The water exerts a force on the ship. In which direction does this force act?... (1)

Size: px
Start display at page:

Download "The water exerts a force on the ship. In which direction does this force act?... (1)"

Transcription

1 1. The diagram below shows an empty cargo ship. It is not moving. (a) The water exerts a force on the ship. In which direction does this force act?... (b) The diagram below shows the same cargo ship. This time it has a full load of cargo. (i) How does the force exerted by the water on the ship change as the ship is loaded? Why has the force exerted by the water changed? Bucklers Mead Community School 1

2 2. (a) When a car is driven efficiently the engine gives a constant forward pull on the car as the car accelerates to its maximum speed. During this time frictional forces and air resistance oppose the forward motion of the car. The sketch graphs below show how the car s speed increases when only the driver is in the car, and when the driver has a passenger in the car. speed driver alone driver and passenger time (i) How does the acceleration of the car change with time? What conclusion can be made about the resultant (net) forward force on the car as its speed increases? On the graph, draw a line to show how you would expect the car s speed to vary if it carried three passengers. (b) The manufacturer of a family car gave the following information. Mass of car 950g The car will accelerate from 0 to 33 m/s in 11 seconds. Bucklers Mead Community School 2

3 (i) Calculate the acceleration of the car during the 11 seconds. Answer... Calculate the force needed to produce this acceleration. Answer... N (iii) The manufacturer of the car claims a top speed of 110 miles per hour. Explain why there must be a top speed for any car. Bucklers Mead Community School 3

4 3. Below is a distance-time graph for part of a train journey. The train is travelling at a constant speed Total distance (km) Time (minutes) (a) Use the graph to find (i) how far the train travels in 2 minutes... km. how long it takes the train to travel a distance of 10 kilometres... minutes. (b) Calculate the speed of the train (4) Bucklers Mead Community School 4

5 4. (a) The diagram below shows a moving tractor. The forward force from the engine exactly balances the resisting forces on the tractor. (i) Describe the motion of the tractor.... The tractor comes to a drier part of the field where the resisting forces are less. If the forward force from the engine is unchanged how, if at all, will the motion of the tractor be affected? (3) (b) Two pupils are given the task of finding out how fast a tractor moves across a field. As the tractor starts a straight run across the field the pupils time how long it takes to pass a series of posts which are forty metres apart. The results obtained are shown in the table below. Distance travelled (m) Time taken (s) Bucklers Mead Community School 5

6 (i) Draw a graph of distance travelled against time taken using the axes on the graph below. Label your graph line A Distance (m) Time (s) Calculate the speed of the tractor (3) (c) In another, wetter field there is more resistance to the movement of the tractor. It now travels at 4 m/s. Bucklers Mead Community School 6

7 (i) Calculate the time needed to travel 200m On the graph in part (b) draw a line to represent the motion of the tractor across the second field. Label this line B. (4) (d) On a road the tractor accelerates from rest up to a speed of 6 m/s in 15 seconds. Calculate the acceleration of the tractor acceleration =...m/s² (3) 5. A sky-diver jumps from a plane. The sky-diver is shown in the diagram below. (a) Arrows X and Y show two forces acting on the sky-diver as he falls. (i) Name the forces X and Y. X... Y... Bucklers Mead Community School 7

8 Explain why force X acts in an upward direction. (iii) At first forces X and Y are unbalanced. Which of the forces will be bigger?... (iv) How does this unbalanced force affect the sky-diver? (b) After some time the sky-diver pulls the rip cord and the parachute opens. The sky-diver and parachute are shown in the diagram below. X After a while forces X and Y are balanced. Underline the correct answer in each line below. Y Bucklers Mead Community School 8

9 Force X has increased / stayed the same / decreased. Force Y has increased / stayed the same / decreased. The speed of the sky-diver will increase / stay the same / decrease. (3) (c) The graph below shows how the height of the sky-diver changes with time A 1500 B height (m) C time (s) D (i) Which part of the graph, AB, BC or CD shows the sky-diver falling at a constant speed?... What distance does the sky-diver fall at a constant speed? Distance... m Bucklers Mead Community School 9

10 (iii) How long does he fall at this speed? Time... s (iv) Calculate this speed. Speed... m/s 6. A car accelerates from rest. Its speed is measured as it accelerates. The results are shown in the table. Speed (m/s) time (s) Bucklers Mead Community School 10

11 (a) Draw a graph of speed against time on the graph paper speed (m/s) time (s) (3) (b) Calculate the acceleration of the car Acceleration... m/s 2 Bucklers Mead Community School 11

