Potukuchi and Meng-Tsung Tsai Overview In the last lecture, we studied codes

More information

Introduction to Low-Density Parity Check Codes. Brian Kurkoski

Introduction to Low-Density Parity Check Codes. Brian Kurkoski Introduction to Low-Density Parity Check Codes Brian Kurkoski kurkoski@ice.uec.ac.jp Outline: Low Density Parity Check Codes Review block codes History Low Density Parity Check Codes Gallager s LDPC code

More information

Lecture 19: Elias-Bassalygo Bound

Lecture 19: Elias-Bassalygo Bound Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecturer: Atri Rudra Lecture 19: Elias-Bassalygo Bound October 10, 2007 Scribe: Michael Pfetsch & Atri Rudra In the last lecture,

More information

Phase Transitions of Random Codes and GV-Bounds

Phase Transitions of Random Codes and GV-Bounds Phase Transitions of Random Codes and GV-Bounds Yun Fan Math Dept, CCNU A joint work with Ling, Liu, Xing Oct 2011 Y. Fan (CCNU) Phase Transitions of Random Codes and GV-Bounds Oct 2011 1 / 36 Phase Transitions

More information

Notes for the Hong Kong Lectures on Algorithmic Coding Theory. Luca Trevisan. January 7, 2007

Notes for the Hong Kong Lectures on Algorithmic Coding Theory. Luca Trevisan. January 7, 2007 Notes for the Hong Kong Lectures on Algorithmic Coding Theory Luca Trevisan January 7, 2007 These notes are excerpted from the paper Some Applications of Coding Theory in Computational Complexity [Tre04].

More information

List and local error-correction

List and local error-correction List and local error-correction Venkatesan Guruswami Carnegie Mellon University 8th North American Summer School of Information Theory (NASIT) San Diego, CA August 11, 2015 Venkat Guruswami (CMU) List

More information

Lecture 4: Proof of Shannon s theorem and an explicit code

Lecture 4: Proof of Shannon s theorem and an explicit code CSE 533: Error-Correcting Codes (Autumn 006 Lecture 4: Proof of Shannon s theorem and an explicit code October 11, 006 Lecturer: Venkatesan Guruswami Scribe: Atri Rudra 1 Overview Last lecture we stated

More information

Lecture 12: Reed-Solomon Codes

Lecture 12: Reed-Solomon Codes Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 007) Lecture 1: Reed-Solomon Codes September 8, 007 Lecturer: Atri Rudra Scribe: Michel Kulhandjian Last lecture we saw the proof

More information

CSCI 2570 Introduction to Nanocomputing

CSCI 2570 Introduction to Nanocomputing CSCI 2570 Introduction to Nanocomputing Information Theory John E Savage What is Information Theory Introduced by Claude Shannon. See Wikipedia Two foci: a) data compression and b) reliable communication

More information

A list-decodable code with local encoding and decoding

A list-decodable code with local encoding and decoding A list-decodable code with local encoding and decoding Marius Zimand Towson University Department of Computer and Information Sciences Baltimore, MD http://triton.towson.edu/ mzimand Abstract For arbitrary

More information

EE229B - Final Project. Capacity-Approaching Low-Density Parity-Check Codes

EE229B - Final Project. Capacity-Approaching Low-Density Parity-Check Codes EE229B - Final Project Capacity-Approaching Low-Density Parity-Check Codes Pierre Garrigues EECS department, UC Berkeley garrigue@eecs.berkeley.edu May 13, 2005 Abstract The class of low-density parity-check

More information

Notes 3: Stochastic channels and noisy coding theorem bound. 1 Model of information communication and noisy channel

Notes 3: Stochastic channels and noisy coding theorem bound. 1 Model of information communication and noisy channel Introduction to Coding Theory CMU: Spring 2010 Notes 3: Stochastic channels and noisy coding theorem bound January 2010 Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami We now turn to the basic

More information

List Decoding Algorithms for Certain Concatenated Codes

List Decoding Algorithms for Certain Concatenated Codes List Decoding Algorithms for Certain Concatenated Codes Venkatesan Guruswami Madhu Sudan November, 2000 Abstract We give efficient (polynomial-time) list-decoding algorithms for certain families of errorcorrecting

More information

Locality in Coding Theory

Locality in Coding Theory Locality in Coding Theory Madhu Sudan Harvard April 9, 2016 Skoltech: Locality in Coding Theory 1 Error-Correcting Codes (Linear) Code CC FF qq nn. FF qq : Finite field with qq elements. nn block length

