Probabilistic Representation and Approximation for Coupled Systems of Variational Inequalities

Size: px
Start display at page:

Download "Probabilistic Representation and Approximation for Coupled Systems of Variational Inequalities"

Transcription

1 Probabiliic Repreenaion and Approximaion for Coupled Syem of Variaional nequaliie Romuald Elie, dri Kharroubi To cie hi verion: Romuald Elie, dri Kharroubi. Probabiliic Repreenaion and Approximaion for Coupled Syem of Variaional nequaliie. Saiic and Probabiliy Leer, Elevier, 2010, 80 (17-18), pp <hal v2> HAL d: hal hp://hal.archive-ouvere.fr/hal v2 Submied on 4 Mar 2011 HAL i a muli-diciplinary open acce archive for he depoi and dieminaion of cienific reearch documen, wheher hey are publihed or no. The documen may come from eaching and reearch iniuion in France or abroad, or from public or privae reearch cener. L archive ouvere pluridiciplinaire HAL, e deinée au dépô e à la diffuion de documen cienifique de niveau recherche, publié ou non, émanan de éabliemen d eneignemen e de recherche françai ou éranger, de laboraoire public ou privé.

2 Probabiliic Repreenaion and Approximaion for Coupled Syem of Variaional nequaliie Romuald ELE dri KHARROUB CEREMADE, CNRS, UMR 7534, LPMA, CNRS, UMR 7599, Univerié Pari-Dauphine, Univerié Pari 7, and CREST and CREST May 2010 Fir verion: Sepember 2009 Abrac Our udy i dedicaed o he probabiliic repreenaion and numerical approximaion of oluion of coupled yem of variaional inequaliie. We inerpre he unique vicoiy oluion of a coupled yem of variaional inequaliie a he oluion of a one-dimenional conrained BSDE wih jump. Thi new repreenaion allow for he inroducion of a naural probabiliic numerical cheme for he reoluion of hee yem. Key word: BSDE wih jump, variaional inequaliie, vicoiy oluion, Mone Carlo imulaion, wiching problem. MSC Claificaion (2000): 93E20, 60H10, 60H30, 35K85, 49L25. 1 nroducion Pardoux and Peng (1992) developed he heory of backward ochaic differenial equaion, providing a probabiliic repreenaion of oluion of quai-linear parabolic PDE. Coupling he diffuion proce wih a pure jump proce, Pardoux e al. (1997) exend hi repreenaion o yem of coupled emilinear PDE wih differen linear differenial operaor on each line. nroducing rericion on he domain of he backward proce, El Karoui e al. (1997) cover he cla of variaional inequaliie. Conraining inead he jump par of he oluion, Kharroubi e al. (2010) conider quailinear variaional inequaliie. The focu of hi noe i o exend hi ype of Feynman-Kac repreenaion o he more general cla of coupled yem of quailinear variaional inequaliie ariing, for example, in opimal impule or wiching problem. We will ypically conider yem of PDE of he form v i Li v i f(i,.,(v k ) 1 k m,σ(i,.) D x v i ) min 1 j m h(i,j,.,v i,v j,σ(i,.) D x v i ) = 0, (1.1) on 0,T) R d, wih erminal condiion v i (T,.) = g(i,.) on R d, (1.2) Acknowledgemen. We would like o hank boh anonymou referee for ueful commen. 1

3 where, for any i := {1,...,m}, L i i a linear econd order local operaor L i v i (,x) := b(i,x) D x v i (,x)+ 1 2 r(σσ (i,x)d 2 xv i (,x)), (1.3) and b, σ, f, h and g are Lipchiz coninuou funcion. A oberved by Bouchard (2009), hi PDE appear in he reoluion of opimal wiching problem a well a ochaic arge problem wih jump. The major difficuly arie from he coupling beween all he componen (v i ) i m of he oluion and he ue of differen linear operaor a each line. When m i large, he numerical reoluion of (1.1)-(1.2) by claical PDE approximaion mehod i very ricky and highly compuaional. We inend o provide here a probabiliic repreenaion o (1.1)-(1.2) leading o an efficien probabiliic numerical cheme. When b and σ are independen of he regime i and he conrain funcion are of he form h : (i,j,.,y i,y j,.) y i y j c i,j, Hu and Tang (2007) inerpre he vecor oluion o (1.1)-(1.2) a a muli-dimenional BSDE wih erminal condiion and oblique reflecion. The challenging derivaion of a convergen numerical approximaion for hi ype of BSDE i of grea inere and i currenly under udy. The approach of hi paper relie inead on a recen reinerpreaion of obliquely muli-dimenional refleced BSDE in erm of one-dimenional conrained BSDE wih jump, a inroduced in Elie and Kharroubi (2009). The idea i o conider, a in Pardoux e al. (1997), a random regime driven by a pure jump ranmuaion proce, allowing o rerieve imulaneouly ome informaion concerning all he componen of he oluion. Given ad-dimenional Brownian moion W andanindependenpoion meaureµon R +, we conider, for any iniial condiion e := (,i,x) 0,T R d =: E, he unique R d -valued oluion (,X e ) e of he SDE: { = i+ (j r )µ(dr,dj) X = x+ b( r,x r )dr + σ(, T. (1.4) r,x r ) dw r Formally, given a mooh oluion (v i ) i o (1.1)-(1.2), he proce Y := v e(.,x ẹ ) aifie Y = g( e T,X e T)+ T f( e,x e,y +U,Z )d+k T K T Z dw T U (j)µ(d,dj) on 0,T, where we denoe Z := σ ( e,x e )D x v e (,X e ), U (.) := v. (,X e ) v e (,X e ), and K := 0 v u e L e u v e u f(u e,.,(v k) 1 k m,σ (u e,.)d xv e u )(u,xu e )du. Since v aifie (1.1), we expec he following conrain o be aified: (1.5) h( e,j,xe,y,y +U (j),z ) 0, j, T. (1.6) The BSDE (1.5) combined wih conrain (1.6) fall ino he cla of conrained BSDE wih jump and admi a unique minimal oluion under mild condiion on he coefficien. We reinerpre he Y-componen of he oluion a he unique vicoiy oluion o he coupled yem of variaional inequaliie (1.1)-(1.2). Thi new Feynman-Kac repreenaion i meaningful o he BSDE lieraure ince: 2