12 (c) The car eventually reached a constant speed and then travelled 350 metres in 10 seconds. Calculate the speed at which it travelled Speed... m/s Total 7 marks 7. Five forces, A, B, C, D and E act on the van. (a) Complete the following sentences by choosing the correct forces from A to E. Force... is the forward force from the engine. Force... is the force resisting the van s motion. (b) The size of forces A and E can change. Complete the table to show how big force A is compared to force E for each motion of the van. Do this by placing a tick in the correct box. The first one has been done for you. MOTION OF VAN Not moving Speeding up Constant speed Slowing down FORCE A SMALLER THAN FORCE E FORCE A EQUAL TO FORCE E FORCE A BIGGER THAN FORCE E (3) Bucklers Mead Community School 12

13 (c) When is force E zero?... (d) The van has a fault and leaks one drop of oil every second. The diagram below shows the oil drops left on the road as the van moves from W to Z. W X Y Z Describe the motion of the van as it moves from: W to X... X to Y... Y to Z... (3) (e) The driver and passengers wear seatbelts. Seatbelts reduce the risk of injury if the van stops suddenly. backwards downwards force forwards mass weight Complete the following sentences, using words from the list above, to explain why the risk of injury is reduced if the van stops suddenly. A large... is needed to stop the van suddenly. The driver and passengers would continue to move.... The seatbelts supply a... force to keep the driver and passengers in their seats. (3) 8. (a) A cyclist goes on a long ride. The graph shows how the distance travelled changes with time during the ride E Distance in km B C D 10 A Time in hours Bucklers Mead Community School 13

14 (i) Between which two points on the graph was the cyclist moving at the fastest speed?... State one way cyclists can reduce the air resistance acting on them (iii) How long did the cyclist stop and rest?... (iv) Write down the equation which links distance, speed and time.... (v) Calculate, in km/hr, the average speed of the cyclist while moving Average speed =... km/hr (3) (b) For part of the ride the cyclist pushed on the pedals with a constant vertical force of 300 N. The simplified diagrams show the pedals in three different positions. 300 N 300 N 14 cm 16 cm 300 N 16 cm A B C (i) Which position, A, B, or C, gives the largest moment on the pedal?... Bucklers Mead Community School 14

15 Use the following equation to calculate, in Newton metres, the size of the largest moment on the pedal. moment = force perpendicular distance from pivot Moment =... Nm (Total 10 marks) 9. A hot air balloon called Global Challenger was used to try to break the record for travelling round the world. The graph shows how the height of the balloon changed during the flight A B F height (metres) C E D time after burners were lit (hours) The balloon took off from Marrakesh one hour after the burners were lit and climbed rapidly. Bucklers Mead Community School 15

16 (a) Use the graph to find: (i) the maximum height reached. Maximum height... metres. the total time of the flight. Total time... hours. (b) Several important moments during the flight are labelled on the graph with the letters A, B, C, D, E and F. At which of these moments did the following happen? (i) The balloon began a slow controlled descent to 2500 metres.... The crew threw out all the cargo on board in order to stop a very rapid descent.... (iii) The balloon started to descend from 9000 metres.... (3) 10. The diagram below shows the orbits for two types of satellite, a polar orbit and a geostationary orbit. geostationary orbit polar orbit (a) A satellite in stable Earth orbit moves at a constant speed in a circular orbit because there is a single force acting on it. (i) What is the direction of this force? What is the cause of this force? (iii) What is the effect of this force on the velocity of the satellite? Bucklers Mead Community School 16

17 (iv) In which of the orbits shown above would this force be bigger? Explain the reason for your answer. (v) Explain why the kinetic energy of the satellite remains constant. (b) A satellite in a geostationary orbit takes about 24 hours to complete one orbit, whilst one in a low polar orbit typically takes 90 minutes. (i) Suggest, with reasons, one use of a satellite in a geostationary orbit. Suggest, with reasons, one use of a satellite in a polar orbit. (c) Sometimes the motion of a rocket in space has to be changed. The diagram below shows such a rocket being accelerated. payload fuel fuel Bucklers Mead Community School 17

18 Use your ideas of momentum to explain why the rocket accelerates (4) 11. (a) points correct; 2 line correct each (b) increases 1 (c) (i) ecf 1 (iii) increased ecf 1 [6] 12. (a) (i) decreases 1 decreases 1 (iii) lower speed everywhere 1 (b) (i) 3 a = s or a = 33 t 11 gains 1 mark 1 ms 2 1 gains 1 mark 2850 ecf 2 gains 2 marks else working gains 1 mark (iii) air resistance/frictional forces increase with speed; 2 till frictional force = max forward engine force; when acceleration is zero (incorrect statement - 1 mark) or (limitation on maximum speed for safety-1 mark) any two each [9] 13. (a) (i) 3km [allow 2.9 to 3.1] 1 Bucklers Mead Community School 18