More information

Decoding Concatenated Codes using Soft Information

Decoding Concatenated Codes using Soft Information Decoding Concatenated Codes using Soft Information Venkatesan Guruswami University of California at Berkeley Computer Science Division Berkeley, CA 94720. venkat@lcs.mit.edu Madhu Sudan MIT Laboratory

More information

Notes 10: List Decoding Reed-Solomon Codes and Concatenated codes

Notes 10: List Decoding Reed-Solomon Codes and Concatenated codes Introduction to Coding Theory CMU: Spring 010 Notes 10: List Decoding Reed-Solomon Codes and Concatenated codes April 010 Lecturer: Venkatesan Guruswami Scribe: Venkat Guruswami & Ali Kemal Sinop DRAFT

More information

CS151 Complexity Theory. Lecture 9 May 1, 2017

CS151 Complexity Theory. Lecture 9 May 1, 2017 CS151 Complexity Theory Lecture 9 Hardness vs. randomness We have shown: If one-way permutations exist then BPP δ>0 TIME(2 nδ ) ( EXP simulation is better than brute force, but just barely stronger assumptions

More information

Lecture 3: Error Correcting Codes

Lecture 3: Error Correcting Codes CS 880: Pseudorandomness and Derandomization 1/30/2013 Lecture 3: Error Correcting Codes Instructors: Holger Dell and Dieter van Melkebeek Scribe: Xi Wu In this lecture we review some background on error

More information

Approaching Blokh-Zyablov Error Exponent with Linear-Time Encodable/Decodable Codes

Approaching Blokh-Zyablov Error Exponent with Linear-Time Encodable/Decodable Codes Approaching Blokh-Zyablov Error Exponent with Linear-Time Encodable/Decodable Codes 1 Zheng Wang, Student Member, IEEE, Jie Luo, Member, IEEE arxiv:0808.3756v1 [cs.it] 27 Aug 2008 Abstract We show that

More information

Relaxed Locally Correctable Codes in Computationally Bounded Channels

Relaxed Locally Correctable Codes in Computationally Bounded Channels Relaxed Locally Correctable Codes in Computationally Bounded Channels Elena Grigorescu (Purdue) Joint with Jeremiah Blocki (Purdue), Venkata Gandikota (JHU), Samson Zhou (Purdue) Classical Locally Decodable/Correctable

More information

And for polynomials with coefficients in F 2 = Z/2 Euclidean algorithm for gcd s Concept of equality mod M(x) Extended Euclid for inverses mod M(x)

And for polynomials with coefficients in F 2 = Z/2 Euclidean algorithm for gcd s Concept of equality mod M(x) Extended Euclid for inverses mod M(x) Outline Recall: For integers Euclidean algorithm for finding gcd s Extended Euclid for finding multiplicative inverses Extended Euclid for computing Sun-Ze Test for primitive roots And for polynomials

More information

6.895 PCP and Hardness of Approximation MIT, Fall Lecture 3: Coding Theory

6.895 PCP and Hardness of Approximation MIT, Fall Lecture 3: Coding Theory 6895 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 3: Coding Theory Lecturer: Dana Moshkovitz Scribe: Michael Forbes and Dana Moshkovitz 1 Motivation In the course we will make heavy use of

More information

Error Correcting Codes: Combinatorics, Algorithms and Applications Spring Homework Due Monday March 23, 2009 in class

Error Correcting Codes: Combinatorics, Algorithms and Applications Spring Homework Due Monday March 23, 2009 in class Error Correcting Codes: Combinatorics, Algorithms and Applications Spring 2009 Homework Due Monday March 23, 2009 in class You can collaborate in groups of up to 3. However, the write-ups must be done

More information

Efficiently decodable codes for the binary deletion channel

Efficiently decodable codes for the binary deletion channel Efficiently decodable codes for the binary deletion channel Venkatesan Guruswami (venkatg@cs.cmu.edu) Ray Li * (rayyli@stanford.edu) Carnegie Mellon University August 18, 2017 V. Guruswami and R. Li (CMU)

More information

Tutorial: Locally decodable codes. UT Austin

Tutorial: Locally decodable codes. UT Austin Tutorial: Locally decodable codes Anna Gál UT Austin Locally decodable codes Error correcting codes with extra property: Recover (any) one message bit, by reading only a small number of codeword bits.

