A REPORT ON COMPUTER STUDY OF VARIABLES WHICH AFFECT THE BEHAVIOR OF CONCRETE PILES DURING DRIVING. Teddy J, Hirsch. Associate Research Engineer

Size: px
Start display at page:

Download "A REPORT ON COMPUTER STUDY OF VARIABLES WHICH AFFECT THE BEHAVIOR OF CONCRETE PILES DURING DRIVING. Teddy J, Hirsch. Associate Research Engineer"

Transcription

1 A REPORT ON COMPUTER STUDY OF VARIABLES WHICH AFFECT THE BEHAVIOR OF CONCRETE PILES DURING DRIVING by Teddy J, Hirsch Associate Research Engineer E A Progress Report on Research Project No Prepared for the Bridge Division of the Texas Highway Department and the Department of Commerce Bureau of Public Roads Texas Transportation Institute Texas A&M University College Station, Texas August 1963

2 TABLE OF CONTENTS Page INTRODUCTION OBJECTIVES GENERAL DISCUSSION OF STUDY Ram Weights and Energies Areas and Lengths of Piles Stiffnesses of Cushion Blocks Soil Resistances Distribution of Soil Resistance Other Factors RESULTS OF STUDY CONCLUSIONS REFERENCES FIGURES 1 through

3 COMPUTER STUDY OF VARIABLES WHICH AFFECT THE BEHAVIOR OF CONCRETE PILES DURING DRIVING By Teddy J. Hirsch INTRODUCTION r During the year , engineers of the Texas Highway Department Bridge Division engaged the staff personnel at Texas A&M University to develop a computer program to accomplish the rigorous mathematical calculations for use of the wave equation to analyze the behavior of piling during driving. With the aid of Mr. Edward A. Smith* as a special consultant, a functioning computer program was developed and used successfully on a number of pile problems (2, 3). ** This program was written for the IBM 709 Computer at the Texas A&M University Data Processing Center. In order to gain confidence in the results computed by this program, it was considered necessary to conduct field tests to obtain actual stress and displacement data to correlate with the theory. During the year, three prestressed concrete piles 95 ft in length and two piles 92 ft in length were instrumented with strain gages and displacement transducers and were field tested during driving (4). During the current year, two prestressed concrete piles 26 ft in length were field tested (5). The correlation of these data with results from the computer program was considered very good and provided experimental evidence that this method could be used to analyze practical pile problems. Consequently, it was decided to use the computer solution of the wave equation to investigate the theoretical behavior of various size piles when driven by different equipment under different foundation conditions. The results from this study are presented in the form of graphs that can be used by office engineers in the design of prestressed concrete piles or can assist them in selecting or regulating driving equipment. *Formerly Chief Mechanical Engineer for Raymond International, now retired. **Numbers thus (2, 3) refer to corresponding items in the list of References.

4 OBJECTIVES Project No entitled "Study of Variables Which Affect Behavior of Concrete Piles During Driving" was initiated September 1, The objectives of the year were to (1) make an orderly theoretical computer investigation of the influence of various factors on the behavior of piles during driving. (2) present these results in the form of charts, diagrams, or tables for direct application by office design engineers 1 and (3) instrument and field test at least two concrete piles to obtain data on dynamic.stresses in piles to correlate with the computer results. The results of objective 3 were presented in a report entitled "Field 11 Tests of Prestressed Concrete Piles During Dtiving 1 which was prepared for the Bridge Division of the Texas Highway Department in August The results of objectives 1 and 2 are presented in this report. GENERAL DISCUSSION OF STUDY A theoretical analysis was conducted to determine the effects of ram weight, ram energy output, cushion stiffness u pile cross-sectional area o pile length, soil resistance, and distribution of soil resistance on the driving stresses in and the permanent s.et of concrete piling, The computer solution of the wave equation (3) was used to solve the 2106 problems involved in this study and the results are presented in the form of graphs. This program was essentially the same as that described by E. A. Smith (1) and C. H. Samson (2) 1 except that it has been modified to include the effect of gravity and a separate frictional and point force on the last pile segment. Table 1 lists twenty factors known to affect the behavior of piles during driving. In this study only seven of the more significant factors were varied and the others were held constant. 2

5 Table 1 Factors Known to Affect the Behavior of Piling During Driving Factor Number of Variations Values Used in This Investigation Ram weight Energy of Ram Cross-sectional area of pile= A Stiffness of cushion block Length of pile Soil resistance Distribution of soil resistance Stiffness of cap block Coefficient of restitution of cap block Weight of pile cap (helmet) Coefficient of restitution of cushion block Unit weight of pile concrete Modulus of elasticity of pile concrete Coefficient of restitution of pile concrete Soil quake at point Soil quake in friction Damping constant of point Damping constant in friction Pile configuration Diesel hammer explosive force 4,, 2, 5, 10, and 20 kips i.l3* 5J 4, 20, 40, 50 1 and 60 kip-ft 3 200, 400, and 600 sq in. 3 5, 000 A, 15,000 A, and 45, 000 A lb/in. 3 30, 65, and 100ft 2 Equivalent to 800 psf and 400 psf on a friction pile embedded 0. 8 of its length 3 ** All friction on embedded length, 0. 5 friction and 0. 5 point bearing, all point bearing. 1 80, 000 A lb/in lb pcf , 000,000 psi in in sec/ft sec/ft Prism with square cross section None Total Number of Problems= 13 x 3 x 3 x 3 x 2 x 3 = 2106 *Only 13 different combinations of ram weights and energies were used. See Table 2. **See Table 3 for total magnitudes of soil resistances used in investigation. 3

6 Ram Weights and Energies In this study 13 different combinations of ram weights and energies were used as shown in Table 2. These values will encompass the ram weights and energy ratings of most steam and diesel pile drivers now available. The velocity of a given ram corresponding to a given energy can be determined using the equation where V = V 2 g E'/W V = velocity of ram in ft/sec$ g = acceleration due to gravity in ft/sec 2, E' = Energy of ram in kip-ft, and W = ram weight in kips. Table 2 Combinations of Ram Weight and Energy Used in Investigation Ram Weight (kips) Energy of Ram (kip-feet) Areas and Lengths of Piles The cross-sectional areas (200, 400 and 600 sq in.) and lengths (30, 65, and 100ft) of piles used will encompass a large number of concrete pile sizes now available. The pile configuration considered was a prism with a square cross section. 4

7 , :I t' t f f t t_...:i 0.5 R(total f t t f t..l--l.,.jt R(total) R(total) 0.5 R(total) Distribution 1 Distribution 2 Distribution 3 Figure LA. Distribution of total magnitude of soil resistance. Table 3. Total magnitude of soil resistance in kips. Pile Pile TOTAL MAGNITUDE OF SOIL RESISTANCE Length Area kips (ft) (in.2) Soil Resistance H (800 psf) Soil Resistance S (400 psf) Distr. 1 Distr o 2 Distr.3 Distr o 1 Distr. 2 Distr. ~ o o o ol o o o l3o o

8 Stiffnesses of Cushion Blocks The cushion block stiffnesses 5000 A, A, and 45,000 Alb/in. are approximately equivalent to 9, 3 1 and 1 in. of compressed oak, respectively. "A" is the loaded area or cross-sectional area of the pile in square inches. Soil Resistances The soil resistances used were equivalent to shear strengths of 800 psf and 400 psf on a friction pile embedded 0. 8 of its length. Consequently, the total magnitude of the soil resistance used on a given pilewas a function of its length, its perimeter and the soil shear strength. The total resistance on a given pile was found by where R (tot a 1) = T X 0. 8 L x 4 ~ R(total) = total magnitude of soil resistance in kips, T = shear strength of soil (0. 8 ksf of 0. 4 ksf), L = length of pile in ft 1 and A = eros s-sectional area of square pile in in. 2. Table 3 shows the total magnitudes of soil resistance used in this investigation. The 800 psf soil shear strength is designated Soil Resistance Hand the 400 psf soil shear strength designated Soil ResistanceS. Distribution of Soil Resistance Mter the total magnitude of soil resistance was determined for the friction pile with embedded length of 0. 8 L, it was distributed as shown in Figure 1A. Other Factors The other factors known to affect the behavior of piling during driving were assigned a reasonable value that was kept constant for all problems (See Table 1). The properties of the concrete pile such as unit weight and modulus of elasticity were assigned values based on typical hard rock concrete. The value of the coefficient of restitution of the concrete, or concrete damping parameters, was not known and, therefore 1 the concrete was assumed to be perfectly elastic. The soil damping constants and quakes were assigned values recommended by E. A. Smith (1) except that a value of quake in side friction of 0.02 in. was used. 5