19 6.6 min [allow 6.5 to 6.8] 1 (b) can be in any units, 1.5 km/min, 1500 m/min, 25 m/s, 90 km/h 4 Sp = d/t =12/8 =1.5 km/min each (see marking of calculations) 14. (a) (i) Constant speed 2 Accelerates to higher constant speed (b) (i) Points correct (allow one major or two minor mistakes) 2 Line correct (for their points) 5 m/s 3 or 5 gets 2 marks or correct unit gets 1 mark mark (c) (i) 50 s 3 or 50 gets 2 marks or t = d/v gets 1 mark Line correct (of gradient 4 and spans 30 consecutive seconds) 1 (d) (i) or 6/15 gets 2 marks or a = v/t gets 1 mark [15] 15. (a) (i) air resistance/drag/friction (or upthrust) 1 weight/gravitational pull/gravity each air resistance/friction acts in opposite direction to motion 1 (iii) Y 1 (iv) the sky-diver accelerates/his speed increases 2 in downward direction/towards the Earth/falls each Bucklers Mead Community School 19

20 (b) force X has increased 3 force Y has stayed the same the speed of the sky-diver will stay the same each (c) (i) CD (iii) 50 (but apply e.c.f. from (i)) 2 (iv) 10 (but apply e.c.f. from and (iii)) 2 gets 2 marks or 500/50 or d/t gets 1 mark [14] 16. (a) (i) C and D or D and C 1 accept CD accept DC accept answers in terms of time any one from: 1 streamline position streamline clothes accept crouched position accept tight clothes accept design of cycle accept cycle slower 0.5 hours or 30 minutes 1 or 1800 seconds must have unit distance (iv) speed = time (taken) accept any correct rearrangement accept s = d/t or v s/t accept velocity for speed 1 accept d s t if subsequent use of correct (v) 16 3 allow for mark for each of time = 3.5 hours distance = 56km allow e.c.f. from part (a)(iii) if correctly used an answer of 14 gains 2 marks allow 1 mark for correct attempt to average the three sections (b) (i) C 1 Bucklers Mead Community School 20

21 48 2 an answer of gains 1 mark if answer (b)(i) is given as A then 42 scores 1 mark 4200 scores 0 marks substitution of correct figures = 1 mark [10] 17. (a) A then E 1 for one mark (b) A > E 3 A = E A < E in this order each (c) when van stops / is stationary / is parked 1 for one mark (d) WX slowing down (owtte) 3 XY constant speed (owtte) YZ speeding up (owtte) each (e).. force. forwards. backwards 3 each [11] 18. (a) (i) 9400(m) (hours) 1 (b) (i) F 1 D 1 (iii) B 1 [5] 19. (a) (i) towards Earth 1 gravity 1 (iii) changes direction 1 (iv) polar orbit; 2 closer each (v) speed constant 2 Bucklers Mead Community School 21

22 mass constant each (b) (i) communications satellite/is stationary relative to Earth surface 2 or always beams to same area on Earth (no credit if reversed or inconsistent) each spy/weather satellite/gathering sensible information 2 scans much of surface quickly each (c) momentum conserved; 4 spent fuel has momentum to right; rocket gets equal momentum to left; therefore rocket speed increases - consequential each [15] 20. (a) up 1 (b) (i) increased 1 more water displaced; 1 ship heavier either [3] Bucklers Mead Community School 22

P2a Acceleration and Motion Graphs Foundation

P2a Acceleration and Motion Graphs Foundation P2a Acceleration and Motion Graphs Foundation 46 minutes 46 marks Page 1 of 12 Q1. (a) The diagram shows two forces acting on an object. What is the resultant force acting on the object? Tick ( ) one box.

More information

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train.

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train. VELOCITY Q1. A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between A and B is not the

More information

The drag lift pulls the skier from the bottom to the top of a ski slope.

The drag lift pulls the skier from the bottom to the top of a ski slope. RESULTANT FORCES Q1. Figure 1 shows a skier using a drag lift. The drag lift pulls the skier from the bottom to the top of a ski slope. The arrows, A, B, C and D represent the forces acting on the skier

More information

The drag lift pulls the skier from the bottom to the top of a ski slope.

The drag lift pulls the skier from the bottom to the top of a ski slope. Figure shows a skier using a drag lift. The drag lift pulls the skier from the bottom to the top of a ski slope. The arrows, A, B, C and D represent the forces acting on the skier and her skis. Figure

More information

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train.

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train. A train travels from town A to town B. Figure shows the route taken by the train. Figure has been drawn to scale. Figure (a) The distance the train travels between A and B is not the same as the displacement

More information

1. The diagram below shows water falling from a dam. Each minute kg of water falls vertically into the pool at the bottom.