More information

Notes 7: Justesen codes, Reed-Solomon and concatenated codes decoding. 1 Review - Concatenated codes and Zyablov s tradeoff

Notes 7: Justesen codes, Reed-Solomon and concatenated codes decoding. 1 Review - Concatenated codes and Zyablov s tradeoff Introduction to Coding Theory CMU: Spring 2010 Notes 7: Justesen codes, Reed-Solomon and concatenated codes decoding March 2010 Lecturer: V. Guruswami Scribe: Venkat Guruswami & Balakrishnan Narayanaswamy

More information

An Introduction to Low Density Parity Check (LDPC) Codes

An Introduction to Low Density Parity Check (LDPC) Codes An Introduction to Low Density Parity Check (LDPC) Codes Jian Sun jian@csee.wvu.edu Wireless Communication Research Laboratory Lane Dept. of Comp. Sci. and Elec. Engr. West Virginia University June 3,

More information

Lecture 17: Perfect Codes and Gilbert-Varshamov Bound

Lecture 17: Perfect Codes and Gilbert-Varshamov Bound Lecture 17: Perfect Codes and Gilbert-Varshamov Bound Maximality of Hamming code Lemma Let C be a code with distance 3, then: C 2n n + 1 Codes that meet this bound: Perfect codes Hamming code is a perfect

More information

ELEC 519A Selected Topics in Digital Communications: Information Theory. Hamming Codes and Bounds on Codes

ELEC 519A Selected Topics in Digital Communications: Information Theory. Hamming Codes and Bounds on Codes ELEC 519A Selected Topics in Digital Communications: Information Theory Hamming Codes and Bounds on Codes Single Error Correcting Codes 2 Hamming Codes (7,4,3) Hamming code 1 0 0 0 0 1 1 0 1 0 0 1 0 1

More information

Shannon s noisy-channel theorem

Shannon s noisy-channel theorem Shannon s noisy-channel theorem Information theory Amon Elders Korteweg de Vries Institute for Mathematics University of Amsterdam. Tuesday, 26th of Januari Amon Elders (Korteweg de Vries Institute for

More information

for some error exponent E( R) as a function R,

for some error exponent E( R) as a function R, . Capacity-achieving codes via Forney concatenation Shannon s Noisy Channel Theorem assures us the existence of capacity-achieving codes. However, exhaustive search for the code has double-exponential

More information

Lecture 7 September 24

Lecture 7 September 24 EECS 11: Coding for Digital Communication and Beyond Fall 013 Lecture 7 September 4 Lecturer: Anant Sahai Scribe: Ankush Gupta 7.1 Overview This lecture introduces affine and linear codes. Orthogonal signalling

More information

Error Correcting Codes Questions Pool

Error Correcting Codes Questions Pool Error Correcting Codes Questions Pool Amnon Ta-Shma and Dean Doron January 3, 018 General guidelines The questions fall into several categories: (Know). (Mandatory). (Bonus). Make sure you know how to

More information

A Combinatorial Bound on the List Size

A Combinatorial Bound on the List Size 1 A Combinatorial Bound on the List Size Yuval Cassuto and Jehoshua Bruck California Institute of Technology Electrical Engineering Department MC 136-93 Pasadena, CA 9115, U.S.A. E-mail: {ycassuto,bruck}@paradise.caltech.edu

More information

Local correctability of expander codes

Local correctability of expander codes Local correctability of expander codes Brett Hemenway Rafail Ostrovsky Mary Wootters IAS April 4, 24 The point(s) of this talk Locally decodable codes are codes which admit sublinear time decoding of small

More information

Belief propagation decoding of quantum channels by passing quantum messages

Belief propagation decoding of quantum channels by passing quantum messages Belief propagation decoding of quantum channels by passing quantum messages arxiv:67.4833 QIP 27 Joseph M. Renes lempelziv@flickr To do research in quantum information theory, pick a favorite text on classical

More information

LP Decoding Corrects a Constant Fraction of Errors

LP Decoding Corrects a Constant Fraction of Errors LP Decoding Corrects a Constant Fraction of Errors Jon Feldman Columbia University (CORC Technical Report TR-2003-08) Cliff Stein Columbia University Tal Malkin Columbia University Rocco A. Servedio Columbia

More information

Linear time list recovery via expander codes

Linear time list recovery via expander codes Linear time list recovery via expander codes Brett Hemenway and Mary Wootters June 7 26 Outline Introduction List recovery Expander codes List recovery of expander codes Conclusion Our Results One slide

More information

The Complexity of the Matroid-Greedoid Partition Problem

The Complexity of the Matroid-Greedoid Partition Problem The Complexity of the Matroid-Greedoid Partition Problem Vera Asodi and Christopher Umans Abstract We show that the maximum matroid-greedoid partition problem is NP-hard to approximate to within 1/2 +

More information

What s New and Exciting in Algebraic and Combinatorial Coding Theory?