9 RESULTS OF STUDY The effects of the ram weights ram energy output, cushion stiffness, pile cross-sectional area; pile length 1 soil resistance 1 and distribution of soil resistance on the maximum tensile and compressive stresses produced in a pile are illustrated by Figures 1 through 54. Each of the 54 figures contain 3 graphs making a total of 162 graphs. These result from the possible combinations of three pile lengths, three pile areas, three cushion stiffnesses, two soil resistances 1 and three soil distributions. Table 4 gives the values for each of the 5 variables corresponding to a given figure number. The 13 combinations of ram weights and ram energy outputs are shown on each of the graphs. The curve designations 2, 5, 10, and 20 are the ram weights in kips. These graphs can be used to estimate the driving stresses that may occur in piles under similar conditions. They can be used for ram weights other than those shown by interpolation. Figures 55 through 108 illustrate the effect of ram weight 1 ram energy output, cushion stiffness, pile cross-sectional area, pile length, soil resistance, and distribution of soil resistance on the permanent set of piles for a single blow of the ram. Table 5 gives values of each of the 5 variables for a given figure number. These graphs can be used to estimate the effectiveness of different size and energy rams when driving similar piles. 6

10 Table 4 Key to Figure Numbers Illustrating Maximum Tensile and Compressive Stresses Produced in Piles Under the Given Conditions Pile Pile Length Area (ft) (in 2 ) 200 Cushion Stiffness ( lb/in. ) A 15,000A A FIGURE NUMBERS Soil Resistance H Soil Resistance S Distr. Distr. Distr. Distr. Distr. Distr , 000 A 15,000 A 45 I 000 A , 000 A 15,000A A , 000 A 15,000 A 45,000 A 5, 000 A 15,000 A 45,000A , 000 A 15, 000 A 45 I 000 A I 000 A A 45,000 A I 000 A 15,000A 45 I 000 A I 000 A 15,000A 45,000 A

11 Table 5 Key to Figure Numbers Illustrating the Permanent Set of Piles Under the Given Conditions Pile Length (ft) Pile Area (in. 2) Cushion Stiffness (lb/in. ) FIGURE NUMBERS Soil Resistance H Soil Resistance S Distr. Distr. Distr. Distr. Distr. Distr , 000 A A 45,000 A I 000 A 15,000A 45 I 000 A , 000 A 15,000 A 45,000 A ,000 A 15,000 A 45,000 A , 000 A 15,000 A 45,000 A , 000 A 15,000 A 45,000 A ,000 A A 45,000 A , 000 A A 45,000 A I 000 A 15,000 A 45,000 A

12 Conclusions A study of the results presented in Figures 1 through 108 indicates the following general conclusions concerning the behavior of the piles investigated in this report. Any variables not mentioned in the specific conclusion below are held constant. It should be recognized that some of these conclusions might not be applicable to problems that have variables different from those used in this study. 1. For a given energy output a heavy ram produces lower tensile and compressive stresses than a light ram. (See Figures 1 through 54) 2. For a given energy output a heavy ram produces more permanent set thana light ram. (See Figures 55 through 108.) 3. A soft cushion is very effective in reducing both tensile and compressive stresses in a pile. (See Figures 1 through 54)"" 4. A soft cushion gives more permanent set per blow than a hard cushion if both have the same coefficient of restitution. (See Figures 55 through 108.) 5. A soft soil resistance produces larger tensile stresses in the piles than a hard soil resistance. (See Figures 1 and 4, 2 and 5, 3, and 6.) 6. A greater permanent set per blow is obtained with a soft soil resistance than with a hard. (See Figures 55 and 58., 56 and 59, 57 and 60.) 7. In general, the tensile stresses produced in friction piles were higher than those in point bearing piles. No consistence change can be noted in the compressive stresses. 8. Friction piles 30 and 65 ft long experience greater permanent set than point bearing piles of the same length. On the other handb point bearing piles 100 ft long experience greater permanent set than friction piles of the same length. 9. In general, long piles have higher tensile stresses than short piles. The length of the piles has no significant effect on the compressive stresses. 9

13 10. For a given soil condition, short piles experience much greater penetration per blow than long piles. It is noted, however, that the long piles have a greater total soil resistance to overcome~ 11. Increasing the cross-sectional area of these piles produces a slight decrease in the compressive stress$ but no consistent change is noted in the tensile stress. As a final comment~ it should be noted that the concrete material used in this study was assumed to be perfectly elastic. No damping or energyabsorbing parameters were used 1 since the values for concrete and other materials have not been established. Consequently, it is the writer's opinion that the magnitudes of the maximum tensile stresses shown on the figures are probably higher than actual piles would experience. However, the qualitative effects of the other variables on these tensile stresses are thought to be representative of what would be experienced in the field under similar conditions. The results of other studies have shown that the damping parameters have only a small effect on the maximum compressive stresses and permanent sets G 10

14 REFERENCES l. Smith, E.A. L., "Pile-Driving Analysis by the Wave Equation 1 11 Journal of the Soil Mechanics and Foundations Division, Proceedings of the American Society of Civil Engineers, Volume 86, Number SM 4, pp ~ August, Samson 1 Charles H., Jr., "Pile-Driving Analysis by the Wave Equation (Computer Application)" 1 Report of the Texas Transportation Institute, A&M College of Texas, May, Samson, CoH., Hirsch, T.J. 1 and Lowery, L.L., "Computer Study of Dynamic Behavior of Piling," a paper presented to Third Conference on Electronic Computation, ASCE, Boulder 1 Colorado, June, Hirsch, T.J., "Stresses in Long Prestressed Concrete Piles During Driving," Report of the Texas Transportation Institute, A&M College of Texas, September, Hirsch, T.J., "Field Tests of Prestressed Concrete Piles During Driving," Report of the Texas Transportation Institute 1 Texas A&M University, August$ ll

15 ;t

16

17 ......;.T.:

18 . -T-"_;._f~:C,, ~ "'~'"' ~~ L ::--=1 -=J,--~-~ -.:..:::=+=..!t" -~~ < ~:,1*:=1-:-. -~ --:: _.:::j:::--:- ::::j - ~~ -'"=1, -_,.,-<t:jt~_:~- :~- - :o ~ - :.,il- -=~- -H'-i- HH- -H--+-;,: : :::~ ---====:' -~ v -IJJ =~=~-==1~ ----:== == :!!. ~ _.t. I. i "-i-j t ~;; ~- : _,+ ~Jm:-:_:. c:::::~ :~. ~. c.p::' -~ ;; =';; ':~=-:'" i:?=::a=;::::--t= "=~' -- :::::--= ===== ~ l :.,~ ~-~-- ::j:: 1-c----;-" :=:=t=~ c:t:: -:c',- t-=--:: -~- - --l-. -

19 i}. : ~i-t.. 9;,,,-:_ -- =P-~ : rl+- :--~.l-,

20 -, ; ' l;i' c H-f

21 -~ + - ~-~::~~~ tf:h"r r 'rl'!':~~.;,+' H-IT., '! ' ~-- 4h~~- :~;. ' t.:j _;. 1':----.,, f- It t ---i -- -~if -~~eq~~-.. -

22 ("

23

24

25 Fi.. ~i= :t!:. ~- + j:±; FEJ:a: ' ~Wr p: ' m:t E!t ffi ±i±t ~ ~m+m=~-

26 .:- r:. Y la. I w a: _,. ;/:+ t-~... q.... :;E: _c;:= ::;:::, 1---'-- :t:+;: ~ d: : ~ '--""!- -+-:-,.;..;:,--,- =-,---- ~~ ~ij~i: f4== -;-t--t. I '. +.;

27 ==== f-1l rt*~-j:t~ f E! m

28 "--;----;,~' :r+ ::r :;:::~:- -r--'- -tj-- : :EII;:::'J~it. -. ~i-~ I _:._-..~-,- -!j - TT' E::= :::: ='-- - -t

29 f± _,''.f-+--l-1--;' ' ' -+H- +f-h n+ : L',.~ -,-..:..:!.. w,0:: ' :::> '' (!) ll..:, H,-F T

30 LLJ a::

31 ~,~:"':?r~r~~ r:t t-. IT++..;:~ 1-:~ :!- +. j- t_ I+ L lip-'~~,. '_[\::,

32

33

34 .C~ w+-p-- -r ~-. = == ~ ~'I,.t T. +-.