1. The diagram below shows water falling from a dam. Each minute kg of water falls vertically into the pool at the bottom. 1. The diagram below shows water falling from a dam. Each minute 12 000 kg of water falls vertically into the pool at the bottom. The time taken for the water to fall is 2 s and the acceleration of the

More information

Arrows X and Y show two forces acting on the sky-diver as he falls. Y... (2) (1) Which of the forces will be bigger?... (1)......

Arrows X and Y show two forces acting on the sky-diver as he falls. Y... (2) (1) Which of the forces will be bigger?... (1)...... Q. A sky-diver jumps from a plane. The sky-diver is shown in the diagram below. (a) Arrows X and Y show two forces acting on the sky-diver as he falls. (i) Name the forces X and Y. X... Y... (2) (ii) Explain

More information

During part of the journey the car is driven at a constant speed for five minutes.

During part of the journey the car is driven at a constant speed for five minutes. The figure below shows the horizontal forces acting on a car. (a) Which one of the statements describes the motion of the car? Tick one box. It will be slowing down. It will be stationary. It will have

More information

The driver then accelerates the car to 23 m/s in 4 seconds. Use the equation in the box to calculate the acceleration of the car.

The driver then accelerates the car to 23 m/s in 4 seconds. Use the equation in the box to calculate the acceleration of the car. Q1.The diagram shows the forces acting on a car. The car is being driven along a straight, level road at a constant speed of 12 m/s. (a) The driver then accelerates the car to 23 m/s in 4 seconds. Use

More information

3 Using Newton s Laws

3 Using Newton s Laws 3 Using Newton s Laws What You ll Learn how Newton's first law explains what happens in a car crash how Newton's second law explains the effects of air resistance 4(A), 4(C), 4(D), 4(E) Before You Read

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 Forces and Newton s Laws section 3 Using Newton s Laws Before You Read Imagine riding on a sled, or in a wagon, or perhaps a school bus that stops quickly or suddenly. What happens to your body

More information

Calculate the acceleration of the car during the 11 seconds

Calculate the acceleration of the car during the 11 seconds 1. The manufacturer of a family car gave the following information. Mass of car 950 kg. The car will accelerate from 0 to 33 m/s in 11 seconds. (a) Calculate the acceleration of the car during the 11 seconds......

More information

Name Date Hour Table

Name Date Hour Table Name Date Hour Table Chapter 3 Pre-AP Directions: Use the clues to create your word bank for the word search. Put the answer to each question with its number in the word bank box. Then find each word in

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

Show all workings for questions that involve multiple choice.

Show all workings for questions that involve multiple choice. Assignment 2 Unit 2 Newton s Laws (Outcomes 325-5, 325-8) Name: Multiple Choice: Show all workings for questions that involve multiple choice. 1 Which choice represents a NON-INERTIAL frame of reference?

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Section 1: Measuring Motion. Preview Key Ideas Bellringer Observing Motion Speed and Velocity Calculating Speed Math Skills Graphing Motion

Section 1: Measuring Motion. Preview Key Ideas Bellringer Observing Motion Speed and Velocity Calculating Speed Math Skills Graphing Motion Section 1 Section 1: Measuring Motion Preview Key Ideas Bellringer Observing Motion Speed and Velocity Calculating Speed Math Skills Graphing Motion Section 1 Key Ideas How is a frame of reference used

More information

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move).

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move). Chapter 3 Kinematics (A) Distance Vs Displacement 1. Compare distance and displacement in terms of: (a) definition Distance is the total length of travel, irrespective of direction. Displacement is the

More information

The stopping distance of a car is the sum of the thinking distance and the braking distance.

The stopping distance of a car is the sum of the thinking distance and the braking distance. The stopping distance of a car is the sum of the thinking distance and the braking distance. The table below shows how the thinking distance and braking distance vary with speed. Speed in m / s Thinking

More information

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219 Previously Remember From Page 218 Forces are pushes and pulls that can move or squash objects. An object s speed is the distance it travels every second; if its speed increases, it is accelerating. Unit

More information

In which row is the size of the vector equal to the size of the scalar?

In which row is the size of the vector equal to the size of the scalar? 1 Each row contains a vector and a scalar. In which row is the size of the vector equal to the size of the scalar? vector displacement of a car velocity of a car velocity of a car weight of a car scalar

More information

Make sure you know the three laws inside and out! You must know the vocabulary too!