4 exend he reul of Kharroubi e al. (2010) o more general conrain and driver funcion depending on U. Thi allow for a rong coupling beween he dynamic of he value funcion componen and give a minimaliy condiion in ome paricular cae. generelize he concluion of Peng and Xu (2007) derived in he no-jump cae. offer a PDE repreenaion o refleced BSDE wih inerconneced obacle inroduced in Hamadène and Zhang (2008) ince hey relae direcly o conrained BDSE wih jump, ee Elie and Kharroubi (2009). generalize he ue of diffuion-ranmuaion proce in Pardoux e al. (1997) o yem of variaional inequaliie. Thi repreenaion lead o a naural probabiliic algorihm for he reoluion of (1.1)-(1.2). The conrained BSDE wih jump i replaced by a penalized BSDE wih jump, which i approximaed by he dicree-ime cheme udied in Bouchard and Elie (2008) and Gobe e al. (2006).Thi lead o a convergen numerical cheme baed on ime dicreizaion, Mone Carlo imulaion and projecion. The re of he paper i organized a follow. n Secion 2, we dicu exience, uniquene and penalizaion, and give a minimaliy condiion for conrained BSDE wih jump (1.5)-(1.6). Secion 3 preen he vicoiy properie and he numerical approximaion i deailed in he la ecion. Noaion. Throughou hi paper, we are given a finie horizon T and a probabiliy pace (Ω,G,P) endowed wih a d-dimenional andard Brownian moion W = (W ) 0, and an independen Poion random meaure µ on R +, wih ineniy meaure λ(di)d for ome poiive finie meaure λ on := {1,...,m}. We denoe E := 0,T R d. For a mooh funcion ϕ : 0,T R d R, ϕ, D xϕ and Dx 2 ϕ denoe rep. he derivaive of ϕ w.r.., he gradien and he Heian marix of ϕ w.r.. x. The dependence in ω Ω i omied when i i obviou. 2 Conrained Forward Backward SDE wih jump We preen in hi ecion he conrained forward backward SDE wih jump and recall he exience and uniquene reul of Elie and Kharroubi (2009). We dicu he correpondence beween he value funcion aociaed o Y and he U componen of he oluion. Under addiional regulariy of he value funcion, we provide a Skorohod ype minimaliy condiion for he conidered BSDE. 2.1 Exience and uniquene of a minimal oluion via penalizaion A dicued above, he forward proce i a ranmuaion-diffuion proce compoed of a pure jump proce and a diffuion wihou jump X whoe dynamic depend on. For any iniial condiion e := (,i,x) E, ( e,x e ) i he unique oluion o (1.4) aring from (i,x) a ime. Foranyiniialcondiione E, aoluionoheconrainedbsdewihjumpiaquadruple (Y e,z e,u e,k e ) S 2 L 2 W L2 µ A2 aifying (1.5)-(1.6), where S 2 i he e of real valued G-adaped càdlàg procee Y on 0,T.. Y S 2 := E up 0 r T Y r 21 2 <, 3

5 ( L p )1 W i he e of progreive Rd -valued procee Z.. Z L p := E T W 0 Z r p p dr <, p 1, L p µ i he e of P σ() meaurable map U : Ω 0,T R.. U L 2 µ := E T 0 U (j) 2 λ(dj)d 1 p <, p 1, A 2 i he cloed ube of S 2 compoed by nondecreaing procee K wih K 0 = 0. Furhermore, (Y,Z,U,K) i referred o a he minimal oluion o (1.5)-(1.6) whenever we have Y Y a.., for any oher oluion (Y,Z,U,K ). n order o enure exience and uniquene of a minimal oluion o (1.5)-(1.6) for any iniial condiion, we make he following aumpion. (H0) The following hold: (i) There exi a conan L.. f(i,x,(u j ),z) f(i,x,(u j ),z ) L (z,(u j ) ) (z,(u j ) ), h(i,j,x,y,u j,z,j) h(i,j,x,y,u j,z ) L (y,z,u j ) (y,z,u j ), for all (x,i,j,y,z,u,y,z,u ) R d 2 R R d R 2, and f(i,x,(u j ),z) + h(i,j,x,y,u j,z) L ( 1+ (y,z,(u j ) ) ), for all (x,i,j,y,z,(u i ) i ) R d 2 R R d R. (ii) The funcion h(i,j,x,y,.,z) i non-increaing for all (i,x,y,z,j) R d R R d. (iii) There exi wo conan C 1 C 2 > 1 and a meaurable map γ : R d R R d R 2 C 2,C 1 uch ha, for any (i,x,y,z,u,u ) R d R R d R 2, f(i,x,y +u,z) f(i,x,y +u,z ) (u j u j )γ(i,x,y,z,u,u,j)λ(dj). (H1) For any e = (,i,x) E, here exi a quadruple (Ỹ e, Z e,ũe, K e ) S 2 L 2 W L2 µ A 2 oluion o (1.5)-(1.6), wih Ỹ e = ṽ e (,X), e for ome deerminiic funcion ṽ aifying ṽ i (,x) C(1+ x ) on E. We provide in Remark 3.2 a more racable ufficien condiion under which (H1) hold. The conrucion of he minimal oluion i done by penalizaion. For any iniial condiion e E and n N, we inroduce (Y e,n,z e,n,u e,n ) oluion o he following penalized BSDE T T T Y = g(t e,xe T )+ f( e,xe,y +U,Z )d U (j)µ(d,dj) Z dw T + n h(,j,x e,y e,y +U (j),z ) λ(dj)d, 0 T. (2.1) Under (H0), we ge from Barle e al. (1997) exience and uniquene of a oluion of (2.1). We inroduce K e,n :=. 0 h(e,j,xe e,n e,n,y,y +Ue,n (j),z e,n ) λ(dj)d, for any (e,n) E N. 4

6 Theorem 2.1. Suppoe (H0)-(H1) hold. For any e := (, i, x) E, here exi a unique quadruple (Y e,z e,u e,k e ) S 2 L 2 W L2 µ A2 minimal oluion o (1.5)-(1.6) wih K e predicable, and v i : (,x) Y,i,x define a deerminiic map from E ino R. Moreover (Y e,z e,u e ) i he limi of he (Y e,n,z e,n,u e,n ) n N in he following ene Y e,n Y e L 2 W + Z e,n Z e L p W + U e,n U e L p µ 0, n, 1 p < 2. Proof. Thi reul i a direc applicaion of Theorem 2.1 in Elie and Kharroubi (2009). Under addiional regulariy on Y e, we can improve he previou convergence up o p = 2. Propoiion 2.1. f (H0)-(H1) hold, (Y e,n ) n N converge increaingly o Y e, for any e E. Addiionally, if he proce Y e i quai-lef coninuou in ime, we have Y e Y e,n S 2 + Ze Z e,n L 2 + U e U e,n L + K e K e,n S 2 0, e E. (2.2) W 2 µ n Proof. Fix e E and oberve from Propoiion 2.1 in Elie and Kharroubi (2009) ha Y e,n converge increaingly o Y e. Since µ i a Poion meaure, he proce Y e,n i quai-lef coninuou. f Y e ha he ame regulariy, he predicable projecion of Y e and Y e,n are imply given by (Y e ) and (Y e,n ). Thi lead o Y e = lim n Y e,n. We deduce from he weak verion of Dini heorem, ee Dellacherie and Meyer (1980) p. 202, ha Y e,n converge uniformly o Y e on 0,T, and he dominaed convergence heorem give u Y e Y e,n S 2 0. Combined wih andard eimae of he form n Z e,n+p Z e,n 2 L 2 W + U e,n+p U e,n 2 L 2 µ + K e,n+p K e,n 2 S 2 C Y e,n+p Y e,n 2 S 2, hi implie ha he equence (Z n ), (U n ) and (K n ) are Cauchy and hence convergen. Remark 2.1. Under he addiional Aumpion (H2) below, (v i ) i i inerpreed a he unique vicoiy oluion o (1.1)-(1.2), ee Theorem 3.2. n hi cae, (v i ) i i coninuou, Y = v (,X ) i quai-lef coninuou and Propoiion 2.1 hold. We denoe by (v n ) n N he equence of deerminiic funcion defined by v n : e E Y e,n and we hall ue indifferenly he noaion v n (,i,x) or vi n (,x), for (,i,x) E. Under (H0)- (H1), we know from Propoiion 2.1 ha v i he poinwie limi of (v n ) n N. 2.2 Repreenaion of U and he minimaliy condiion Propoiion 2.2. Le (H0)-(H1) hold. For any e E and opping ime θ valued in,t, we have Yθ e = v θ e(θ,xe θ ), and he proce U repreen a U e (j) = v j (,X e ) v e (,X e ), j, T. (2.3) Proof. According o Propoiion 2.1, we imply need o provide imilar repreenaion for he penalized BSDE (2.1). Fix e E. For any opping ime θ valued in,t, uniquene of oluion of (2.1) and hemarkov properyof ( e,x e ) direcly give oy e,n θ = v n θ(θ,x e e θ ). Denoing Ũ e,n (j) := vj n(,xe ) v n e (,Xe ), for j and 0 T, we deduce from (2.1) ha 5