What s New and Exciting in Algebraic and Combinatorial Coding Theory? What s New and Exciting in Algebraic and Combinatorial Coding Theory? Alexander Vardy University of California San Diego vardy@kilimanjaro.ucsd.edu Notice: Persons attempting to find anything useful in

More information

Lecture 03: Polynomial Based Codes

Lecture 03: Polynomial Based Codes Lecture 03: Polynomial Based Codes Error-Correcting Codes (Spring 016) Rutgers University Swastik Kopparty Scribes: Ross Berkowitz & Amey Bhangale 1 Reed-Solomon Codes Reed Solomon codes are large alphabet

More information

Decoding Reed-Muller codes over product sets

Decoding Reed-Muller codes over product sets Rutgers University May 30, 2016 Overview Error-correcting codes 1 Error-correcting codes Motivation 2 Reed-Solomon codes Reed-Muller codes 3 Error-correcting codes Motivation Goal: Send a message Don t

More information

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Tara Javidi These lecture notes were originally developed by late Prof. J. K. Wolf. UC San Diego Spring 2014 1 / 8 I

More information

Error-correction up to the information-theoretic limit

Error-correction up to the information-theoretic limit Error-correction up to the information-theoretic limit Venkatesan Guruswami Computer Science and Engineering University of Washington Seattle, WA 98105 venkat@cs.washington.edu Atri Rudra Computer Science

More information

Entropies & Information Theory

Entropies & Information Theory Entropies & Information Theory LECTURE I Nilanjana Datta University of Cambridge,U.K. See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223 Quantum Information Theory Born out of Classical Information

More information

List-Decodable Codes

List-Decodable Codes 5 List-Decodable Codes The field of coding theory is motivated by the problem of communicating reliably over noisy channels where the data sent over the channel may come out corrupted on the other end,

More information

On the List-Decodability of Random Linear Codes

On the List-Decodability of Random Linear Codes On the List-Decodability of Random Linear Codes Venkatesan Guruswami Computer Science Dept. Carnegie Mellon University Johan Håstad School of Computer Science and Communication KTH Swastik Kopparty CSAIL

More information

Lecture 18: Shanon s Channel Coding Theorem. Lecture 18: Shanon s Channel Coding Theorem

Lecture 18: Shanon s Channel Coding Theorem. Lecture 18: Shanon s Channel Coding Theorem Channel Definition (Channel) A channel is defined by Λ = (X, Y, Π), where X is the set of input alphabets, Y is the set of output alphabets and Π is the transition probability of obtaining a symbol y Y

More information

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) December 4, 2017 IAS:

More information

Section 3 Error Correcting Codes (ECC): Fundamentals

Section 3 Error Correcting Codes (ECC): Fundamentals Section 3 Error Correcting Codes (ECC): Fundamentals Communication systems and channel models Definition and examples of ECCs Distance For the contents relevant to distance, Lin & Xing s book, Chapter

More information

Low-density parity-check codes

Low-density parity-check codes Low-density parity-check codes From principles to practice Dr. Steve Weller steven.weller@newcastle.edu.au School of Electrical Engineering and Computer Science The University of Newcastle, Callaghan,

More information

Lecture 12: November 6, 2017

Lecture 12: November 6, 2017 Information and Coding Theory Autumn 017 Lecturer: Madhur Tulsiani Lecture 1: November 6, 017 Recall: We were looking at codes of the form C : F k p F n p, where p is prime, k is the message length, and

More information

Sphere Packing and Shannon s Theorem

Sphere Packing and Shannon s Theorem Chapter 2 Sphere Packing and Shannon s Theorem In the first section we discuss the basics of block coding on the m-ary symmetric channel. In the second section we see how the geometry of the codespace