Make sure you know the three laws inside and out! You must know the vocabulary too! Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

More information

Physics Knowledge Organiser P8 - Forces in balance

Physics Knowledge Organiser P8 - Forces in balance Scalar and vector quantities Scalar quantities have only a magnitude. Vector quantities have a magnitude and direction. Scalar Distance Speed mass Temperature Pressure Volume Work Vector Displacement Velocity

More information

(1) (3)

(1) (3) 1. This question is about momentum, energy and power. (a) In his Principia Mathematica Newton expressed his third law of motion as to every action there is always opposed an equal reaction. State what

More information

1.0 The distance taken for a car to stop after an emergency depends on two things:

1.0 The distance taken for a car to stop after an emergency depends on two things: 4-5 Forces Physics.0 The distance taken for a car to stop after an emergency depends on two things: The thinking distance: how far the car travels while the driver processes the information. The braking

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

AQA Forces Review Can you? Scalar and vector quantities Contact and non-contact forces Resolving forces acting parallel to one another

AQA Forces Review Can you? Scalar and vector quantities   Contact and non-contact forces    Resolving forces acting parallel to one another Can you? Scalar and vector quantities Describe the difference between scalar and vector quantities and give examples. Scalar quantities have magnitude only. Vector quantities have magnitude and an associated

More information

Q1. (a) The diagram shows a car being driven at 14 rn/s. The driver has forgotten to clear a thick layer of snow from the roof.

Q1. (a) The diagram shows a car being driven at 14 rn/s. The driver has forgotten to clear a thick layer of snow from the roof. Q1. (a) The diagram shows a car being driven at 14 rn/s. The driver has forgotten to clear a thick layer of snow from the roof. Which of the following has the smallest momentum? Draw a circle around your

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

Student Book answers. 9 Every year the glacier moves 4 mm/s faster than it was moving a year ago. 5 Final distance = 400m; Final displacement = 0m.

Student Book answers. 9 Every year the glacier moves 4 mm/s faster than it was moving a year ago. 5 Final distance = 400m; Final displacement = 0m. Chapter 5: Forces Lesson 5.1 Forces 1 e.g. friction between the tyres of a car and the road 2 e.g. the gravitational force pulling you down as you are falling from a tree 3a 3b 4 acceleration, force and

More information

Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported by calculations.

Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported by calculations. Assignment 8 Unit 2 Newton s Laws (Outcomes 325-5, 325-8) Name: Multiple Choice: Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported

More information

The drag lift pulls the skier from the bottom to the top of a ski slope.

The drag lift pulls the skier from the bottom to the top of a ski slope. Q1.Figure 1 shows a skier using a drag lift. The drag lift pulls the skier from the bottom to the top of a ski slope. The arrows, A, B, C and D represent the forces acting on the skier and her skis. Figure

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

EDEXCEL INTERNATIONAL A LEVEL MATHEMATICS. MECHANICS 1 Student Book SAMPLE COPY

EDEXCEL INTERNATIONAL A LEVEL MATHEMATICS. MECHANICS 1 Student Book SAMPLE COPY SPECIFICATIN 1.1.1 UNIT 1 THE MARKET i EDEXCEL INTERNATINAL A LEVEL MATHEMATICS MECHANICS 1 Student Book CNTENTS ii ABUT THIS BK VI 1 MATHEMATICAL MDELS IN MECHANICS 2 2 VECTRS IN MECHANICS 12 3 CNSTANT

More information

A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure 1

A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure 1 A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure shows the spring before and after the weight is added. Figure (a) Which distance gives the extension

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

AQA Physics P2 Topic 1. Motion

AQA Physics P2 Topic 1. Motion AQA Physics P2 Topic 1 Motion Distance / Time graphs Horizontal lines mean the object is stationary. Straight sloping lines mean the object is travelling at a constant speed. The steeper the slope, the

More information

8 th Science Force, Motion, and Energy

8 th Science Force, Motion, and Energy 8 th Science Force, Motion, and Energy #1 What is speed plus direction? Example: Geese fly about 64 km/hr when they migrate south. A: Force B: Weight C: Acceleration D: Velocity D. Velocity #2 A push or

More information

Momentum and Impulse

Momentum and Impulse analyse impulse, and momentum transfer, in collisions between objects moving along a straight line; Momentum The momentum (p) of a body is the product of its mass and velocity. P = mv. The unit is kilogram

More information

MOMENTUM, IMPULSE & MOMENTS

MOMENTUM, IMPULSE & MOMENTS the Further Mathematics network www.fmnetwork.org.uk V 07 1 3 REVISION SHEET MECHANICS 1 MOMENTUM, IMPULSE & MOMENTS The main ideas are AQA Momentum If an object of mass m has velocity v, then the momentum

More information

Forces are impossible to see! We can only see the effects! Essentially forces are pushes or pulls.