7 Ũ e,n (j)µ(d,dj) = Y e,n Y e,n = Ũ e,n (j)µ(d,dj), 0 T. T Therefore E 0 (Ue,n (j) U e,n (j)) 2 λ(dj)d = 0 and he proof i complee. Under an exra regulariy aumpion on he funcion v aified under Aumpion (H2) below, he previou repreenaion lead o a Skorohod ype minimaliy condiion for (1.5)-(1.6). Corollary 2.1. Le (H0)-(H1) hold. Suppoe (v i ) i i coninuou and he funcion h doe no depend on z. Then, for any e E, he minimal oluion (Y e,z e,u e,k e ) aifie T h( e,j,xe,y e,y e +Ue dk (j)) e = 0. (2.4) min Proof. Fixe E. Since(v i ) i iconinuou, heprocey e inherihequai-lefconinuiy of ( e,x e ). Combining (2.3) and Propoiion 2.1 lead o max U e (j) U e,n (j) 0. S 2 n We deduce from (2.2) and Lemma 5.8 in Gegoux-Pei and Pardoux (1995), which alo hold for càglàd funcion, ha T min h( e,j,xe Since T min e,n e,n,y,y +Ue,n (j)) h( e,j,x e,y e,n dk e,n T min n h( e,j,xe,y e,y e +Ue (j)) dk e. e,n,y +Ue,n (j)) dk e,n 0 and (1.6) hold, we ge (2.4). 3 Link wih coupled yem of variaional inequaliie n hi ecion, we inerpre he minimal oluion of (1.5)-(1.6) a he unique vicoiy oluion of he PDE (1.1)-(1.2), hu generalizing he repreenaion derived in Kharroubi e al. (2010), Pardoux e al. (1997) and Peng and Xu (2007). 3.1 Vicoiy properie of he penalized BSDE The penalized parabolic inegral parial differenial equaion (PDE) aociaed o (2.1) i naurally defined for each n N by ϕ i Li ϕ i f(i,.,(ϕ j ),σ ( (i,.)d x ϕ i ) n h i,j,.,ϕi,ϕ j,σi D ) λ(dj) xϕ i = 0 (3.1) on 0,T) R d, and v i (T,.) = g(i,.) on R d, where L i he m-dimenional Dynkin operaor aociaed o X, defined in (1.3). Since he penalized BSDE fall ino he cla of BSDE wih jump udied by Pardoux e al. (1997), we deduce he following Feynman-Kac repreenaion reul. Propoiion 3.1. Under (H0)-(H1), he funcion (v n ) n are coninuou vicoiy oluion of (3.1). ndeed, for any n N, v n (T,.) = g and, for any (i,,x) 0,T) R d and ϕ C 1,2 (0,T R d ) uch ha (,x) i a global minimum (rep. max.imum) of (vi n ϕ), we have ϕ Li ϕ f(i,.,(vj n ),σ (i,.)d x ϕ) n h(i,j,.,vi n,vj,σ n (i,.)d x ϕ) λ(dj) (,x) (rep. ) 0. 6

8 Proof. Fix n N. The coninuiy of v n follow from imilar argumen a in he proof of Lemma 2.1 in Pardoux e al. (1997). According o he repreenaion deailed in he proof of Propoiion 2.2, he vicoiy propery of v n fi in he framework of Theorem 4.1 in Pardoux e al. (1997), up o he comparion heorem for BSDE, which i replaced by Theorem 2.5 in Royer (2006). 3.2 Vicoiy properie of he conrained BSDE wih jump Formally, paing o he limi in (3.1) when n goe o infiniy, we expec v o be a oluion of (1.1) on 0,T) R d. A for he boundary condiion, we canno expec o have v(t,.) = g, and we hall conider he relaxed boundary condiion given by ( min v i g(i,.), min h i,j,.,v i,v j,σ (i,.)d x v i )(T,x) = 0 on R d. (3.2) Remark 3.1. n he paricular cae where he driver funcion f i independen of (y,z,u) and he conrain funcion i given by h : (i,j,x,y,y+v,z) c i,j v wih c a given co funcion, we rerieve he yem of variaional inequaliie aociaed o wiching problem min min v i v j c i,j v i Li v i f(i,.), min = 0, on 0,T) R d, (3.3) v i g(i,.), min vi v j c i,j (T,.) = 0, on R d. (3.4) Thu, if (3.4) aifie a comparion heorem, v(t,.) i he malle funcion greaer han g aifying (3.4). n paricular, we rerieve he erminal condiion v(t,.) = g propoed by Hu and Tang (2007) when he erminal condiion g aifie he co conrain. n order o define vicoiy oluion of (1.1)-(3.2), we inroduce, for any locally bounded vecor funcion (u i ) i on 0,T R d i lower emiconinuou and upper emiconinuou (lc and uc for hor) envelope u and u defined for (,x) 0,T R d by u (,x) = liminf (,x ) (,x), <T u(,x ), and u (,x) = limup u(,x ). (,x ) (,x), <T Definiion 3.1. A vecor funcion (u i ) i, lc (rep. uc) on 0,T) R d, i called a vicoiy uperoluion (rep. uboluion) o (1.1)-(3.2) if, for each (i,,x) 0,T R d and ϕ C 1,2 (0,T R d ) uch ha (,x) i a global minimum (rep. maximum) of (u i ϕ), we have, if < T, min ϕ if = T, min h(i,j,.,u i,u j,σ (i,.)d x ϕ) Li ϕ f(i,.,(u j ),σ (i,.)d x ϕ),min u i g(i,.), min h(i,j,.,u i,u j,σ (i,.)d x ϕ) (T,x) ( rep. ) 0. A locally bounded vecor funcion (u i ) i on 0,T) R d i called a vicoiy oluion o (1.1)-(3.2) if u and u are repecively vicoiy uperoluion and uboluion o (1.1)-(3.2). Theorem 3.1. Under (H0)-(H1), he funcion v i a (diconinuou) vicoiy oluion o (1.1)-(3.2). (,x) (rep. )0, 7