35

36 :t,ijj a:

37

38

39 + : -'-;, '-'-' i+!'t '~ ~~.H = ', :'.,, ttr,. ' ;

40

41

42 '- 1:1:

43 -+,.,..... h t± ~H-', j-h T'- H'-- -~ 1-rl- +t-,;

44

45 --,-~ I l ~ l 1:# ;-L,_ t-f. +~. t++ +-: r. r+. + t ' I -1+ T. I..- -ffi f-in +-M- t-lc J:i: ~:t.;t. ~t ;.+i-. h-hf+f-' ;.r \i it \ ~-J:i: mt ;- ~ - ' HH.tt:- OJ IJJ ' : 'Jtj;i ~ :;':f;f::l;f< ; ~ ~ ~~ -, r~. :-r. -- :p' ~ ~Jmr 1.;:w lt ~}, H f1 tj: -IJt: ~i j 4+ j l+ t' - : t f,.

46

47

48

49

50

51 -!-;-::_- -':... :. '>!--I.&. ~- '--

52 .'1. ' + g:l7, ~t:=:-..,...,~----' ~~- ; 'I E:tc-c- j t--'. _, - Ei~ :c= -::::;: :_ : t-- Ll ---~,...f-.-: '+-!-'-----'-:. ;+ + I

53 H+! '..._ r, :.~ ; ' c. ~h H-e;:;:~ =

54 + h- '+t-h-= 't~h:' ""-~ -" rt+i:j::i: +~=t; ~c;_g~~-:~:-c 'CO:~ ::T_t ~_,~t::-'0:: a:~~~~~~ c.;- c;:;~~~~,; "' lol lo += ±:H+~ -r-c---e_ =:.==::-:+ :::~ ::::=~, 8:::::-~~~~~t='" ~= i--t#+-!-+ t', ~'

55 ,I ;!-' :-!---+-' ~==~ -- -,...--~ +h-'-t '~~ = ~JJL;f=~C:: -~ ~ f-t~~ lol ;.t- : ',-+- -~ '... I+

56 +~ 'T p:;±;: -=.:-<~_. ~ -- r:-: :.:c - - ~H-'~~ ~qj::_:;..:;:-_; :c: r.: ' - ' ' ;; ; 'J-:'+: ' --~ri+-:''~' I; ' ti. ' f-i-,.c-.:---c=---' -';-;...,I Ll.~ - ~.; c:..c= :;.. ~: --+"4= c-rl-c : -++i-'~ 8~r--:-..r: :~ + - "' Ht t+'rh +-n-,.!-8-tl+rrt± c-' L,ft.. F;:t:t,.'H-' rc:;=;cc::rr; ;:IT; f~ ++ -i'

57 . ~...,.- ' '-.: '+,- 'I, rr ++-++T-+ rf- ~-'-~i-- -- F!c''C"f : : "; c:f:.::.. --::;::=..-. -~- ::c:q..:;.;_:, 1'-ic t--- 1-: ' 1_1 :~,. l I;! Ia H+L'-' #Hi; +,H ;..;.', -l-it'

58

59 ~-t --r;;,, 11.~ _p._.-:- f-.-, -;-T :Jit ":Tr,., H-jT +en L : ~~- -t-rr-,,,+...; +L >-i+-;+t+ Tt ii Em~ :--i+' +h '~ ILl II

60 ,+1-.ri '+ :i:f' -Ht,,++ ifti ~t±. _j'' E:t::::~ i=t::'~ ~. ~. ~t:-:- I"'~. 1-- IC---- ~- --1'=_~. ~~+----fc-o-1" ~ -r-~ b::_++f, e r$p-~ -r Hi~ rt.r f++;l-4 ~ -.-rr+t--t w H-?- t ::p ft.!~ ;-~ 'M+._ ' - ~ 1 --t--'-.+ t-h

61 ' -i+ ' ' I : ;: 4--Lf"'"7'"t-+" _, - 1- ~ rf-1:-l: - _,

62 ..Lll g j, ; IE' a=!± j:±~. ± m ±±: :± 1±l

63

64 T"Ti :t';=t:rttt '-f.. ~ ; ;, c + :-i : -~...;...c!:l 'c" ~- - ~.c. f:t-'::..,... ; '. ' '-'+ :-:-r- ; i...; '';-; PT t-!t-" f'-~,- c '- ' -;~~u~f Hi~- ~" Ia I ~!=~--::, r'- t-:::::< :+= *~ r;:=~f:-:;.;.~-;- ~:~-11:-~ _ - ~- -;-~_ ~. r;~-;=-:t~ -r ~++ '. - ++~ r+l- -,:;:j:_~ ;++:.;.,: ckl +;tr itt::~ _;_~~ >--:++-1.,- ~~~t ~~: $~titi~~ =e ;:;~-,_..:::j:: p:-..r c." --h. H ~~i:i ~,~, l-"r-:+1-d-~-. i=i=;c;i ~-,_, j::~ rcr tiitt ~=$'; ~$ "t-;=;: f-i!., +, rt "h i+: ~:±:;::::!- ;_;:-e.~; =:::_ ::.:~~:t:;::..l' ~;~~ 1:,':!, ~ :+ f-h++- :- ; ~ ttbtf --~--ff.h='~ rr;~~~tr-,

65

66 ' t- ;-,,_;..c...-:-.. -~ -~-d7- :..,.:...-,..). ~- -- ~- ~:-= ~;::-~=~=- - ~ ~ ~i:;:;+;!+-c-rrr;.:.~fi:ii-i r l::i~ '--.;.c::: r::::,.., : - -- jc q.>-h ~ t+r t-~--s +:;: + r r; E~ +~ i+t-, ' '*;1-:.L.L;~- '+1 r-=-~ ~: ~, :, --:- I ; Lt+r+-r1.;~..:- :;:.tt - :;:;++;:; ~+:-:1- i-t-f -:u,... t-... m ,- '+i Cf'i-l ~:

67 - j:f E!ffij-TTTTITTTT=

68

69 _,_ + +t+ '-'-r-t-,, f- _,_.,, lo I,-f-!-, _,_ ~ '! r...;..t ~+i: ' +- L

70

71

72

73 f;,;l. ~- ~ ; I~

74 l+ t-,,-;.,;,_: ~i~ t, ~:.;_\--'- '--! c +r+h-t+. J+q l:t:!:t,cc' :j:t: ~ <.-, ~ r ~; ~$-. :-i,._. +HT -'-f::1:i+f:: t-1+ R=!=;::;t ;, -t ~~~-..c " ~- ~-- :"<..,,0,U) -! o+~t----- :f f :::j:: ~1:::_:~: ~[ ~~ r~ -~-'-~f- I-~' II,, T+-t+ +r:-~-2- ''-H-. ~ ;-;-:+

75

76

77 ' f... p lo I '" II

78 "'Jjflffi 'llr ±.. ::t.dthf ij!+.,--l-.l-! <m:n ::il''!s tf.,.,c --' _; :1' -,. -.. :_o_ :,. c_:::f"---=..tl '': -:-;

79 ::i-:. -'-'--'-!-++ -c.,-h"<:.. - :! Ill '-:;:.... I ~ ffit~_rtt,,, --~!:H =m=r mr,...,.. +-H- i- t 1-H,,. ti±.,,_, -~t ;,rm+ ' t n!h-~. ic: I l -r_, h- 1