More information

Belief-Propagation Decoding of LDPC Codes

Belief-Propagation Decoding of LDPC Codes LDPC Codes: Motivation Belief-Propagation Decoding of LDPC Codes Amir Bennatan, Princeton University Revolution in coding theory Reliable transmission, rates approaching capacity. BIAWGN, Rate =.5, Threshold.45

More information

Linear-algebraic list decoding for variants of Reed-Solomon codes

Linear-algebraic list decoding for variants of Reed-Solomon codes Electronic Colloquium on Computational Complexity, Report No. 73 (2012) Linear-algebraic list decoding for variants of Reed-Solomon codes VENKATESAN GURUSWAMI CAROL WANG Computer Science Department Carnegie

More information

IMPROVING THE ALPHABET-SIZE IN EXPANDER BASED CODE CONSTRUCTIONS

IMPROVING THE ALPHABET-SIZE IN EXPANDER BASED CODE CONSTRUCTIONS IMPROVING THE ALPHABET-SIZE IN EXPANDER BASED CODE CONSTRUCTIONS 1 Abstract Various code constructions use expander graphs to improve the error resilience. Often the use of expanding graphs comes at the

More information

Block Codes :Algorithms in the Real World

Block Codes :Algorithms in the Real World Block Codes 5-853:Algorithms in the Real World Error Correcting Codes II Reed-Solomon Codes Concatenated Codes Overview of some topics in coding Low Density Parity Check Codes (aka Expander Codes) -Network

More information

Improved Decoding of Reed Solomon and Algebraic-Geometry Codes. Venkatesan Guruswami and Madhu Sudan /99$ IEEE

Improved Decoding of Reed Solomon and Algebraic-Geometry Codes. Venkatesan Guruswami and Madhu Sudan /99$ IEEE IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 45, NO 6, SEPTEMBER 1999 1757 Improved Decoding of Reed Solomon and Algebraic-Geometry Codes Venkatesan Guruswami and Madhu Sudan Abstract Given an error-correcting

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

Algebraic Geometry Codes. Shelly Manber. Linear Codes. Algebraic Geometry Codes. Example: Hermitian. Shelly Manber. Codes. Decoding.

Algebraic Geometry Codes. Shelly Manber. Linear Codes. Algebraic Geometry Codes. Example: Hermitian. Shelly Manber. Codes. Decoding. Linear December 2, 2011 References Linear Main Source: Stichtenoth, Henning. Function Fields and. Springer, 2009. Other Sources: Høholdt, Lint and Pellikaan. geometry codes. Handbook of Coding Theory,

More information

Explicit Capacity-Achieving List-Decodable Codes or Decoding Folded Reed-Solomon Codes up to their Distance

Explicit Capacity-Achieving List-Decodable Codes or Decoding Folded Reed-Solomon Codes up to their Distance Explicit Capacity-Achieving List-Decodable Codes or Decoding Folded Reed-Solomon Codes up to their Distance Venkatesan Guruswami Atri Rudra Department of Computer Science and Engineering University of

More information

Optimal Rate and Maximum Erasure Probability LDPC Codes in Binary Erasure Channel

Optimal Rate and Maximum Erasure Probability LDPC Codes in Binary Erasure Channel Optimal Rate and Maximum Erasure Probability LDPC Codes in Binary Erasure Channel H. Tavakoli Electrical Engineering Department K.N. Toosi University of Technology, Tehran, Iran tavakoli@ee.kntu.ac.ir

More information

Decoding Codes on Graphs

Decoding Codes on Graphs Decoding Codes on Graphs 2. Probabilistic Decoding A S Madhu and Aditya Nori 1.Int roduct ion A S Madhu Aditya Nori A S Madhu and Aditya Nori are graduate students with the Department of Computer Science

More information

Lecture 21: P vs BPP 2

Lecture 21: P vs BPP 2 Advanced Complexity Theory Spring 206 Prof. Dana Moshkovitz Lecture 2: P vs BPP 2 Overview In the previous lecture, we began our discussion of pseudorandomness. We presented the Blum- Micali definition

More information

Sparse Superposition Codes for the Gaussian Channel

Sparse Superposition Codes for the Gaussian Channel Sparse Superposition Codes for the Gaussian Channel Florent Krzakala (LPS, Ecole Normale Supérieure, France) J. Barbier (ENS) arxiv:1403.8024 presented at ISIT 14 Long version in preparation Communication

More information

Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes

Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes Igal Sason Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel 2009 IEEE International