Forces are impossible to see! We can only see the effects! Essentially forces are pushes or pulls. Forces Workshop In this workshop we will cover the following: a. Names of Forces b. Water and Air resistance c. Upthrust d. Force arrows e. Balanced and unbalanced forces f. Effects of unbalanced forces

More information

Forces and Movement. Book pg 23 25, /09/2016 Syllabus , 1.24

Forces and Movement. Book pg 23 25, /09/2016 Syllabus , 1.24 Forces and Movement Book pg 23 25, 39-40 Syllabus 1.15-1.18, 1.24 Reflect What is the relationship between mass, force and acceleration? Learning Outcomes 1. Demonstrate an understanding of the effects

More information

P5 Momentum Collision Calculations

P5 Momentum Collision Calculations P5 Momentum Collision Calculations Question Practice Name: Class: Date: Time: 88 minutes Marks: 88 marks Comments: PHYSICS ONLY Page of 24 (a) How can the momentum of an object be calculated? (2) (b) In

More information

8. The graph below shows a beetle s movement along a plant stem.

8. The graph below shows a beetle s movement along a plant stem. Name: Block: Date: Introductory Physics: Midyear Review 1. Motion and Forces Central Concept: Newton s laws of motion and gravitation describe and predict the motion of most objects. 1.1 Compare and contrast

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

Isaac Newton was a British scientist whose accomplishments

Isaac Newton was a British scientist whose accomplishments E8 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

Section 3: Motion and Force. Preview Key Ideas Bellringer Fundamental Forces Balanced and Unbalanced Forces The Force of Friction Friction and Motion

Section 3: Motion and Force. Preview Key Ideas Bellringer Fundamental Forces Balanced and Unbalanced Forces The Force of Friction Friction and Motion : Motion and Force Preview Key Ideas Bellringer Fundamental Forces Balanced and Unbalanced Forces The Force of Friction Friction and Motion Key Ideas What do scientists identify as the fundamental forces

More information

(ii) no horizontal force acting (1) (hence) no (horizontal) acceleration (1) [or correct application of Newton s First law] 3

(ii) no horizontal force acting (1) (hence) no (horizontal) acceleration (1) [or correct application of Newton s First law] 3 1. (a) (i) P Q (ii) no horizontal force acting (1) (hence) no (horizontal) acceleration (1) [or correct application of Newton s First law] 3 (1) (b) (i) (use of v 2 = u 2 + 2as gives) 32 2 = (0) + 2 9.81

More information

Velocity/Distance/ Accceleration (inc Graphs)

Velocity/Distance/ Accceleration (inc Graphs) Velocity/Distance/ Accceleration (inc Graphs) Question Paper 2 Level Edexcel Subject Physics Exam Board GCSE(9-1) Topic Motions and Forces Sub Topic Velocity/Distance/Acceleration(inc Graphs) Booklet Question

More information

1. Earth and everything on it are affected by FORCES.

1. Earth and everything on it are affected by FORCES. FORCE AND MOTION 1. Earth and everything on it are affected by FORCES. 2. A force is a PUSH OR A PULL that causes an object to move, STOP, change direction, SPEED up, or slow down. It is measured in

More information

Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

IB Questionbank Physics NAME. IB Physics 2 HL Summer Packet

IB Questionbank Physics NAME. IB Physics 2 HL Summer Packet IB Questionbank Physics NAME IB Physics 2 HL Summer Packet Summer 2017 About 2 hours 77 marks Please complete this and hand it in on the first day of school. - Mr. Quinn 1. This question is about collisions.

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

Question Expected Answers Marks. energy, power and speed underlined. Scale diagram: correct triangle / parallelogram drawn on Fig. 1.

Question Expected Answers Marks. energy, power and speed underlined. Scale diagram: correct triangle / parallelogram drawn on Fig. 1. 1 (a)(i) (b) energy, power and speed underlined any error loses this mark vector has magnitude / size vector has a direction Scale diagram: correct triangle / parallelogram drawn on Fig. 1.1 scale stated

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Chapter 4 Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 3 Motion and Forces Newton s Laws of Motion The British scientist

More information

Chapter 2: FORCE and MOTION

Chapter 2: FORCE and MOTION Chapter 2: FORCE and MOTION Linear Motion Linear motion is the movement of an object along a straight line. Distance The distance traveled by an object is the total length that is traveled by that object.

More information

Summer holiday homework. Physics Year 9/10

Summer holiday homework. Physics Year 9/10 Summer holiday homework Physics Year 9/10 1 (a) The figure below shows two students investigating reaction time. Student A lets the ruler go. Student B closes her hand the moment she sees the ruler fall.