80

81 + '-rl' '_cc,:_, ~±% ~ :~ ~c4~'. ~+ c'-ll-1-+f+" 'I+' R=t : ~ -~-rib:±?~ I,+t

82 -t c=~ :Ct",.::"'; :::=J::_ ill. I i -i i

83 '-' H ~ ~g::~_:_:~~ ~~-:~~~- i='--~r r-- ~ b --.I II',, I ' I -,~ -----'-,-\ '-:t:= 1--' ':t; _r:--:+-'c--f--l- ---r; j - i, ;t I I I ~ :-1'"''. ::=t I I ~~-+±==;~, ~~47~+.~- i "~ c k::!~-ri;,s~~~h~~:~~l~-~ '' ~

84 1-'

85

86

87 J '..!- '' rt-t." l ~ lih=1 Ff;-'~ :~~ f~'i: ' ;,:~; 1'. "' -, ;:.. 1; -ll. l. -,; r ~ ::.. = r.::,,-:_

88 r+- ~+ : f-tttitt :_";.-,, -t 'Tr~,,' -~:-:- '-!- : -' ~t-: ::- ~~g~~~~ :.:;~":~ i, Tj-:"' p.~::u:~ --~ = -~ ---1~1-----~' ---l....l.,' ' ±:':: ~: ;:p-: itl=$. ' ±t ':i ~ +R= B-" _;_if'" +i+i+' - - : ::: c.. ' :++-:-rr,',,,,,,, -.;, " - f r -+--, 1-- rc,, =-t==- -h-,- f-1-:~:.,, r - --:::J:I=l+ '-_, : ij: : ftt u ;'' J_.... -' +- j_ r -l-t '1.:;:;:;± ~I:J.i=t ±j- H-hl_ ~J f- ' -ttf:::i..-;1' ~+r±th=iilf--c-; r-++-f-1..;..rl+ ~ H:;t+ ~~ ~- -,->+,--;-tc :t±:+± :- - t-:-:- - ;+1- H-H-:. 'j. --j-, ~... l J. _Wl!t: -_!IJ ' -.. j~~- ~ :- lt -tf.l:~~l ftt t--

89 = II ~ '"'-'-'-'-'- ; rn~~ m #mill - u :E::Jm 'tjw 111 EOO! In 5.. i ~ = t±±l:lft,,-!t. 1m!: -'..LU. = m =m:1 rrrt m.j.j.j.. m= ~. mi mill -fill 1 ~ Ia ~ ~- a ~ ±l±fl± ±J:j

90 "'.. "-: H-T~ +',... ~~.~~, : ~: 1-:, ~

91

92 -r-;at' ~r, ~1 ci:i. ~:~ :tn :_::_:J:.:_:.. :._:,11:. :.:_'.. I: i::t;:t~~:~ttr i'li! :I r!~ ::~: ::: i!::"m i!:c,f. I -. i P~ 1' ; tt :-1:.. 'L 'I 'j.' :!-r \_ t t '. '; r r1 t, : ::.: :::: :~ l.:.i.i:: J.ii -1 :,r.'jt~i>,. ;i ::r ::,r,;d ::,; 1r.: It _I+ ~ -.:<Mq'"ll.lt~ ~~~~Hl+lltt~ l: ': 1 :,;Tit 1.~ 1-Jit n tl

93

94 lc-h-+ ~~_;~ '='_::-~_::: :~~'~ I 4-!- ~ +H-' -T 't

95 :.,..f3 t~~.q a i"'of -~ ::;::-g '0 _,.. ~

96

97 - ijl - -1!-t rq fl, + -t Jt. t+ +_ IW ft T --F~l

98 t-f : ~ ;: f ~ : ; : ~.'... I. I...,. _I: "I"". : : ~ :.. ::I: :1: '.. :.: :f;:f

99

100 '' (0 to w a: ::l,(!) -ll ',rl +l-

101 ++-' r' i-f~ Ut.H---t-> H+ +- '-", H+-+1 T I+ t.' ~-~],- 7:'' ~ -~~~~~ =*.. ;G-f ~+ : -:--1 :.+ ' ~. '4 -LL -H-+: 'i '.:.t...

102 :t;:_,_ - ++:i:i t- ~-.. ~f-.-'.-_ :t

103

104 ,,_.. +t, - f++t" : r'j+ ' '. '. +""-±+;- rl-;' - ": +tc-r -'i-t-t- :+ - - ~ _.. :.:. --p:f f-" :+H- f-f- -~!-H H+. " ~~ ;~ ~~"'rt. "" - '"--'-i-".- -l-- : -' h-r~"- --t-t :::. ::::±=,-",_,.;, -.-.-c-h"-+ ' + ~ " """t-t-c ---~ 0 en -~ _I LLI 0:: ;::)., (!) ~ f-.. rrt~~ h- '+r 't-t-!.;t',_,_,_, f-f- '; +- -1

105 ,.t 1 f- u j-l t ~:r. t :r.. ~i~ H '+ ~4+ 'H"t"..::.

106 ' ' ' '' I I ' I I I " " 1"1 I,I I' I " I I " '"' I 'I ' : : ' : '. ~ : ' ' '' " +++;-, r;+' ~+-c; ~~-'-'"" '...L:J ' ::=:~" :": C -: c.. """"' ~- ~~~ '"":'' '""'"]'"" ~ c--. -"," ==-"'".mm LL :~~ s,,~~~> ~'"""", ce"f:: '""~

107

108

109 . t

110 ilii;,;i :,; t.i:ii ~j=~~:f:~~ +iff,# :J iii ::; "'....,i' ':::ctt:;:;:::sj3w:~!;:! :: : : : 1.. ~ J ~L-:. i~ ~~f;; ~ ' F'-;:;c; '++ + ~rl±<' t±nl 8 'mii.~ j:t±. :t lw:r ::tt,. r' t4!+f r

111

112 en w -+. II,,

113

114 t++ -rfi-f-ht ~ -tt.l th- "++ Ht ++ ~ ht '~. ~~*:-f*: 7t++ ',l+i-' '~ + i-'-h. I:+ :I '..:.o. :_....,.., ' hi.. ~I

115

116 +. ~r+ H-' ':;±i:'i- -:-:.;:r:~. -t-. ~! ~f.;.l ++:t- ~ ''' I ±:::j: = (\I 0 -.IJ..J 0::: q... E ~_~:f+- c'+',,_,,:;:::::-. ; I I.. ".. 4-t : I r±:- t-i-t- :,,,'.:... ~!± : 'j" :;: = -h. ~ F?=! ~~. --+ ~: -1-'+ ~~t:tr.... : -~. ;. R+:.::.--'!>. 1 '>1+-l='!;t :+' t'.- ;;;:tt'. " It I'

117

118

119 ,; ;_;, I I '"

120 '.~ ' '' +FI ~,, " " -+r- ' ':~'.+

121 +'-' '"'-'... jj ::l ~ 'to : ;

122

-ABSTRACT PRACTICAL APPLICATIONS OF STRESS-WAVE THEORY IN PILING DESIGN. By Charles H. Samson, Jr.,l M. ASCE, Farland C. Bundy,2 M.

-ABSTRACT PRACTICAL APPLICATIONS OF STRESS-WAVE THEORY IN PILING DESIGN. By Charles H. Samson, Jr.,l M. ASCE, Farland C. Bundy,2 M. . \b,~.3(~ -ABSTRACT PRACTCAL APPLCATONS OF STRESS-WAVE THEORY N PLNG DESGN By Charles H. Samson, Jr.,l M. ASCE, Farland C. Bundy,2 M. ASCE and Teddy J. Hirsch,3 M. ASCE Extensive efforts have been devoted

More information

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

~,. :'lr. H ~ j. l' , ...,~l. 0 ' ~ bl '!; 1'1. :<! f'~.., I,, r: t,... r':l G. t r,. 1'1 [<, . f' 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'.. ,, 'l t (.) :;,/.I I n ri' ' r l ' rt ( n :' (I : d! n t, :?rj I),.. fl.),. f!..,,., til, ID f-i... j I. 't' r' t II!:t () (l r El,, (fl lj J4 ([) f., () :. -,,.,.I :i l:'!, :I J.A.. t,.. p, - ' I I I

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

APPENDIX A - COMPUTER PROGRAM INPUT DATA. NCARDS = Total number of identification cards to be read, including Card 1 (Maximum of 8 cards).