More information

: Error Correcting Codes. October 2017 Lecture 1

: Error Correcting Codes. October 2017 Lecture 1 03683072: Error Correcting Codes. October 2017 Lecture 1 First Definitions and Basic Codes Amnon Ta-Shma and Dean Doron 1 Error Correcting Codes Basics Definition 1. An (n, K, d) q code is a subset of

More information

Coding problems for memory and storage applications

Coding problems for memory and storage applications .. Coding problems for memory and storage applications Alexander Barg University of Maryland January 27, 2015 A. Barg (UMD) Coding for memory and storage January 27, 2015 1 / 73 Codes with locality Introduction:

More information

New constructions of WOM codes using the Wozencraft ensemble

New constructions of WOM codes using the Wozencraft ensemble New constructions of WOM codes using the Wozencraft ensemble Amir Shpilka Abstract In this paper we give several new constructions of WOM codes. The novelty in our constructions is the use of the so called

More information

Explicit List-Decodable Codes with Optimal Rate for Computationally Bounded Channels

Explicit List-Decodable Codes with Optimal Rate for Computationally Bounded Channels Explicit List-Decodable Codes with Optimal Rate for Computationally Bounded Channels Ronen Shaltiel 1 and Jad Silbak 2 1 Department of Computer Science, University of Haifa, Israel ronen@cs.haifa.ac.il

More information

SIGACT News Complexity Theory Column 25

SIGACT News Complexity Theory Column 25 SIGACT News Complexity Theory Column 25 Lane A. Hemaspaandra Dept. of Computer Science, University of Rochester Rochester, NY 14627, USA lane@cs.rochester.edu Introduction to Complexity Theory Column 25

More information

(each row defines a probability distribution). Given n-strings x X n, y Y n we can use the absence of memory in the channel to compute

(each row defines a probability distribution). Given n-strings x X n, y Y n we can use the absence of memory in the channel to compute ENEE 739C: Advanced Topics in Signal Processing: Coding Theory Instructor: Alexander Barg Lecture 6 (draft; 9/6/03. Error exponents for Discrete Memoryless Channels http://www.enee.umd.edu/ abarg/enee739c/course.html

More information

Bifurcations in iterative decoding and root locus plots

Bifurcations in iterative decoding and root locus plots Published in IET Control Theory and Applications Received on 12th March 2008 Revised on 26th August 2008 ISSN 1751-8644 Bifurcations in iterative decoding and root locus plots C.M. Kellett S.R. Weller

More information

Low-complexity error correction in LDPC codes with constituent RS codes 1

Low-complexity error correction in LDPC codes with constituent RS codes 1 Eleventh International Workshop on Algebraic and Combinatorial Coding Theory June 16-22, 2008, Pamporovo, Bulgaria pp. 348-353 Low-complexity error correction in LDPC codes with constituent RS codes 1

More information

Improving the Alphabet Size in Expander Based Code Constructions

Improving the Alphabet Size in Expander Based Code Constructions Tel Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences School of Computer Sciences Improving the Alphabet Size in Expander Based Code Constructions Submitted as a partial fulfillment

More information

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Guruswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) Oct. 8, 018 Berkeley:

More information

A Public Key Encryption Scheme Based on the Polynomial Reconstruction Problem

A Public Key Encryption Scheme Based on the Polynomial Reconstruction Problem A Public Key Encryption Scheme Based on the Polynomial Reconstruction Problem Daniel Augot and Matthieu Finiasz INRIA, Domaine de Voluceau F-78153 Le Chesnay CEDEX Abstract. The Polynomial Reconstruction

More information

THIS paper is aimed at designing efficient decoding algorithms

THIS paper is aimed at designing efficient decoding algorithms IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999 2333 Sort-and-Match Algorithm for Soft-Decision Decoding Ilya Dumer, Member, IEEE Abstract Let a q-ary linear (n; k)-code C be used

More information

COMPSCI 650 Applied Information Theory Apr 5, Lecture 18. Instructor: Arya Mazumdar Scribe: Hamed Zamani, Hadi Zolfaghari, Fatemeh Rezaei

COMPSCI 650 Applied Information Theory Apr 5, Lecture 18. Instructor: Arya Mazumdar Scribe: Hamed Zamani, Hadi Zolfaghari, Fatemeh Rezaei COMPSCI 650 Applied Information Theory Apr 5, 2016 Lecture 18 Instructor: Arya Mazumdar Scribe: Hamed Zamani, Hadi Zolfaghari, Fatemeh Rezaei 1 Correcting Errors in Linear Codes Suppose someone is to send