9 Proof. Fir, following he proof of Lemma 3.3 and Remark 3.2 in Kharroubi e al. (2010), andard eimae on he penalized BSDE (2.1) lead o E up 0,T Y e,n 2 ( C 1+E g(t,x e T) e 2 + T X e 2 d+ up ṽ e (,X) e 2), e E. 0,T Combining Faou lemma wih andard eimae on X and linear growh condiion on g and ṽ, ee (H1), wege ha up 0,T v i (,x) 2 C(1+ x 2 ) wihc > 0. Thu, v i locally bounded. We oberve ha he vicoiy propery of v in he inerior of he domain i baed on he ame argumen a he one preened in he proof of Theorem 4.1 of Kharroubi e al. (2010). The only difference come from he more general form of he coefficien f and h. Thi i no a relevan iue here ince hey are coninuou. n order o alleviae he preenaion of he paper, we chooe o omi i here and only prove he vicoiy propery (3.2) on he mauriy boundary. (i) Le u fir conider he uperoluion propery of v o (3.2). Le (i,x 0 ) R d and ϕ C 1,2 (0,T R d ) uch ha (T,x 0 ) i a null global minimum of (v i ϕ). Paing o he limi of he vicoiy properie of he penalized BSDE, we ge min h(i,j,x,v i,v j,σ (i,.)d x ϕ)(t,x 0 ) 0. Furhermore v n (T,.) = g, n N, o ha he monoonic propery of he equence of coninuou funcion (v n ) n N give v (T,.) g. Therefore v i a vicoiy uperoluion of (3.2). (ii) We now urn o he uboluion propery of v. We argue by conradicion and uppoe he exience of (i,x 0 ) R d and ϕ C 1,2 (0,T R d ) uch ha 0 = (vi ϕ)(t,x 0) = max (v 0,T R d i ϕ), (3.5) and min ϕ g(i,.), min h(i,j,.,ϕ,vj,σ (i,.)d x ϕ) (T,x 0 ) =: 2ε > 0. Theregulariy ofv, ϕ and D x ϕ a well a he monoonic propery of h lead o he exience of an open neighborhood O of (T,x 0 ) 0,T R d, and Υ,r > 0 uch ha for all (,x,η,η ) O ( Υ,Υ) B(0,r), we ge min ϕ η g(i,.), min h(i,j,.,ϕ η,v j,σ (i,.)d x ϕ+η ) (,x) ε. (3.6) Weinroduceaequence( k,x k ) k valuedin0,t) R d aifying( k,x k ) (T,x 0 )andv i ( k,x k ) vi (T,x 0). Le u chooe δ > 0 uch ha k,t B(x k,δ) O for k large enough, and inroduce he modified e funcion ϕ k given by ϕ k (,x) := ϕ(,x)+ (ζ x x k 2 ( ) x xk δ 2 +C k φ + ) T, δ where 0 < ζ < Υ δr, φ i a regular funcion in C 2 (R d ) uch ha φ B(0,1) 0, φ B(0,1) c > 0, φ(x) lim x 1+ x =, and C k > 0 i a conan o be deermined laer. Since (v ϕ k )(,x) (v ϕ)(,x) ζ x x k 2 for (,x) δ 2 k,t R d, we deduce from (3.5) ha (v ϕ k )(,x) ζ, for (,x) k,t B(x k,δ). Chooing C k large enough, he paricular form of he funcion φ lead o (v i ϕk )(,x) ζ 2, for (,x) B(x k,δ) c k,t. (3.7) 8

10 Thank o he T erm in he modified e funcion ϕ k, we deduce ha ϕk ( Li ϕ k f i,.,(vj +ϕk η vi 1 j=i),σ (i,.)d x ϕ k) (,x) 0, (3.8) for any (,x,η) k,t) B(x k,δ) ( Υ+ζ,Υ) andk large enough. We now chooe η < Υ ζ 2 ε and inroduce he opping ime θ k := inf { k ; X e k / B(x k,δ) or e k e k } T, where e k := ( k,i,x k ). Le u finally conider he proce (Y k,z k,u k,k k ) given on k,θ k by Y k := ϕ k (,X e k 1 ) η k,θ k ) +v e (θ k k,x e k θ k )1 =θk, Z k := σ ( e k,xe k )D xϕ k (,X e k ( ) ), U k := vj (,Xe k ) ϕk (,X e k 1 ) η e, j k K k := ( ϕ k e k k +L r ϕ )+f( k e k r,.,(vj +ϕk η v e k1 e ) r j= k,z k r r) (r,x e k r )dr k (ϕk η v j )(r,xe k r )µ(dr,dj) + ϕ k η v e k θ k (θ k,x e k θ k )1 =θk. One eaily check from (3.6)-(3.7)-(3.8) ha (Y k,z k,u k,k k ) i oluion o θk θk θk Y = v e k (θ k,x e k θ θ k )+ f( e k r,x e k r,y r +U r,z r )dr Z r dw r U r (j)µ(dr,dj) +K θk K r k on k,θ k, ogeher wih he conrain h( e k r,j,xe k r,y r,y r +U r (j),z r ) 0 a.e., j. Since (Y e k,z e k,u e k,k e k) i a minimal oluion o hi conrained BSDE wih jump, we deduce ϕ k ( k,x k ) η = ϕ( k,x k )+ T k η v i ( k,x k ), for all k large enough. Leing k go o infiniy, hi conradic (3.5) and conclude he proof. Remark 3.2. The main drawback of hi repreenaion i he neceiy of Aumpion (H1). Following imilar argumen a in he proof of Propoiion 6.3 in Kharroubi e al. (2010), oberve ha i i aified whenever here exi a Lipchiz funcion (w i ) i C 2 (R d ) uperoluion o (3.2) aifying a linear growh condiion, and here exi a conan C > 0 uch ha L i w i +f(.,(w j ),σ i Dw i) C on R d, i. 3.3 A comparion argumen n hi ecion, we provide ufficien condiion characerizing he value funcion v a he unique vicoiy oluion of (1.1)-(3.2). Thi give in paricular he coninuiy of v, leading o he rong convergence by penalizaion and he minimaliy condiion, preened in Secion 2. The proof relie a uual on a comparion argumen, which hold under he following addiional aumpion. (H2) The following hold: (i) For any i, f(i,.) i convex in ((y j ),z) and increaing in u i. (ii) For any i,j, h(i,j,.) i concave in (y i,y j,z) and decreaing in y i. (iii) There exi a nonnegaive vecor funcion (Λ i ) i C 2 (R d ) and a poiive conan ρ Λ uch ha, for all i, Λ i g i, lim i (x) x 1+ x = and we have : L i Λ i +f(i,.,(λ j ),σ (i,.)d x Λ i ) ρλ i and min h(i,j,.,λ i,λ j,σ (i,.)d x Λ i ) > 0. 9

11 An example where (H2) hold i given for he cae of opimal wiching in Bouchard (2009). Remark 3.3. A in Bouchard (2009), (iii) allow u o conruc a nice ric uperoluion of (1.1) allowing o conrol oluion of (1.1)-(3.2) by convex perurbaion. Following he approach of Kharroubi e al. (2010), he general form of f and h force u o add he exra convexiy aumpion (i) and (ii). Theorem 3.2. Le (H0)-(H1)-(H2) hold. Then, for any U lc (rep. V uc) vicoiy uperoluion (rep. uboluion) of (1.1)-(3.2) aifying U + V (,x) C(1+ x ) on 0,T R d, we have U i V i on 0,T R d, i. n paricular, v i coninuou and i i he unique vicoiy oluion of (1.1)-(3.2) aifying a linear growh condiion. We omi he proof of hi comparion heorem which i a naural exenion of Theorem 4.1 in Kharroubi e al. (2010). Following he argumen of he proof of Propoiion 3.3 in Peng and Xu (2007), v can ill be inerpreed a he minimal vicoiy oluion of (1.1)-(3.2) in he cla of funcion wih linear growh, whenever a comparion heorem for he PDE (3.1) hold. 4 Numerical iue The numerical reoluion of yem of variaional inequaliie of he form(1.1)-(1.2) uually relie on he ue of ieraed free boundary. We fir olve he yem wihou boundary condiion and conider recurively he yem conrained by he boundary condiion coming from he previou ieraion. n a wiching problem, we conrain he oluion aociaed o n + 1 poible wiche by he obacle buil from he oluion where only n wiche are allowed. Such a numerical approach i compuaionally demanding. We preen here a naural convergen algorihm baed on he approximaion of he oluion o he correponding conrained BSDE wih jump (1.5)- (1.6). We combine a penalizaion procedure wih he dicree-ime cheme udied by Bouchard and Elie (2008) and he aiical eimaion projecion preened in Gobe e al. (2006). Thank o he previou Feynman-Kac repreenaion, hi give rie o a convergen probabiliic algorihm olving coupled yem of variaional inequaliie. We fix an iniial condiion e E and omi i in he expreion for eae of preenaion. Suppoe ha (H0)-(H1)-(H2) hold. The algorihm i divided in hree ep. Sep 1. Approximaion by penalizaion. We fir approach he conrained BSDE wih jump (1.5)-(1.6) by i penalized verion (2.1) characerized by a driver f n := f nh a in Secion 2.1. We deduce from Propoiion 2.1 ha he penalizaion error converge o 0 a n goe o infiniy, ee (2.2). Sep 2. Time dicreizaion. Oberve ha he pure jump proce can be imulaed perfecly and denoe by (τ l ) l i jump ime on 0,T. We inroduce he Euler ime cheme approximaion X h of he forward proce X defined on he concaenaion ( l ) l of he regular ime grid { k := kh, k = 1,...,T/h} wih he jump (τ l ) of : X h 0 = X 0 and X h l+1 := X h l +b( l,x h l )( l+1 l )+σ( l,x h l )W l+1 W l. We deduce an approximaion Y n,h T of YT n a mauriy given by g T (XT h ). The penalized BSDE (2.1) can now be dicreized by an exenion of he cheme expoed in Bouchard and Elie (2008) 10