APPENDIX A - COMPUTER PROGRAM INPUT DATA. NCARDS = Total number of identification cards to be read, including Card 1 (Maximum of 8 cards). APPENDIX A - COMPUTER PROGRAM INPUT DATA Introduction The following section lists the required information necessary to perform an analysis using the wave equation computer program. A detailed discussion

More information

INVESTIGATION OF SOIL DAMPING ON FULL-SCALE TEST PILES. By Dirk A. van Reenen Research Assistant. Harry M. Coyle Associate Research Engineer

INVESTIGATION OF SOIL DAMPING ON FULL-SCALE TEST PILES. By Dirk A. van Reenen Research Assistant. Harry M. Coyle Associate Research Engineer INVESTIGATION OF SOIL DAMPING ON FULL-SCALE TEST PILES By Dirk A. van Reenen Research Assistant Harry M. Coyle Associate Research Engineer Richard E. Bartoskewitz Engineering Research Associate Research

More information

CAPWAP Introduction. 2016, Pile Dynamics, Inc. CAPWAP is a registered trademark of Pile Dynamics, Inc. Load (kn) Displacement (mm) Pile Top Bottom

CAPWAP Introduction. 2016, Pile Dynamics, Inc. CAPWAP is a registered trademark of Pile Dynamics, Inc. Load (kn) Displacement (mm) Pile Top Bottom CAPWAP Introduction Load (kn) 0.0 1000.0 2000.0 3000.0 4000.0 0.00 Pile Top Bottom Displacement (mm) 5.00 10.00 Ru = Rs = Rb = Dy = Dx = 3425.2 kn 1458.6 kn 1966.6 kn 18.8 mm 18.8 mm 15.00 20.00 2016,

More information

A REPORT ON FIELD TESTS OF PRESTRESSED CONCRETE PILES DURING DRIVING. Teddy J. Hirsch Associate Research Engineer

A REPORT ON FIELD TESTS OF PRESTRESSED CONCRETE PILES DURING DRIVING. Teddy J. Hirsch Associate Research Engineer A REPORT ON FELD TESTS OF PRESTRESSED CONCRETE PLES DURNG DRVNG By Teddy J. Hirsch Associate Research Engineer A Progress Report on Research Project No. 2-5-62-33 Pre pared for the Bridge Division of the

More information

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

More information

Interpretation of Pile Integrity Test (PIT) Results

Interpretation of Pile Integrity Test (PIT) Results Annual Transactions of IESL, pp. 78-84, 26 The Institution of Engineers, Sri Lanka Interpretation of Pile Integrity Test (PIT) Results H. S. Thilakasiri Abstract: A defect present in a pile will severely

More information

APPH 4200 Physics of Fluids

APPH 4200 Physics of Fluids APPH 42 Physics of Fluids Problem Solving and Vorticity (Ch. 5) 1.!! Quick Review 2.! Vorticity 3.! Kelvin s Theorem 4.! Examples 1 How to solve fluid problems? (Like those in textbook) Ç"Tt=l I $T1P#(

More information

THE WORLD BANK GROUP ARCHIVES PUBLIC DISCLOSURE AUTHORIZED

THE WORLD BANK GROUP ARCHIVES PUBLIC DISCLOSURE AUTHORIZED THE WORLD BANK GROUP ARCHIVES PUBLIC DISCLOSURE AUTHORIZED Folder Title: Finland-LN-61 - Photographs - Volume 1 Folder ID: 1721443 Fonds: Records of Office of External Affairs (WB IBRD/IDA EXT) Digitized:

More information

BACKGROUND AND INTRODUCTION

BACKGROUND AND INTRODUCTION WAVE MECHANICS As applied to pile testing 1 BACKGROUND AND INTRODUCTION Wave Mechanics 2 1 HISTORIC TOOLS AND MATERIALS Timber piles Drop Hammers 10 Days for the Romans to build the bridge over the Rhine

More information

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class rhtr irt Cl.S. POSTAG PAD Cllnd, Ohi Prmit. 799 Cn't ttnd? P thi n t frind. \ ; n l *di: >.8 >,5 G *' >(n n c. if9$9$.jj V G. r.t 0 H: u ) ' r x * H > x > i M

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

A.2 AASHTO Type IV, LRFD Specifications

A.2 AASHTO Type IV, LRFD Specifications A.2 AASHTO Type IV, LRFD Specifications A.2.1 INTRODUCTION A.2.2 DESIGN PARAMETERS 1'-5.0" Detailed example showing sample calculations for design of typical Interior AASHTO Type IV prestressed concrete

More information

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. ll. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S ll. \ (? >. 1! = * l >'r : ^, : - fr). ;1,!/!i ;(?= f: r*. fl J :!= J; J- >. Vf i - ) CJ ) ṯ,- ( r k : ( l i ( l 9 ) ( ;l fr i) rf,? l i =r, [l CB i.l.!.) -i l.l l.!. * (.1 (..i -.1.! r ).!,l l.r l ( i b i i '9,

More information

~i~, ~';J M.1 "A.X;t7~~

~i~, ~';J M.1 A.X;t7~~ Ci1 ;w -,IL I MX-- AA.R- v-r ';t ""lz"""" f 7ll\1. 13/cd Vt.dJt-l (l{ t f1.)-: ) -;::- r,.o.

More information

Integrated II: Unit 2 Study Guide 2. Find the value of s. (s - 2) 2 = 200. ~ :-!:[Uost. ~-~::~~n. '!JJori. s: ~ &:Ll()J~

Integrated II: Unit 2 Study Guide 2. Find the value of s. (s - 2) 2 = 200. ~ :-!:[Uost. ~-~::~~n. '!JJori. s: ~ &:Ll()J~ Name: 1. Find the value of r., (r + 4) 2 = 48 4_ {1 1:. r l f 11i),_ == :r (t~ : t %J3 (t:; KL\J5 ~ ~ v~~f3] ntegrated : Unit 2 Study Guide 2. Find the value of s. (s 2) 2 = 200 ~ :!:[Uost ~~::~~n '!JJori

More information

Helping Kids Prepare For Life (253)

Helping Kids Prepare For Life   (253) Hlpi Ki Pp F Lif.l.i. (253)-589-7489 Tilli it it L Livit iv f fiv CIS U H. Vip pt fll t Tilli Elt l tpi tff tt f vi t t CIS T Hll f i Cltt N Cli. - L ivi i CIS f Bill Milli CIS pit Dil Cili Ti l iz it

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

In-class Exercise. Problem: Select load factors for the Strength I and Service I Limit States for the. Loading Diagram for Student Exercise

In-class Exercise. Problem: Select load factors for the Strength I and Service I Limit States for the. Loading Diagram for Student Exercise In-class Exercise Problem: Select load factors for the Strength I and Service I Limit States for the problem illustrated below. Loading Diagram for Student Exercise For this exercise, complete the following

More information

l f t n nd bj t nd x f r t l n nd rr n n th b nd p phl t f l br r. D, lv l, 8. h r t,., 8 6. http://hdl.handle.net/2027/miun.aey7382.0001.001 P bl D n http://www.hathitrust.org/access_use#pd Th r n th

More information

o ri fr \ jr~ ^: *^ vlj o^ f?: ** s;: 2 * i i H-: 2 ~ " ^ o ^ * n 9 C"r * ^, ' 1 ^5' , > ^ t g- S T ^ r. L o n * * S* * w 3 ** ~ 4O O.

o ri fr \ jr~ ^: *^ vlj o^ f?: ** s;: 2 * i i H-: 2 ~  ^ o ^ * n 9 Cr * ^, ' 1 ^5' , > ^ t g- S T ^ r. L o n * * S* * w 3 ** ~ 4O O. THE PENALTY FR MAKING A FALSE STATEMENT IN THIS REPRT AND/R CERTIFICATE IS S5. R SIX MNTHS IMPRISNMENT R BTH "D "? y. " cr TJ Xl^ " Q. rt 5' "g s r ^.. C i :? S :.. y ' : s s ^ST (X. I ^^ ^ ^ S : t ^ :

More information

D t r l f r th n t d t t pr p r d b th t ff f th l t tt n N tr t n nd H n N d, n t d t t n t. n t d t t. h n t n :.. vt. Pr nt. ff.,. http://hdl.handle.net/2027/uiug.30112023368936 P bl D n, l d t z d

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

.Sua. 8f fc"g. II f 8. *1 w. a -a M +» * <N H Q. o * H CO. * o M < a «* n 55 ti 55 «55 «55 Pi. u < < M C C * Ztf fc tf fctf tf tf ISO.

