Point-based methods for estimating the length of a parametric curve

Size: px
Start display at page:

Download "Point-based methods for estimating the length of a parametric curve"

Transcription

1 Point-bsed methods for estimting the length of prmetric curve Michel S. Floter, Atgeirr F. Rsmussen CMA, University of Oslo, P.O. Box 1053 Blindern, 0316 Oslo, Norwy Abstrct This pper studies generl method for estimting the length of prmetric curve using only smples of points. We show tht by mking specil choice of points, nmely the Guss-Lobtto nodes, we get higher orders of pproximtion, similr to the behviour of Guss qudrture, nd we derive some explicit exmples. Key words: curve, rc length, polynomil interpoltion 1 Introduction Computing the rc length of prmetric curve is bsic problem in geometric modelling nd computer grphics, nd hs been treted in vrious wys. In [11], Guenter nd Prent use numericl integrtion on the derivtive of the curve. In [15], Vincent nd Forsey derive method bsed entirely on point evlutions. Grvesen hs derived method specificlly for Bézier curves [10]. The estimtion of rc length is n importnt issue in [18], [17] nd [16], where pproximte rc length prmetriztions were sought for spline curves. This is necessry, since prt from trivil cses, polynomil curves never hve unit speed [6]. The rticle [2] trets the issue of reprmetrizing NURBS curves so tht the resulting curve prmetriztion is close to rc-length. The rticles [4] nd [3] del with optiml, i.e. s close to rc-length s possible, rtionl reprmetriztions of polynomil curves. In [14], the uthors clculte pproximte rc length prmetriztions for generl prmetric curves. Recently, results hve been obtined on pproximting the length of curve, given only s sequence of points (without prmeter vlues), using polynomils nd splines [7] [8]. Emil ddresses: michelf@ifi.uio.no (Michel S. Floter), tgeirr@mth.uio.no (Atgeirr F. Rsmussen). Preprint 5 October 2005

2 Suppose f : [α, β] lr d, d 2 is regulr prmetric curve, by which we men continuously differentible function such tht f (t) 0 for ll t [α, β], nd denotes the Euclidin norm in lr d. Then its rc length (see section 9 of [13]) is L(f) = β α f (t) dt. (1) Since L(f) is simply the integrl of the speed function f, nturl pproch is simply to pply to f some stndrd composite qudrture rule: we split the prmeter intervl [α, β] into smll pieces, pply qudrture rule to f in ech piece, nd dd up the contributions. If [, b] is one such piece, with α < b β, then typicl rule hs the form for some qudrture nodes n L(f [,b] ) = f (t) dt w i f (q i ), (2) i=0 q 0 < q 1 < < q n b, (3) nd weights w 0, w 1,..., w n. Guenter nd Prent [11] pply such method dptively. This method, however, hs the drwbck tht it involves derivtives of f, which might be more time-consuming to evlute thn points of f, or might simply not be vilble. One lterntive is the chord length rule (16), but it only hs second order ccurcy (s will be shown in 4.1). This motivted Vincent nd Forsey [15] to find higher order method using only point evlutions (18). In this pper, we investigte the following much more generl point-bsed method, which turns out to include these two methods s specil cses. We cn first interpolte f with polynomil p n : [, b] lr d, of degree n, t some points t 0 < t 1 < < t n b, for some n 1, i.e., p n (t i ) = f(t i ) for i = 0, 1,..., n, giving the pproximtion L(f [,b] ) L(p n [,b] ). (4) We cn then estimte the length of p n by qudrture, giving the estimte nd by expressing p n in the Lgrnge form L(p n [,b] ) w j p n(q j ), (5) n n t t j p n (t) = L i (t)f(t i ), L i (t) =, i=0,j i t i t j 2

3 we get the point-bsed rule L(f [,b] ) n w j L i(q j )f(t i ). (6) i=0 In view of the definition of the length L(f [,b] ) in (2), it is resonble to expect tht tht the error in (4) will be smll due the well-known fct tht p n is good pproximtion to f when h := b is smll. However, we hve not seen this method explicitly referred to in the literture, nor re we wre of ny error nlysis. The min contribution of this pper is to offer thorough nlysis of the pproximtion order of the method, in terms of h, which depends on the points t i, nd the qudrture nodes nd weights q j nd w j s well s the smoothness of f. One result of our nlysis is tht the interpoltion points t i cn be chosen to mximize the pproximtion order, nlogously to the use of Guss-Legendre points for numericl integrtion. 2 Error of the derivtive-bsed method For the ske of comprison, we strt with comment bout the pproximtion order of the derivtive-bsed method (2). If the qudrture rule used in (2) hs degree of precision r then the error will be of order O(h r+2 ) provided the (r + 1)-th derivtive of F := f is bounded [12]. Lemm 1 If f C r+2 [α, β], nd f is regulr, then ll the derivtives F, F,..., F (r+1) re bounded in [α, β]. Proof. Let k {1,..., r + 1}. By Leibniz rule, 2F F (k) + k 1 i=1 ( ) k F (i) F (k i) = (F 2 ) (k) = (f f ) (k) = i k i=0 ( ) k f (i+1) f (k i+1), i nd so F (k) 1 2F ( k i=0 ( ) k f (i+1) f (k i+1) + i k 1 i=1 ( ) ) k F (i) F (k i). (7) i Now since f is regulr on the closed intervl [α, β], F ttins strictly positive minimum ɛ > 0. Further, by ssumption, ll the derivtives f,..., f k+1 re bounded. Therefore, ssuming by induction tht ll the lower derivtives F,..., F (k 1) re bounded, we see tht F (k) is lso bounded. 3