12 An approximaion of Y n a ime 0 i compued recurively following he backward cheme for k = T/h 1,,0 : Z n,h k := 1 h E k Y n,h k+1 (W k+1 W k ) U n,h k (i) := 1 h E k Y n,h µ(( k, k+1 {i}) k+1 λ(i), i Y n,h k := E k Y n,h k+1 + (4.1) k+1 k f n (,X h k,y n,h k+1,z n,h k,u n,h k )d where E k denoe he condiional expecaion wih repec o G k. Following he argumen of Secion 2.5 in Bouchard and Elie (2008) and idenifying (Y n,h,z n,h,u n,h ) a a proce conan on each inerval ( k, k+1, we verify he convergence of hi dicree-ime approximaion : Y n Y n,h S 2 + Zn Z n,h L 2 W + U n U n,h L 2 µ 0, n N. (4.2) h Sep 3. Approximaion of he condiional expecaion. The la ep coni in eimaing he condiional expecaion operaor E k ariing in (4.1). We adop here he approach of Longaff-Schwarz generalized in Gobe e al. (2006) relying on lea quare regreion. FixN NandimulaeN independencopieofhebrownianincremen(w j k+1 W j k ) 0 k T/h and he poion meaure ( µ j (( k, k+1 ) 0 k T/h. For each imulaion j N, define j N and a he rajecorie of and X h. By inducion, one can eaily verify he Markov propery of he proce (Y n,h,z n,h,u n,h ) defined in (4.1): X h,n j Y n,h i = c n,h k ( i,x h i ), Z n,h i = a n,h k ( i,x h i ), U n,h i = b n,h k ( i,x h i ), for ome deerminiic funcion (a n,h k,bn,h k,cn,h k ) k n. The idea i o approximae hee funcion uing Ordinary Lea Square (OLS) eimaor. Given L N, we inroduce a collecion of bai funcion (a L l,bl l,cl l ) 1 l L of R R d R d. For each rajecory j N, define he aociaed := g N (X h,n k,n j, n ). Now we define recurively (Z n,h,l,n,u n,h,l,n j, k ), erminal value given by Y n,h,l,n j, n j, k backward in ime for k = T/h 1,,0, by compuing he OLS approximaion a follow: 1 (ˆα 1,, ˆα L ) := arg min α 1,,α L N (ˆβ,, ˆβ 1 L )(i) := arg min β 1,,β L N N 1 h Y n,h,l,n W j k+1 W j k j=1 N 1 h Y n,h,l,n j=1 for i, leading o he approximaion Z n,h,l,n j, k := L l=1 k+1 j, k+1 µ j (( k, k+1 {i}) λ(i) ˆα l a L l (N j, k,x h,n j, k ) and U n,h,l,n j, k (i) := remain o inroduce (ˆγ 1,,ˆγ L ) he minimizer of he mean quare error 1 N N k+1 Y n,h,l,n j, k+1 + j=1 k f n ( N j,,x h,n j, k,y n,h,l,n k+1,z n,h,l,n k L l=1 L α l a L l (N j, k,x h,n 2, l=1 l=1,u n,h,l,n k )d j, k ) L β l b L l (N j, k,x h,n 2, j, k ) ˆβ l (j)b L l (N j, k,x h,n j, k ), i. L γ l c L l (N j, k,x h,n l=1 j, k ) 2 in order o deduce he OLS approximaion Y n,h,l,n j, k := L l=1 ˆγ lc L l (N j, k,x h,n j, k ). 11

13 WereferoGobe e al. (2006) forheconrol of heaiical errordueoheapproximaion of he condiional expecaion operaor by OLS projecion, and, by exenion, Y n,h Y n,hl,n S 2 + Zn,h Z n,h,l,n L 2 W + U n,h U n,h,l,n L 2 µ 0, n N, h > 0. (4.3) N,L The convergence of he algorihm follow from (2.2), (4.2) and (4.3). The derivaion of a convergence rae require preciion on he influence of n on he dicreizaion and aiical error, a well a a conrol of he penalizaion error. Thi challenging poin i lef o furher reearch. Reference 1 Barle, G., Buckdahn, R., Pardoux, E., Backward ochaic differenial equaion and inegral-parial differenial equaion, Sochaic, 60, Bouchard, B., A ochaic arge formulaion for opimal wiching problem in finie horizon, Sochaic, 81 (2), Bouchard, B., Elie, R., Dicree-ime approximaion of decoupled forward-backward SDE wih jump, Sochaic Procee and heir Applicaion, 118, Dellacherie, C., Meyer, P.A., Probabilié e Poeniel, V-V, Hermann. 5 El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., Quenez, M.C., Refleced oluion of BSDE and relaed obacle problem for PDE, The Annal of Probabiliy, 25(2), Elie, R., Kharroubi,., Conrained Backward SDE wih Jump: Applicaion o Opimal Swiching, Preprin. hp://arxiv.org/ab/ Gobe, E., Lemor, J.P., Warin, X., Rae of convergence of empirical regreion mehod for olving generalized BSDE. Bernoulli, 12 (5), Gegou-Pei, A., Pardoux, E., Equaion différenielle ochaique rérograde réfléchie dan un convexe. Sochaic and Sochaic Repor, 57, Hamadène, S., Zhang, J., The Saring and Sopping Problem under Knighian Uncerainy and Relaed Syem of Refleced BSDE. To appear in Sochaic Procee and heir Applicaion. 10 Hu, Y., Tang, S., Muli-dimenional BSDE wih oblique Reflecion and opimal wiching, To appear in Probabiliy Theory and Relaed Field. 11 Kharroubi,., Ma, J., Pham, H., Zhang, J., Backward SDE wih conrained jump and Quai-Variaional nequaliie. The Annal of Probabiliy, 38, 2, Pardoux, E., Peng, S., Backward SDE and Quailinear Parabolic Parial Differenial Equaion, Lecure Noe in CS, 176, Springer. 13 Pardoux, E., Pradeille, F., Rao, Z., Probabiliic inerpreaion of a yem of emilinear parabolic PDE, Ann. n. H. Poincaré, ec. B, 33 (4), Peng, S., Xu, M., Conrained BSDE and vicoiy oluion of variaional inequaliie, Preprin. hp://arxiv.org/ab/ Royer, M., Backward ochaic differenial equaion wih jump and relaed nonlinear expecaion, Sochaic Procee and heir Applicaion, 116,

Convergence of the gradient algorithm for linear regression models in the continuous and discrete time cases

Convergence of the gradient algorithm for linear regression models in the continuous and discrete time cases Convergence of he gradien algorihm for linear regreion model in he coninuou and dicree ime cae Lauren Praly To cie hi verion: Lauren Praly. Convergence of he gradien algorihm for linear regreion model

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS Elec. Comm. in Probab. 3 (998) 65 74 ELECTRONIC COMMUNICATIONS in PROBABILITY ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS L.A. RINCON Deparmen of Mahemaic Univeriy of Wale Swanea Singleon Par