.Sua. 8f fcg. II f 8. *1 w. a -a M +» * <N H Q. o * H CO. * o M < a «* n 55 ti 55 «55 «55 Pi. u < < M C C * Ztf fc tf fctf tf tf ISO. 04 ti tf ti -0 T T5 T) " rt..9..9 *>!. +» 1 +* cc +> 0" +» c >. 0> v > U rt +» P p. e rt i < I' T rt >

More information

Lesson 25. Static Pile Load Testing, O-cell, and Statnamic. Reference Manual Chapter 18

Lesson 25. Static Pile Load Testing, O-cell, and Statnamic. Reference Manual Chapter 18 Lesson 25 Static Pile Load Testing, O-cell, and Statnamic Reference Manual Chapter 18 STATIC LOAD TESTING Most accurate method to determine static pile capacity Perform at design or construction stage

More information

R.M.HARW & ASSOCIATES LTD. GEOTECHNICAL INVESTIGATION PROPOSED BRIDGE SITE. HELAVA CREEKl MILE MACKENZIE HIGHWAY E-2510 OCTOBER 16, 1973

R.M.HARW & ASSOCIATES LTD. GEOTECHNICAL INVESTIGATION PROPOSED BRIDGE SITE. HELAVA CREEKl MILE MACKENZIE HIGHWAY E-2510 OCTOBER 16, 1973 El R.M.HARW & ASSOCIATES LTD. GEOTECHNICAL INVESTIGATION PROPOSED BRIDGE SITE HELAVA CREEKl MILE 616.4 MACKENZIE HIGHWAY E-2510 OCTOBER 16, 1973 R,M,HARDV & ASSOCIATES LTD. CONSULTING ENGINEERING & TESTING

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

Hyperbolic Soil Bearing Capacity

Hyperbolic Soil Bearing Capacity 1 Introduction Hyperbolic Soil Bearing Capacity This example involves analyzing the bearing capacity of a round footing. The example is useful for illustrating several SIGMA/W features and procedures,

More information

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t 2Â F b. Th h ph rd l nd r. l X. TH H PH RD L ND R. L X. F r, Br n, nd t h. B th ttr h ph rd. n th l f p t r l l nd, t t d t, n n t n, nt r rl r th n th n r l t f th f th th r l, nd d r b t t f nn r r pr

More information

n

n p l p bl t n t t f Fl r d, D p rt nt f N t r l R r, D v n f nt r r R r, B r f l. n.24 80 T ll h, Fl. : Fl r d D p rt nt f N t r l R r, B r f l, 86. http://hdl.handle.net/2027/mdp.39015007497111 r t v n

More information

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ Ğ Ü Ü Ü ğ ğ ğ Öğ ş öğ ş ğ öğ ö ö ş ğ ğ ö ğ Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ l _.j l L., c :, c Ll Ll, c :r. l., }, l : ö,, Lc L.. c l Ll Lr. 0 c (} >,! l LA l l r r l rl c c.r; (Y ; c cy c r! r! \. L : Ll.,

More information

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl --

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl -- Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl -- Consider the function h(x) =IJ\ 4-8x 3-12x 2 + 24x {?\whose graph is

More information

Congreso Internacional de Fundaciones Profundas de Bolivia Santa Cruz, Bolivia, 12 al 15 de Mayo de 2015 Day 1: Software Demonstrations

Congreso Internacional de Fundaciones Profundas de Bolivia Santa Cruz, Bolivia, 12 al 15 de Mayo de 2015 Day 1: Software Demonstrations Applications of Stress Wave Theory to Deep Foundations with an Emphasis on The Wave Equation (GRLWEAP) Congreso Internacional de Fundaciones Profundas de Bolivia Santa Cruz, Bolivia, 12 al 15 de Mayo de

More information

N V R T F L F RN P BL T N B ll t n f th D p rt nt f l V l., N., pp NDR. L N, d t r T N P F F L T RTL FR R N. B. P. H. Th t t d n t r n h r d r

N V R T F L F RN P BL T N B ll t n f th D p rt nt f l V l., N., pp NDR. L N, d t r T N P F F L T RTL FR R N. B. P. H. Th t t d n t r n h r d r n r t d n 20 2 04 2 :0 T http: hdl.h ndl.n t 202 dp. 0 02 000 N V R T F L F RN P BL T N B ll t n f th D p rt nt f l V l., N., pp. 2 24. NDR. L N, d t r T N P F F L T RTL FR R N. B. P. H. Th t t d n t r

More information

We enclose herewith a copy of your notice of October 20, 1990 for your reference purposes.

We enclose herewith a copy of your notice of October 20, 1990 for your reference purposes. W-E AND ISuC ATTORNEYS AT lhw 10 QUEEN STIlEET P. 0. BOX NO. 201 NEWTOWN. CONNEWICUT 06470 OEOROE N. WNCELEE HENRY J. ISAAC BUWrpOff 203 9992218 FAX NO. 903-4P6-3011 October 30, 1990.. The Master Collectors

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Use of Ultra-High Performance Concrete in Geotechnical and Substructure Applications

Use of Ultra-High Performance Concrete in Geotechnical and Substructure Applications Use of Ultra-High Performance Concrete in Geotechnical and Substructure Applications i PI: Muhannad Suleiman Co-PI: Sri Sritharan Graduate Research Assistant: Thomas L. Vande Voort January 13, 29 IOWA

More information

----- ~... No. 40 in G minor, K /~ ~--.-,;;;' LW LllJ LllJ LllJ LllJ WJ LilJ L.LL.J LLLJ. Movement'

----- ~... No. 40 in G minor, K /~ ~--.-,;;;' LW LllJ LllJ LllJ LllJ WJ LilJ L.LL.J LLLJ. Movement' Area o Stdy 1 Western c'assica' msic 16001899 Wolgang Symhony Movement' ocd1 track 2 Amades Mozart No 40 in G minor K550 Flte Oboes 12 Clarinets 12 in B lat Bassoons 12 Molto Allegro Horn 1 in B lat alto';

More information

Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl. .1.t+~4 -~-J. ""T... Sl. J":..2.l.. -+-Jw. A =- A(~)'" ~ A :..!w-l-~

Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl. .1.t+~4 -~-J. T... Sl. J:..2.l.. -+-Jw. A =- A(~)' ~ A :..!w-l-~ Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl 1. Find the missing value given BCDA is a rectangle. Perimeter = 62 cm Area =? V:. d.t-\" ~vj B.--- ---,c 17 em ~ J. ':. ~). -:: - '0..., rj ~ -;:,

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

Th pr nt n f r n th f ft nth nt r b R b rt Pr t r. Pr t r, R b rt, b. 868. xf rd : Pr nt d f r th B bl r ph l t t th xf rd n v r t Pr, 00. http://hdl.handle.net/2027/nyp.33433006349173 P bl D n n th n

More information

~.cft.l!:.&r".m.~~i~~ CfiT.afI4~R.q)

~.cft.l!:.&r.m.~~i~~ CfiT.afI4~R.q) .cft.l!:.&r".m.i CfT.afI4R.q) r_ -' f'l.... '1 Wr. (. ':?\9\9o) 3lT{-t." 'ts, 3lT{... 4Idl4I,, - oo ot.t.". t"l{2. '31'.M. r::..,, 'If.. \9() 11c:.ljl \1rrRlT +I(1Ch SCXlI1.;...,...fA,.." r:.t'tllirto\""i\..