More information

Answer Acceptable answers Mark. Answer Acceptable answers Mark (1) Answer Acceptable answers Mark

Answer Acceptable answers Mark. Answer Acceptable answers Mark (1) Answer Acceptable answers Mark 1(a) D driving for a long time without taking a break 1(b)(i) substitution 1200 x 8(.0 ) Give full marks for correct answer with no working. 9600 (J) OR 9.6 x 10 3 (J) 9.6 x any other power of 10 = 1 mark

More information

Year 10 Physics - Forces and Energy - Test

Year 10 Physics - Forces and Energy - Test Year 10 Physics - Forces and Energy - Test Name Information: / 34 marks Use the following formulae where they are relevant to questions: v = d t a = v t v = u + at F = m a (also: Weight = m g) Work done

More information

National 5 Dynamics and Space Self Checks

National 5 Dynamics and Space Self Checks National 5 Dynamics and Space Self Checks 1.1 Kinematics Speed, Distance and Time 1. A runner completes a 200 m race in 25 s. What is his average speed? 2. An athlete takes 4 minutes 20 s to complete a

More information

Chapter: Newton s Laws of Motion

Chapter: Newton s Laws of Motion Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement

More information

General Physics I Spring Forces and Newton s Laws of Motion

General Physics I Spring Forces and Newton s Laws of Motion General Physics I Spring 2011 Forces and Newton s Laws of Motion 1 Forces and Interactions The central concept in understanding why things move is force. If a tractor pushes or pulls a trailer, the tractor

More information

Station 1 Block, spring scale

Station 1 Block, spring scale Station 1 Block, spring scale Place the wooden block on Surface A with the metal loop facing you. Hook the green force gauge to the metal loop on the block. With the force gauge held horizontal, pull it

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 1 / 51 1 In the absence of a net force, a moving object will slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 2 / 51 2 When a cat sleeps on a

More information

Ordinary Level Physics Long Questions: ACCELERATION, FORCE, MOMENTUM, ENERGY

Ordinary Level Physics Long Questions: ACCELERATION, FORCE, MOMENTUM, ENERGY Ordinary Level Physics Long Questions: ACCELERATION, FORCE, MOMENTUM, ENERGY Equations of motion (vuast) 2004 Question 6 [Ordinary Level] (i) Define velocity. (ii) Define acceleration. (iii)describe an

More information

Physical Science Forces and Motion Study Guide ** YOU MUST ALSO USE THE NOTES PROVIDED IN CLASS TO PREPARE FOR THE TEST **

Physical Science Forces and Motion Study Guide ** YOU MUST ALSO USE THE NOTES PROVIDED IN CLASS TO PREPARE FOR THE TEST ** Physical Science Forces and Motion Study Guide ** YOU MUST ALSO USE THE NOTES PROVIDED IN CLASS TO PREPARE FOR THE TEST ** 1. What is a force? A push or a pull on an object. Forces have size and direction.

More information

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. Force Test Review 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. 2. Define weight. The force of gravity on an object at the surface of

More information

Forces. Video Demos. Graphing HW: October 03, 2016

Forces. Video Demos. Graphing HW: October 03, 2016 Distance (m or km) : Create a story using the graph. Describe what will be happening at each point during the day (A-D). Example: Trump has a busy day. He is currently at Trump Tower in NY. A- Trump jumps

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises For all these exercises, assume that all strings are massless and all pulleys are both massless and frictionless. We will improve our model and learn how to account for the mass

More information

Unit 1 : Mechanics and Heat. Homework 1 - Average and Instantaneous Speed.

Unit 1 : Mechanics and Heat. Homework 1 - Average and Instantaneous Speed. Homework 1 - Average and Instantaneous Speed. 1 Two pupils wish to measure the average speeds of cars as they travel between Craighall Crescent and Craighall Avenue. State what apparatus they would use,

More information

FATHER AGNEL SCHOOL, VAISHALI CLASS IX QUESTION BANK PHYSICS

FATHER AGNEL SCHOOL, VAISHALI CLASS IX QUESTION BANK PHYSICS Topic : MOTION 1. Define acceleration and state its SI unit. For motion along a straight line, when do we consider the acceleration to be (i) positive (ii) negative? Give an example of a body in uniform

More information

NAME DATE CLASS. Motion and Speed. position 1. When something moves, it changes iitsopon. Motion. 2. Otoinm can be described as a change in position.

NAME DATE CLASS. Motion and Speed. position 1. When something moves, it changes iitsopon. Motion. 2. Otoinm can be described as a change in position. Use with Text Pages 64 71 Motion and Speed In each of the following statements, a term has been scrambled. Unscramble the term and write it on the line provided. position 1. When something moves, it changes

More information

The Laws of Motion. Before You Read. Science Journal

The Laws of Motion. Before You Read. Science Journal The Laws of Motion Before You Read Before you read the chapter, use the What I know column to list three things you know about motion. Then list three questions you have about motion in the What I want

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion 4-1 Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude of

More information

Fig Use Fig. 3.1 to state the physical properties of this metal. In your answer, you should use appropriate technical terms, spelled correctly.