More information

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION J. Au. Mah. Soc. 74 (23), 249 266 FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION HEN WU (Received 7 Ocober 2; revied 18 January 22) Communicaed by V. Sefanov Abrac

More information

Mathematische Annalen

Mathematische Annalen Mah. Ann. 39, 33 339 (997) Mahemaiche Annalen c Springer-Verlag 997 Inegraion by par in loop pace Elon P. Hu Deparmen of Mahemaic, Norhweern Univeriy, Evanon, IL 628, USA (e-mail: elon@@mah.nwu.edu) Received:

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

Reflected Solutions of BSDEs Driven by G-Brownian Motion

Reflected Solutions of BSDEs Driven by G-Brownian Motion Refleced Soluion of BSDE Driven by G-Brownian Moion Hanwu Li Shige Peng Abdoulaye Soumana Hima Sepember 1, 17 Abrac In hi paper, we udy he refleced oluion of one-dimenional backward ochaic differenial

More information

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations Hindawi Publihing Corporaion Abrac and Applied Analyi Volume 03, Aricle ID 56809, 7 page hp://dx.doi.org/0.55/03/56809 Reearch Aricle Exience and Uniquene of Soluion for a Cla of Nonlinear Sochaic Differenial

More information

Multidimensional Markovian FBSDEs with superquadratic

Multidimensional Markovian FBSDEs with superquadratic Mulidimenional Markovian FBSDE wih uperquadraic growh Michael Kupper a,1, Peng Luo b,, Ludovic angpi c,3 December 14, 17 ABSRAC We give local and global exience and uniquene reul for mulidimenional coupled

More information

arxiv: v1 [math.pr] 2 Jan 2015

arxiv: v1 [math.pr] 2 Jan 2015 Mean-field backward ochaic differenial equaion on Markov chain arxiv:151.955v1 [mah.pr] 2 Jan 215 Wen Lu 1 Yong Ren 2 1. School of Mahemaic and Informaional Science, Yanai Univeriy, Yanai 2645, China 2.

More information

Rough Paths and its Applications in Machine Learning

Rough Paths and its Applications in Machine Learning Pah ignaure Machine learning applicaion Rough Pah and i Applicaion in Machine Learning July 20, 2017 Rough Pah and i Applicaion in Machine Learning Pah ignaure Machine learning applicaion Hiory and moivaion

More information

About the Pricing Equation in Finance

About the Pricing Equation in Finance Abou he Pricing Equaion in Finance Séphane Crépey Déparemen de Mahémaique Univerié d Évry Val d Eonne 91025 Évry Cedex, France Thi verion: July 10, 2007 1 Inroducion In [16], we conruced a raher generic

More information

Fractional Ornstein-Uhlenbeck Bridge

Fractional Ornstein-Uhlenbeck Bridge WDS'1 Proceeding of Conribued Paper, Par I, 21 26, 21. ISBN 978-8-7378-139-2 MATFYZPRESS Fracional Ornein-Uhlenbeck Bridge J. Janák Charle Univeriy, Faculy of Mahemaic and Phyic, Prague, Czech Republic.

More information

Backward stochastic differential equations and integral partial differential equations

Backward stochastic differential equations and integral partial differential equations Backward ochaic differenial equaion and inegral parial differenial equaion Guy BARLS, Rainer BUCKDAHN 1 and ienne PARDOUX 2 June 30, 2009 Abrac We conider a backward ochaic differenial equaion, whoe he

More information

An introduction to the (local) martingale problem

An introduction to the (local) martingale problem An inroducion o he (local) maringale problem Chri Janjigian Ocober 14, 214 Abrac Thee are my preenaion noe for a alk in he Univeriy of Wiconin - Madion graduae probabiliy eminar. Thee noe are primarily

More information

BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping

BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping BSDE Approach o Non-Zero-Sum Sochaic Differenial Game of Conrol and Sopping Ioanni Karaza INTECH Invemen Managemen One Palmer Square, Suie 441 Princeon, NJ 8542 ik@enhanced.com Qinghua Li Saiic Deparmen,

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS The Annal of Applied Probabiliy 211, Vol. 21, No. 6, 2379 2423 DOI: 1.1214/11-AAP762 Iniue of Mahemaical Saiic, 211 MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Backward Stochastic Differential Equations and Applications in Finance

Backward Stochastic Differential Equations and Applications in Finance Backward Sochaic Differenial Equaion and Applicaion in Finance Ying Hu Augu 1, 213 1 Inroducion The aim of hi hor cae i o preen he baic heory of BSDE and o give ome applicaion in 2 differen domain: mahemaical

More information

Coupling Homogenization and Large Deviations. Principle in a Parabolic PDE

Coupling Homogenization and Large Deviations. Principle in a Parabolic PDE Applied Mahemaical Science, Vol. 9, 215, no. 41, 219-23 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.12988/am.215.5169 Coupling Homogenizaion and Large Deviaion Principle in a Parabolic PDE Alioune Coulibaly,

More information

Stability in Distribution for Backward Uncertain Differential Equation

Stability in Distribution for Backward Uncertain Differential Equation Sabiliy in Diribuion for Backward Uncerain Differenial Equaion Yuhong Sheng 1, Dan A. Ralecu 2 1. College of Mahemaical and Syem Science, Xinjiang Univeriy, Urumqi 8346, China heng-yh12@mail.inghua.edu.cn

More information

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields Backward Sochaic Parial Differenial Equaion wih Jump and Applicaion o Opimal Conrol of Random Jump Field Bern Økendal 1,2, Frank Proke 1, Tuheng Zhang 1,3 June 7, 25 Abrac We prove an exience and uniquene

More information

Approximation for Option Prices under Uncertain Volatility

Approximation for Option Prices under Uncertain Volatility Approximaion for Opion Price under Uncerain Volailiy Jean-Pierre Fouque Bin Ren February, 3 Abrac In hi paper, we udy he aympoic behavior of he wor cae cenario opion price a he volailiy inerval in an uncerain

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Workshop on BSDEs Rennes, May 22-24, 213 Inroducion

More information

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY Ian Crawford THE INSTITUTE FOR FISCAL STUDIES DEPARTMENT OF ECONOMICS, UCL cemmap working paper CWP02/04 Neceary and Sufficien Condiion for Laen

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W.

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W. BSD', Clark-Ocone formula, and Feynman-Kac formula for Lévy procee Nualar, D.; Schouen, W. Publihed: 1/1/ Documen Verion Publiher PDF, alo known a Verion of ecord (include final page, iue and volume number)

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Sochasic Analysis Seminar Oxford, June 1, 213 Inroducion

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

FUZZY n-inner PRODUCT SPACE

FUZZY n-inner PRODUCT SPACE Bull. Korean Mah. Soc. 43 (2007), No. 3, pp. 447 459 FUZZY n-inner PRODUCT SPACE Srinivaan Vijayabalaji and Naean Thillaigovindan Reprined from he Bullein of he Korean Mahemaical Sociey Vol. 43, No. 3,

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations Sochaic Opimal Conrol in Infinie Dimenion: Dynamic Programming and HJB Equaion G. Fabbri 1 F. Gozzi 2 and A. Świe ch3 wih Chaper 6 by M. Fuhrman 4 and G. Teiore 5 1 Aix-Mareille Univeriy (Aix-Mareille

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1 Publihed in: Oaka Journal of Mahemaic 41 (24), 3: 727 744 Meaure-valued Diffuion and Sochaic quaion wih Poion Proce 1 Zongfei FU and Zenghu LI 2 Running head: Meaure-valued Diffuion and Sochaic quaion

More information

arxiv: v2 [math.oc] 4 May 2016

arxiv: v2 [math.oc] 4 May 2016 Vicoiy Soluion for a Syem of PDE and Opimal Swiching Brahim EL ASRI and Imade FAKHOURI Sepember 5, 2018 arxiv:1204.1683v2 [mah.oc 4 May 2016 Abrac In hi paper, we udy he exience and uniquene of vicoiy

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. BY JIN MA 1 AND JIANFENG ZHANG Purdue University and University of Minnesota

REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. BY JIN MA 1 AND JIANFENG ZHANG Purdue University and University of Minnesota The Annal of Applied Probabiliy 22, Vol. 12, No. 4, 139 1418 REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS BY JIN MA 1 AND JIANFENG ZHANG Purdue Univeriy and Univeriy of Minneoa

More information

Integro-partial differential equations with singular terminal condition

Integro-partial differential equations with singular terminal condition Inegro-parial differenial equaion wih ingular erminal condiion Alexandre Popier To cie hi verion: Alexandre Popier. Inegro-parial differenial equaion wih ingular erminal condiion. 2017.