More information

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS 1 2 C. Vipulanandan 1, Ph.D., M. ASCE and Omer F. Usluogullari 2 Chairman, Professor, Director of Center for Innovative Grouting Materials

More information

Humanistic, and Particularly Classical, Studies as a Preparation for the Law

Humanistic, and Particularly Classical, Studies as a Preparation for the Law University of Michigan Law School University of Michigan Law School Scholarship Repository Articles Faculty Scholarship 1907 Humanistic, and Particularly Classical, Studies as a Preparation for the Law

More information

z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f

z E z * I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% fei 'Q f I % 4*? ll I - ü z /) I J (5 /) 2 - / J z Q. J X X J 5 G Q J s J J /J z *" J - LL L Q t-i ' '," ; i-'i S": t : i ) Q "fi 'Q f I»! t i TIS NT IS BST QALITY AVAILABL. T Y FRNIS T TI NTAIN A SIGNIFIANT NBR

More information

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4. te SelfGi ZltAn Dbnyei Intdtin ; ) Q) 4 t? ) t _ 4 73 y S _ E _ p p 4 t t 4) 1_ ::_ J 1 `i () L VI O I4 " " 1 D 4 L e Q) 1 k) QJ 7 j ZS _Le t 1 ej!2 i1 L 77 7 G (4) 4 6 t (1 ;7 bb F) t f; n (i M Q) 7S

More information

to", \~~!' LSI'r-=- 5 b H 2-l

to, \~~!' LSI'r-=- 5 b H 2-l Math 10 Name_\< Ei_' _ WORKSHEET 2.2 - Surface Area Part 1 - Find SA of different objects Usepage 3 of your data booklet to find the formulae for SAof objects! 1. Find the SA of the square pyramid below.

More information

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v ll f x, h v nd d pr v n t fr tf l t th f nt r n r

More information

s u (mm) D r 1 0.1a D D r ) E p 5 Young s modulus of pile material (kn>mm 2 )

s u (mm) D r 1 0.1a D D r ) E p 5 Young s modulus of pile material (kn>mm 2 ) 11.1 Pile Load Tests 585 Pile settlement may increase with load to a certain point, beyond which the load settlement curve becomes vertical. The load corresponding to the point where the curve of Q versus

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Double punch test for tensile strength of concrete, Sept (70-18) PB224770/AS (NTIS)

Double punch test for tensile strength of concrete, Sept (70-18) PB224770/AS (NTIS) Lehigh University Lehigh Preserve Fritz Laboratory Reports Civil and Environmental Engineering 1969 Double punch test for tensile strength of concrete, Sept. 1969 (70-18) PB224770/AS (NTIS) W. F. Chen

More information

*^ irart ^r" -^irt" n'"" 8 "!^' 'if* 4 "^1* 0 f^* *>(""!.'»' *? 1? *}' ';' *l g r. (p 'n't inn*? ^ iff*"* 0 (2) (f) Jf5n**" in?*'*?

*^ irart ^r -^irt n' 8 !^' 'if* 4 ^1* 0 f^* *>(!.'»' *? 1? *}' ';' *l g r. (p 'n't inn*? ^ iff** 0 (2) (f) Jf5n** in?*'*? I Jf5n**" in?*'*? rr^-rf rrr *r (f) (2) (p 'n't inn*? ^ iff*"* 0 1? *}' ';' *l g r *^ irart ^r" -^irt" n'"" 8 "!^' 'if* 4 "^1* 0 f^* *>(""!.'»' *? 32 3JU1 J.» JJI ^^ Jl Uil^ilft!*_* ju.1 35 JL..a^bf t^m^f

More information

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s 5 C /? >9 T > ; '. ; J ' ' J. \ ;\' \.> ). L; c\ u ( (J ) \ 1 ) : C ) (... >\ > 9 e!) T C). '1!\ /_ \ '\ ' > 9 C > 9.' \( T Z > 9 > 5 P + 9 9 ) :> : + (. \ z : ) z cf C : u 9 ( :!z! Z c (! $ f 1 :.1 f.

More information

vulcanhammer.info the website about Vulcan Iron Works Inc. and the pile driving equipment it manufactured Terms and Conditions of Use:

vulcanhammer.info the website about Vulcan Iron Works Inc. and the pile driving equipment it manufactured Terms and Conditions of Use: this document downloaded from vulcanhammer.info the website about Vulcan Iron Works Inc. and the pile driving equipment it manufactured Terms and Conditions of Use: All of the information, data and computer

More information

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

5. What is the moment of inertia about the x - x axis of the rectangular beam shown? 1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

More information

June 9, R. D. Cook, P.Eng. Soils Engineer Special Services Western Region PUBLIC WORKS CANADA WESTERN REGION REPORT ON

June 9, R. D. Cook, P.Eng. Soils Engineer Special Services Western Region PUBLIC WORKS CANADA WESTERN REGION REPORT ON PUBLIC WORKS CANADA WESTERN REGION REPORT ON GEOTECHNICAL INVESTIGATION PROPOSED MARTIN RIVER BRIDGE MILE 306.7 MACKENZIE HIGHWAY Submitted by : R. D. Cook, P.Eng. Soils Engineer Special Services Western

More information

PDA Workshop: Stresses, Integrity, Energy and Capacity

PDA Workshop: Stresses, Integrity, Energy and Capacity PDA Workshop: Stresses, Integrity, Energy and Capacity Ir Richard C L Yu IEM 2 Sep 2013 Dynamic Pile Monitoring For each blow determine Pile driving stresses Pile integrity Hammer performance Capacity

More information

l I I I I I Mechanics M 1 Advanced/ Advanced Subsidiary Pearson Edexcel P46705A II II I I I I II PEARSON

l I I I I I Mechanics M 1 Advanced/ Advanced Subsidiary Pearson Edexcel P46705A II II I I I I II PEARSON Write your name here Su rn ame Other names Pearson Edexcel nternational Advanced Level r Centre Number l Mechanics M 1 Advanced/ Advanced Subsidiary Candidate Number "' Wednesday 8 June 2016 Morning Time:

More information

r;-7~-r13~-1.' ~ I) i-rl;'o .IT{ f'/ {- r ~~ / \'A 1f

r;-7~-r13~-1.' ~ I) i-rl;'o .IT{ f'/ {- r ~~ / \'A 1f r;-7~-r13~-1.' f... ::;( ~1tJ:, 1J -; It B1t: I. Complete the following sentences by writing the appropriate location chosen from the words below. ~ ~L 1.1-"3 '::J v- r ~tf " ~ 1(\,t:\ 'Iv -t-rl;\ : 0)l2l1:

More information

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

Prob. 1 SDOF Structure subjected to Ground Shaking

Prob. 1 SDOF Structure subjected to Ground Shaking Prob. 1 SDOF Structure subjected to Ground Shaking What is the maximum relative displacement and the amplitude of the total displacement of a SDOF structure subjected to ground shaking? magnitude of ground

More information

Lateral Resistance of Short Rock Sockets in Weak Rock: a Case History. Text word count: 4140 Number of figures and tables: 13

Lateral Resistance of Short Rock Sockets in Weak Rock: a Case History. Text word count: 4140 Number of figures and tables: 13 Lateral Resistance of Short Rock Sockets in Weak Rock: a Case History Text word count: Number of figures and tables: 1 Robert L. Parsons PhD, P.E (Corresponding Author) Associate Professor Department of

More information

CE : CIVIL ENGINEERING

CE : CIVIL ENGINEERING 2009 CE : CIVIL ENGINEERING Duration : Three Hours Read the following instructions carefully. l. This question paper contains 16 printed pages including pages for rough work. Please check all pages and

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

'NOTASCRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak OVí "^Ox^ OqAÍ"^ Dcument SD-11 \ 'NOTAS"CRTCAS PARA UNA TEDRA DE M BUROCRACA ESTATAL * Oscr Oszlk * El presente dcument que se reprduce pr us exclusv de ls prtcpntes de curss de Prrms de Cpctcón, se h

More information

Pile-Driving Analysis by One-Dimensional Wave Theory: State of the Art

Pile-Driving Analysis by One-Dimensional Wave Theory: State of the Art Pile-Driving Analysis by One-Dimensional Wave Theory: State of the Art T. J. HIRSCH, L. L. LOWERY, H. M. COYLE, and C.H. SAMSON, JR., College of Engineering, Texas A&M University The numerical computer

More information

CHAPTER 8 CALCULATION THEORY

CHAPTER 8 CALCULATION THEORY CHAPTER 8 CALCULATION THEORY. Volume 2 CHAPTER 8 CALCULATION THEORY Detailed in this chapter: the theories behind the program the equations and methods that are use to perform the analyses. CONTENTS CHAPTER

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

-74- Chapter 6 Simulation Results. 6.1 Simulation Results by Applying UGV theories for USV

-74- Chapter 6 Simulation Results. 6.1 Simulation Results by Applying UGV theories for USV Chapter 6 Simulation Results 6.1 Simulation Results by Applying UGV theories for USV The path planning with two obstacles by utilizing algorithms which are developed and tested for UGV is given below.