Fig Use Fig. 3.1 to state the physical properties of this metal. In your answer, you should use appropriate technical terms, spelled correctly. 1 (a) Fig. 3.1 shows the stress against strain graph for a metal X up to its breaking point. stress X 0 0 Fig. 3.1 strain Use Fig. 3.1 to state the physical properties of this metal. In your answer, you

More information

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12 Observing Motion CHAPTERS 11 & 12 MOTION & FORCES Everything surrounding us is in motion, but it is relative to other object that remain in place. Motion is observed using a frame of reference. Motion

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Force, Friction & Gravity Notes

Force, Friction & Gravity Notes Force, Friction & Gravity Notes Key Terms to Know Speed: The distance traveled by an object within a certain amount of time. Speed = distance/time Velocity: Speed in a given direction Acceleration: The

More information

1. Type your first name. * 2. Type your last name. * 3. Choose the block I teach you for science. * Mark only one oval. Block 1.

1. Type your first name. * 2. Type your last name. * 3. Choose the block I teach you for science. * Mark only one oval. Block 1. Hippenmeyer Physics Assessment 1 Your email address (khippenmeyer@ncmcs.net) will be recorded when you submit this form. Not khippenmeyer? Sign out * Required 1. Type your first name. * 2. Type your last

More information

Name: Unit 4 Newton s 1 st & 3 rd Law

Name: Unit 4 Newton s 1 st & 3 rd Law Name: Period: Table #: Unit 4 Newton s 1 st & 3 rd Law 1 UNIT IV: Reading - Force Diagrams The analysis of a problem in dynamics usually involves the selection and analysis of the relevant forces acting

More information

The image below shows a student before and after a bungee jump.

The image below shows a student before and after a bungee jump. CHANGES IN ENERGY Q1. The image below shows a student before and after a bungee jump. The bungee cord has an unstretched length of 20 m. (a) For safety reasons, it is important that the bungee cord used

More information

13 + Entrance Examination

13 + Entrance Examination 13 + Entrance Examination Paper 1 Physics - Level 2 Total marks: 60 Time allowed: 40 minutes Calculators may be used Full name. 1. Circle the correct answer for each of the following questions: a. On Earth

More information

(a) (i) The toy has a mass of 0.15 kg and moves forward with a velocity of 0.08 m/s. How is the momentum of the toy calculated?

(a) (i) The toy has a mass of 0.15 kg and moves forward with a velocity of 0.08 m/s. How is the momentum of the toy calculated? MOMENTUM Q1. The diagram shows an air-driven toy. When the electric motor is switched on the fan rotates. The fan pushes air backwards making the toy move forwards. The toy has a mass of 0.15 kg and moves

More information

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight. 1 1 wooden block of mass 0.60 kg is on a rough horizontal surface. force of 12 N is applied to the block and it accelerates at 4.0 m s 2. wooden block 4.0 m s 2 12 N hat is the magnitude of the frictional

More information

Thursday 12 June 2014 Afternoon

Thursday 12 June 2014 Afternoon Thursday June 4 Afternoon AS GCE MATHEMATICS (MEI) 476/ Mechanics QUESTION PAPER * 3 3 4 7 4 7 9 8 * Candidates answer on the Printed Answer Book. OCR supplied materials: Printed Answer Book 476/ MEI Examination

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Overview The Laws of Motion

Overview The Laws of Motion Directed Reading for Content Mastery Overview The Laws of Motion Directions: Fill in the blanks using the terms listed below. force inertia momentum sliding conservation of momentum gravitational ma mv

More information

Chapter Introduction. Motion. Motion. Chapter Wrap-Up

Chapter Introduction. Motion. Motion. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Describing Motion Graphing Motion Forces Chapter Wrap-Up What is the relationship between motion and forces? What do you think? Before you begin, decide

More information

Four naturally occuring forces

Four naturally occuring forces Forces System vs Environment: system the object the force is applied to environment the world around the object that exerts the force Type Forces: Contact is applied by touching Long range exerted without

More information

Chapter 2. Force and Newton s Laws

Chapter 2. Force and Newton s Laws Chapter 2 Force and Newton s Laws 2 1 Newton s First Law Force Force A push or pull that one body exerts on another body. Examples : 2 Categories of Forces Forces Balanced Forces Unbalanced Forces Balanced

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

TEK 8.6C: Newton s Laws

TEK 8.6C: Newton s Laws Name: Teacher: Pd. Date: TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction such as in vehicle

More information

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge HSC PHYSICS ONLINE DYNAMICS TYPES O ORCES Electrostatic force (force mediated by a field - long range: action at a distance) the attractive or repulsion between two stationary charged objects. AB A B BA

More information