More information

MATH Examination for the Module MATH-3152 (May 2009) Coding Theory. Time allowed: 2 hours. S = q

MATH Examination for the Module MATH-3152 (May 2009) Coding Theory. Time allowed: 2 hours. S = q MATH-315201 This question paper consists of 6 printed pages, each of which is identified by the reference MATH-3152 Only approved basic scientific calculators may be used. c UNIVERSITY OF LEEDS Examination

More information

TURBO codes [7] and low-density parity-check (LDPC)

TURBO codes [7] and low-density parity-check (LDPC) 82 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 1, JANUARY 2007 LP Decoding Corrects a Constant Fraction of Errors Jon Feldman, Tal Malkin, Rocco A. Servedio, Cliff Stein, and Martin J. Wainwright,

More information

New Steganographic scheme based of Reed- Solomon codes

New Steganographic scheme based of Reed- Solomon codes New Steganographic scheme based of Reed- Solomon codes I. DIOP; S.M FARSSI ;O. KHOUMA ; H. B DIOUF ; K.TALL ; K.SYLLA Ecole Supérieure Polytechnique de l Université Dakar Sénégal Email: idydiop@yahoo.fr;

More information

Exercise 1. = P(y a 1)P(a 1 )

Exercise 1. = P(y a 1)P(a 1 ) Chapter 7 Channel Capacity Exercise 1 A source produces independent, equally probable symbols from an alphabet {a 1, a 2 } at a rate of one symbol every 3 seconds. These symbols are transmitted over a

More information

List Decoding of Error-Correcting Codes

List Decoding of Error-Correcting Codes List Decoding of Error-Correcting Codes by Venkatesan Guruswami B.Tech., Indian Institute of Technology, Madras (1997) S.M., Massachusetts Institute of Technology (1999) Submitted to the Department of

More information

An introduction to basic information theory. Hampus Wessman

An introduction to basic information theory. Hampus Wessman An introduction to basic information theory Hampus Wessman Abstract We give a short and simple introduction to basic information theory, by stripping away all the non-essentials. Theoretical bounds on

More information

List Decoding in Average-Case Complexity and Pseudorandomness

List Decoding in Average-Case Complexity and Pseudorandomness List Decoding in Average-Case Complexity and Pseudorandomness Venkatesan Guruswami Department of Computer Science and Engineering University of Washington Seattle, WA, U.S.A. Email: venkat@cs.washington.edu

More information

LIST decoding was introduced independently by Elias [7] Combinatorial Bounds for List Decoding

LIST decoding was introduced independently by Elias [7] Combinatorial Bounds for List Decoding GURUSWAMI, HÅSTAD, SUDAN, AND ZUCKERMAN 1 Combinatorial Bounds for List Decoding Venkatesan Guruswami Johan Håstad Madhu Sudan David Zuckerman Abstract Informally, an error-correcting code has nice listdecodability

More information

Lecture 11: Polar codes construction

Lecture 11: Polar codes construction 15-859: Information Theory and Applications in TCS CMU: Spring 2013 Lecturer: Venkatesan Guruswami Lecture 11: Polar codes construction February 26, 2013 Scribe: Dan Stahlke 1 Polar codes: recap of last

More information

Lecture 9: List decoding Reed-Solomon and Folded Reed-Solomon codes

Lecture 9: List decoding Reed-Solomon and Folded Reed-Solomon codes Lecture 9: List decoding Reed-Solomon and Folded Reed-Solomon codes Error-Correcting Codes (Spring 2016) Rutgers University Swastik Kopparty Scribes: John Kim and Pat Devlin 1 List decoding review Definition

More information

Making Error Correcting Codes Work for Flash Memory

Making Error Correcting Codes Work for Flash Memory Making Error Correcting Codes Work for Flash Memory Part I: Primer on ECC, basics of BCH and LDPC codes Lara Dolecek Laboratory for Robust Information Systems (LORIS) Center on Development of Emerging

More information

Guess & Check Codes for Deletions, Insertions, and Synchronization

Guess & Check Codes for Deletions, Insertions, and Synchronization Guess & Check Codes for Deletions, Insertions, and Synchronization Serge Kas Hanna, Salim El Rouayheb ECE Department, Rutgers University sergekhanna@rutgersedu, salimelrouayheb@rutgersedu arxiv:759569v3

More information