More information

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1. NAME CM 3505 Fall 06 Test 2 Part 1 is to be completed without notes, beam tables or a calculator. Part 2 is to be completed after turning in Part 1. DO NOT turn Part 2 over until you have completed and

More information

Design of RC Retaining Walls

Design of RC Retaining Walls Lecture - 09 Design of RC Retaining Walls By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Topics Retaining Walls Terms Related to Retaining Walls Types of Retaining

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

The Effect of Urea on the Sedimentation Coefficient of the Curly Top Virus Dimer

The Effect of Urea on the Sedimentation Coefficient of the Curly Top Virus Dimer Utah State University DigitalCommons@USU Undergraduate Honors Theses Honors Program 1976 The Effect of Urea on the Sedimentation Coefficient of the Curly Top Virus Dimer Allen H. Smith Utah State University

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1866 Colby College Catalogue 1866-1867 Colby College Follow this and additional works at: http://digitalcommons.colby.edu/catalogs

More information

Solution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is:

Solution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is: Problem 10.4 A prismatic bar with length L 6m and a circular cross section with diameter D 0.0 m is subjected to 0-kN compressive forces at its ends. The length and diameter of the deformed bar are measured

More information

POE Practice Test - Materials

POE Practice Test - Materials Class: Date: POE Practice Test - Materials Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A student weighs 150 lbs and is standing on a beam which spans

More information

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No.

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No. CHAPTER 5 Question Brief Explanation No. 5.1 From Fig. IBC 1613.5(3) and (4) enlarged region 1 (ASCE 7 Fig. -3 and -4) S S = 1.5g, and S 1 = 0.6g. The g term is already factored in the equations, thus

More information

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco > p >>>> ft^. 2 Tble f Generl rdnes. t^-t - +«0 -P k*ph? -- i t t i S i-h l -H i-h -d. *- e Stf H2 t s - ^ d - 'Ct? "fi p= + V t r & ^ C d Si d n. M. s - W ^ m» H ft ^.2. S'Sll-pl e Cl h /~v S s, -P s'l

More information

BLESSINGS... Abundance to Share

BLESSINGS... Abundance to Share V l 5 6 T Gi I 6 j 2 0 1 1 BLESSINGS... A S I f F P C i i ii i G i f f l lii. O l Bli A S J 5 lli Cl S. T l f i l li G i fili i i f li l ii f f. Eliii l $1.5 illi fili ill j. I i G f qi x i i l i ii. I

More information

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone. OUL O GR SODRY DUTO, ODS,RT,SMTUR,USWR.l ntuctin f cnuct f Kbi ( y/gil)tunent f 2L-Lg t. 2.. 4.. 6. Mtche hll be lye e K ule f ene f tie t tie Dutin f ech tch hll be - +0 (Rece)+ = M The ticint f ech Te

More information

FINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON)

FINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON) FINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON) Ahmed Elgamal and Jinchi Lu October 07 Introduction In this study, we conduct a finite element simulation

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

vulcanhammer.info the website about Vulcan Iron Works Inc. and the pile driving equipment it manufactured Terms and Conditions of Use:

vulcanhammer.info the website about Vulcan Iron Works Inc. and the pile driving equipment it manufactured Terms and Conditions of Use: this document downloaded from vulcanhammer.info the website about Vulcan Iron Works Inc. and the pile driving equipment it manufactured Terms and Conditions of Use: All of the information, data and computer

More information

Tausend Und Eine Nacht

Tausend Und Eine Nacht Connecticut College Digital Commons @ Connecticut College Historic Sheet Music Collection Greer Music Library 87 Tausend Und Eine Nacht Johann Strauss Follow this and additional works at: https:digitalcommonsconncolledusheetmusic

More information

Civil Engineering, Surveying and Environmental Consulting WASP0059.ltr.JLS.Mich Ave Bridge Geotech.docx

Civil Engineering, Surveying and Environmental Consulting WASP0059.ltr.JLS.Mich Ave Bridge Geotech.docx 2365 Haggerty Road South * Canton, Michigan 48188 P: 734-397-3100 * F: 734-397-3131 * www.manniksmithgroup.com August 29, 2012 Mr. Richard Kent Washtenaw County Parks and Recreation Commission 2330 Platt

More information

,. *â â > V>V. â ND * 828.

,. *â â > V>V. â ND * 828. BL D,. *â â > V>V Z V L. XX. J N R â J N, 828. LL BL D, D NB R H â ND T. D LL, TR ND, L ND N. * 828. n r t d n 20 2 2 0 : 0 T http: hdl.h ndl.n t 202 dp. 0 02802 68 Th N : l nd r.. N > R, L X. Fn r f,

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Improvement of Low Strain Pile Integrity Test

Improvement of Low Strain Pile Integrity Test Improvement of Low Strain Pile Integrity Test Wenzhang Luo 1, Fan Chen 2, and Junling Hu 1 1 Deparment of Mechanical Engineering, University of Bridgeport, Bridgeport, CT 06604 2 National Center for Quality

More information

B.o~'\c.~ r;-7~-r7~-1. V A r -7 /' l' 7 J J,t / \' l' r ~ Lt: :: t: I,}{ S I) :i-t 1;' 0. 1.(1;1\\ \\\\;;{.) };tij~ 1<:"" t: :: t: I; { S I) :i-t 0

B.o~'\c.~ r;-7~-r7~-1. V A r -7 /' l' 7 J J,t / \' l' r ~ Lt: :: t: I,}{ S I) :i-t 1;' 0. 1.(1;1\\ \\\\;;{.) };tij~ 1<: t: :: t: I; { S I) :i-t 0 -f.a. 0.' r;-7~-r7~-1 it ~~:--------------------------- U -iii B1t: _ I. If the following statements are true for you, circle (;t \ \ and if they are not true, circle \ \ \ \ It. 1.(1;1\\ \\\\;;{.) };tij~

More information

Chapter 4 Seismic Design Requirements for Building Structures

Chapter 4 Seismic Design Requirements for Building Structures Chapter 4 Seismic Design Requirements for Building Structures where: F a = 1.0 for rock sites which may be assumed if there is 10 feet of soil between the rock surface and the bottom of spread footings

More information

> DC < D CO LU > Z> CJ LU

> DC < D CO LU > Z> CJ LU C C FNS TCNCAL NFRMATN CNTR [itpfttiiknirike?fi-'.;t C'JM.V TC hs determined n \ _\}. L\\ tht this Technicl cment hs the istribtin Sttement checked belw. The crnt distribtin fr this dcment cn be telind

More information

Verification of a Micropile Foundation

Verification of a Micropile Foundation Engineering manual No. 36 Update 02/2018 Verification of a Micropile Foundation Program: File: Pile Group Demo_manual_en_36.gsp The objective of this engineering manual is to explain the application of

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

National Parks and Wildlife Service

National Parks and Wildlife Service I - til rk Willif i ti jti ri llitrly rl J Vi f til rk Willif i, rtt f ltr, Hrit t Gltt, ly l, li, Irl. W www.w.i -il tr.ti@..i itti W () ti jti llitrly rl. Vi. til rk Willif i, rtt f ltr, Hrit t Gltt.

More information