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

On the Exponential Operator Functions on Time Scales

On the Exponential Operator Functions on Time Scales dvance in Dynamical Syem pplicaion ISSN 973-5321, Volume 7, Number 1, pp. 57 8 (212) hp://campu.m.edu/ada On he Exponenial Operaor Funcion on Time Scale laa E. Hamza Cairo Univeriy Deparmen of Mahemaic

More information

Generalized Snell envelope and BSDE With Two general Reflecting Barriers

Generalized Snell envelope and BSDE With Two general Reflecting Barriers 1/22 Generalized Snell envelope and BSDE Wih Two general Reflecing Barriers EL HASSAN ESSAKY Cadi ayyad Universiy Poly-disciplinary Faculy Safi Work in progress wih : M. Hassani and Y. Ouknine Iasi, July

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

Approximation for Option Prices under Uncertain Volatility

Approximation for Option Prices under Uncertain Volatility SIAM J. FINANCIAL MATH. Vol. 5, pp. 360 383 c 014 Sociey for Indurial and Applied Mahemaic Approximaion for Opion Price under Uncerain Volailiy Jean-Pierre Fouque and Bin Ren Abrac. In hi paper, we udy

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

Singular control of SPDEs and backward stochastic partial diffe. reflection

Singular control of SPDEs and backward stochastic partial diffe. reflection Singular conrol of SPDEs and backward sochasic parial differenial equaions wih reflecion Universiy of Mancheser Join work wih Bern Øksendal and Agnès Sulem Singular conrol of SPDEs and backward sochasic

More information

On the Benney Lin and Kawahara Equations

On the Benney Lin and Kawahara Equations JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 11, 13115 1997 ARTICLE NO AY975438 On he BenneyLin and Kawahara Equaion A Biagioni* Deparmen of Mahemaic, UNICAMP, 1381-97, Campina, Brazil and F Linare

More information

arxiv: v2 [math.oc] 15 Feb 2019

arxiv: v2 [math.oc] 15 Feb 2019 OPTIMAL CONTROL OF DEBT-TO-GDP RATIO IN AN N-STATE REGIME SWITCHING ECONOMY GIORGIO FERRARI, NEOFYTOS RODOSTHENOUS arxiv:188.1499v2 mah.oc 15 Feb 219 Abrac. We olve an infinie ime-horizon bounded-variaion

More information

18 Extensions of Maximum Flow

18 Extensions of Maximum Flow Who are you?" aid Lunkwill, riing angrily from hi ea. Wha do you wan?" I am Majikhie!" announced he older one. And I demand ha I am Vroomfondel!" houed he younger one. Majikhie urned on Vroomfondel. I

More information

arxiv: v1 [math.pr] 23 Apr 2018

arxiv: v1 [math.pr] 23 Apr 2018 arxiv:184.8469v1 [mah.pr] 23 Apr 218 The Neumann Boundary Problem for Ellipic Parial ifferenial Equaion wih Nonlinear ivergence Term Xue YANG Tianjin Univeriy e-mail: xyang213@ju.edu.cn Jing ZHANG Fudan

More information

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Notes on cointegration of real interest rates and real exchange rates. ρ (2) Noe on coinegraion of real inere rae and real exchange rae Charle ngel, Univeriy of Wiconin Le me ar wih he obervaion ha while he lieraure (mo prominenly Meee and Rogoff (988) and dion and Paul (993))

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

arxiv: v1 [math.pr] 25 Jul 2017

arxiv: v1 [math.pr] 25 Jul 2017 COUPLING AND A GENERALISED POLICY ITERATION ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA, ALEKSANDAR MIJATOVIĆ, AND DEJAN ŠIRAJ arxiv:177.7834v1 [mah.pr] 25 Jul 217 Abrac. We analye a verion of he policy

More information

Systems of nonlinear ODEs with a time singularity in the right-hand side

Systems of nonlinear ODEs with a time singularity in the right-hand side Syem of nonlinear ODE wih a ime ingulariy in he righ-hand ide Jana Burkoová a,, Irena Rachůnková a, Svaolav Saněk a, Ewa B. Weinmüller b, Sefan Wurm b a Deparmen of Mahemaical Analyi and Applicaion of

More information

arxiv: v2 [math.pr] 18 Mar 2019

arxiv: v2 [math.pr] 18 Mar 2019 Probabiliic approach o ingular perurbaion of vicoiy oluion o nonlinear parabolic PDE arxiv:193.5549v2 mah.pr 18 Mar 219 Minghang Hu Falei Wang Abrac In hi paper, we prove a convergence heorem for ingular

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations Exience of Sepanov-like Square-mean Peudo Almo Auomorphic Soluion o Nonauonomou Sochaic Funcional Evoluion Equaion Zuomao Yan Abrac We inroduce he concep of bi-quare-mean almo auomorphic funcion and Sepanov-like

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω))

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω)) Aca Mahemaica Sinica, Englih Serie May, 29, Vol. 25, No. 5, pp. 83 814 Publihed online: April 25, 29 DOI: 1.17/1114-9-7214-8 Hp://www.AcaMah.com Aca Mahemaica Sinica, Englih Serie The Ediorial Office of

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

SINGULAR FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND EMISSIONS DERIVATIVES

SINGULAR FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND EMISSIONS DERIVATIVES he Annal of Applied Probabiliy 213, Vol. 23, No. 3, 186 1128 DOI: 1.1214/12-AAP865 Iniue of Mahemaical Saiic, 213 SINGULAR FORWARD BACKWARD SOCHASIC DIFFERENIAL EQUAIONS AND EMISSIONS DERIVAIVES BY RENÉ

More information

Dual Representation of Minimal Supersolutions of Convex BSDEs

Dual Representation of Minimal Supersolutions of Convex BSDEs Dual Repreenaion of Minimal Superoluion of Convex BSDE Samuel Drapeau a,1,, Michael Kupper b,2,, Emanuela Roazza Gianin c,3, Ludovic Tangpi a,4, December 15, 214 ABSTRACT We give a dual repreenaion of

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition. CHAPTER 8 Forced Equaion and Syem 8 The aplace Tranform and I Invere Tranform from he Definiion 5 5 = b b {} 5 = 5e d = lim5 e = ( ) b {} = e d = lim e + e d b = (inegraion by par) = = = = b b ( ) ( )

More information

Modeling the Evolution of Demand Forecasts with Application to Safety Stock Analysis in Production/Distribution Systems

Modeling the Evolution of Demand Forecasts with Application to Safety Stock Analysis in Production/Distribution Systems Modeling he Evoluion of Demand oreca wih Applicaion o Safey Sock Analyi in Producion/Diribuion Syem David Heah and Peer Jackon Preened by Kai Jiang Thi ummary preenaion baed on: Heah, D.C., and P.L. Jackon.

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations arxiv:mah/0602323v1 [mah.pr] 15 Feb 2006 Dual Represenaion as Sochasic Differenial Games of Backward Sochasic Differenial Equaions and Dynamic Evaluaions Shanjian Tang Absrac In his Noe, assuming ha he

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER John Riley 6 December 200 NWER TO ODD NUMBERED EXERCIE IN CHPTER 7 ecion 7 Exercie 7-: m m uppoe ˆ, m=,, M (a For M = 2, i i eay o how ha I implie I From I, for any probabiliy vecor ( p, p 2, 2 2 ˆ ( p,

More information

Research Article On Double Summability of Double Conjugate Fourier Series

Research Article On Double Summability of Double Conjugate Fourier Series Inernaional Journal of Mahemaic and Mahemaical Science Volume 22, Aricle ID 4592, 5 page doi:.55/22/4592 Reearch Aricle On Double Summabiliy of Double Conjugae Fourier Serie H. K. Nigam and Kuum Sharma

More information

arxiv: v1 [math.pr] 19 Nov 2018

arxiv: v1 [math.pr] 19 Nov 2018 Muli-dimenional BSDE wih diagonal generaor driven by G-Brownian moion arxiv:1811.7773v1 [mah.pr] 19 Nov 218 Guomin Liu November 2, 218 Abrac In hi paper, we udy he well-poedne of muli-dimenional backward

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

arxiv: v1 [math.pr] 18 Feb 2015

arxiv: v1 [math.pr] 18 Feb 2015 Non-Markovian opimal sopping problems and consrained BSDEs wih jump arxiv:152.5422v1 [mah.pr 18 Feb 215 Marco Fuhrman Poliecnico di Milano, Diparimeno di Maemaica via Bonardi 9, 2133 Milano, Ialy marco.fuhrman@polimi.i

More information

6. Stochastic calculus with jump processes

6. Stochastic calculus with jump processes A) Trading sraegies (1/3) Marke wih d asses S = (S 1,, S d ) A rading sraegy can be modelled wih a vecor φ describing he quaniies invesed in each asse a each insan : φ = (φ 1,, φ d ) The value a of a porfolio

More information

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion American Journal of Applied Mahemaic and Saiic, 15, Vol. 3, o. 4, 168-176 Available online a hp://pub.ciepub.com/ajam/3/4/7 Science and Educaion Publihing DOI:1.1691/ajam-3-4-7 Approximae Conrollabiliy

More information

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case Parameer Eimaion for Fracional Ornein-Uhlenbeck Procee: Non-Ergodic Cae R. Belfadli 1, K. E-Sebaiy and Y. Ouknine 3 1 Polydiciplinary Faculy of Taroudan, Univeriy Ibn Zohr, Taroudan, Morocco. Iniu de Mahémaique

More information

Additional Methods for Solving DSGE Models

Additional Methods for Solving DSGE Models Addiional Mehod for Solving DSGE Model Karel Meren, Cornell Univeriy Reference King, R. G., Ploer, C. I. & Rebelo, S. T. (1988), Producion, growh and buine cycle: I. he baic neoclaical model, Journal of

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

Couplage du principe des grandes déviations et de l homogénisation dans le cas des EDP paraboliques: (le cas constant)

Couplage du principe des grandes déviations et de l homogénisation dans le cas des EDP paraboliques: (le cas constant) Couplage du principe des grandes déviaions e de l homogénisaion dans le cas des EDP paraboliques: (le cas consan) Alioune COULIBALY U.F.R Sciences e Technologie Universié Assane SECK de Ziguinchor Probabilié

More information

arxiv:math/ v1 [math.pr] 6 Feb 2007

arxiv:math/ v1 [math.pr] 6 Feb 2007 Sochaic Differenial Game and Vicoiy Soluion of Hamilon-Jacobi-Bellman-Iaac Equaion arxiv:mah/0702131v1 [mah.pr] 6 Feb 2007 Rainer Buckdahn Déparemen de Mahémaique, Univerié de Breagne Occidenale, 6, avenue

More information

L p -Solutions for Reflected Backward Stochastic Differential Equations

L p -Solutions for Reflected Backward Stochastic Differential Equations L -Soluion for Refleced Backward Sochaic Differenial Equaion Saïd Hamadène and Alexandre Poier Laboraoire de aiique e roceu Univerié du Maine Avenue Olivier Meiaen F-7285 Le Man Cedex 9 France March 27,

More information

Macroeconomics 1. Ali Shourideh. Final Exam

Macroeconomics 1. Ali Shourideh. Final Exam 4780 - Macroeconomic 1 Ali Shourideh Final Exam Problem 1. A Model of On-he-Job Search Conider he following verion of he McCall earch model ha allow for on-he-job-earch. In paricular, uppoe ha ime i coninuou

More information

arxiv: v5 [math.pr] 6 Oct 2015

arxiv: v5 [math.pr] 6 Oct 2015 ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION WITH INTEGRAL-LIPSCHITZ COEFFICIENTS XUEPENG BAI AND YIQING LIN arxiv:12.146v5 mah.pr] 6 Oc

More information

CHAPTER 7. Definition and Properties. of Laplace Transforms

CHAPTER 7. Definition and Properties. of Laplace Transforms SERIES OF CLSS NOTES FOR 5-6 TO INTRODUCE LINER ND NONLINER PROBLEMS TO ENGINEERS, SCIENTISTS, ND PPLIED MTHEMTICINS DE CLSS NOTES COLLECTION OF HNDOUTS ON SCLR LINER ORDINRY DIFFERENTIL EQUTIONS (ODE")

More information

Spectral gaps for the O-U/Stochastic heat processes on path space over a Riemannian manifold with boundary

Spectral gaps for the O-U/Stochastic heat processes on path space over a Riemannian manifold with boundary arxiv:181.186v1 [mah.pr] 5 Dec 18 ec1 Specral gap for he O-U/Sochaic hea procee on pah pace over a Riemannian manifold wih boundary Bo Wu School of Mahemaical Science, Fudan Univeriy, Shanghai 433, China

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Dynamic Systems and Applications 16 (2007) BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS 1. INTRODUCTION. x t + t

Dynamic Systems and Applications 16 (2007) BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS 1. INTRODUCTION. x t + t Dynamic Syem and Applicaion 16 (7) 11-14 BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS MICHA L KISIELEWICZ Faculy of Mahemaic, Compuer Science and Economeric, Univeriy of Zielona Góra, Podgórna 5, 65 46

More information

Note on Matuzsewska-Orlich indices and Zygmund inequalities

Note on Matuzsewska-Orlich indices and Zygmund inequalities ARMENIAN JOURNAL OF MATHEMATICS Volume 3, Number 1, 21, 22 31 Noe on Mauzewka-Orlic indice and Zygmund inequaliie N. G. Samko Univeridade do Algarve, Campu de Gambela, Faro,85 139, Porugal namko@gmail.com

More information

Average Case Lower Bounds for Monotone Switching Networks

Average Case Lower Bounds for Monotone Switching Networks Average Cae Lower Bound for Monoone Swiching Nework Yuval Filmu, Toniann Piai, Rober Robere, Sephen Cook Deparmen of Compuer Science Univeriy of Torono Monoone Compuaion (Refreher) Monoone circui were

More information

as representing the flow of information over time, with

as representing the flow of information over time, with [Alraheed 4(4): April 15] ISSN: 77-9655 Scienific Journal Impac Facor: 3.449 (ISRA) Impac Facor:.114 IJSR INRNAIONAL JOURNAL OF NGINRING SCINCS & RSARCH CHNOLOGY H FINANCIAL APPLICAIONS OF RANDOM CONROL

More information