4 This leds to the pproximtion order of the derivtive-bsed method. Theorem 1 Suppose f C r+2 [α, β], f is regulr, nd tht the rule (2) hs degree of precision r. Then L(f [,b] ) w j f (q j ) = O(h r+2 ) s h 0. For exmple since the midpoint rule hs degree of precision r = 1, we get L(f [,b] ) h f (q 0 ) = O(h 3 ), (8) where q 0 = ( + b)/2, provided f C 3 [α, β]. Since Simpson s rule hs degree of precision r = 3, we find L(f [,b] ) h( f () + 4 f (q 1 ) + f (b) )/6 = O(h 5 ), where q 1 = ( + b)/2, provided f C 5 [α, β]. If we tke the q 0,..., q m to be the Guss nodes of order m, then the rule hs degree of precision 2m + 1 nd so provided f C 2m+3 [α, β], we get L(f [,b] ) w j f (q j ) = O(h 2m+3 ). 3 Error of the point-bsed method There re two contributions to the error of the point-bsed method, nmely the errors in the interpoltion prt (4) nd the qudrture prt (5). We will tret them both, strting with the qudrture error (5). Letting f i nd p n,i be the d components of the vector-vlued f nd p n, we recll clssicl result of polynomil interpoltion due to [12] (section 6.5, pge 290): f (k) i (t) p (k) n,i(t) h n+1 k mx s [,b] f (n+1) i (s) (n + 1 k)! (9) This eqution does not hold for vector-vlued functions, but we cn still use it to derive some error bounds: f (k) i (t) p (k) n,i(t) h n+1 k mx s [,b] f (n+1) (s). (n + 1 k)! Using the nottion f (n+1) [,b] := mx s [,b] f (n+1) (s), 4

5 we exploit the fct tht the right hnd side bove does not depend on the component i to write where C k = f (k) p (k) n [,b] C k h n+1 k f (n+1) [α,β], k = 0, 1,..., n. (10) d (n+1 k)!. Lemm 2 If f C n+1 [α, β] nd f is regulr, then ll derivtives of the function p n re bounded independently of h for smll enough h. Proof. We will prove this by showing tht p n is regulr for sufficiently smll h, then pply Lemm 1. By the tringle inequlity p n(t) f (t) f (t) p n(t) for ll t. Using eqution (10) in the cse k = 1 we then see tht p n(t) f (t) f p n [,b] f (t) C 1 h n f (n+1) [α,β]. Thus, since f is bounded wy from zero, so will p n be for sufficiently smll h. Then p n is regulr. Since p n is polynomil, it is in C r+2 for ll r nd we cn pply Lemm 1 to show tht ll derivtives of p n re bounded. The pproximtion order of the qudrture prt of the point-bsed method now immeditely follows, nlogously to theorem 1. Provided f C n+1 [α, β], we cn mke the order of this prt of the error s high s we like simply by using qudrture rule of high enough precision, independently of n. Lemm 3 Suppose f C n+1 [α, β], f is regulr, nd tht the qudrture rule in (5) hs degree of precision r for ny r 0. Then L(p n [,b] ) w j p n(q j ) = O(h r+2 ). Next we turn to the error in the interpoltion prt of the method (4). The pproximtion order of this prt depends crucilly on the smoothness of f. Agin we will need to show tht derivtives of certin terms re bounded. Lemm 4 If f C n+1 [α, β] nd f is regulr, then ll derivtives up to order n of the function g := f /( f + p n ) re bounded independently of h for smll enough h. Proof. Clerly g itself is bounded independently of h, since f is regulr. Next let k {1,..., n}. Since, ( ( f + p n )g) (k) = f (k+1), 5

6 Leibniz rule gives g (k) = ( 1 f (k+1) f + p n k i=1 ( ) k )( f (i) + p n (i) )g (k i) i By lemm 2, p n (i) is bounded for ech i 0 when h is smll enough. By lemm 1, so is f (i) for i = 0,..., n. Thus, if ll derivtives of g up to order k 1 re bounded, so is g (k). This gives us our first result on the pproximtion order of the point-bsed method. Lemm 5 If f C n+1 [α, β] nd regulr then, s h 0, If in ddition t 0 = nd t n = b then L(f [,b] ) L(p n [,b] ) = O(h n+1 ). (11) L(f [,b] ) L(p n [,b] ) = O(h n+2 ). (12) Proof. Letting e(t) := f(t) p n (t), we use the identity This gives us f p n = 2e f e e. f + p n f (t) p n(t) dt = 2I 1 I 2. (13) where I 1 = e e (t) 2 (t) g(t) dt, I 2 = f (t) + p n(t) dt. nd g := f /( f + p n ). Since e is of order O(h n ) by (10), nd f (t) is bounded wy from zero, we see tht I 1 = O(h n+1 ) nd I 2 = O(h 2n+1 ), nd since 2n + 1 n + 1, this estblishes (11). If in ddition t 0 = nd t n = b then e() = e(b) = 0, nd so integrtion by prts implies I 1 = e(t) g (t) dt. (14) Since e is O(h n+1 ) by (10), nd g (t) is bounded s h 0 by Lemm 4, we now hve I 1 = O(h n+2 ). Since n 1 we lso hve I 2 = O(h n+2 ), nd this estblishes (12). It is interesting to note tht without needing to rise the smoothness ssumption on f, we rise the pproximtion order by one simply by including the end points of the intervl [, b] in the interpoltion points t i. Similr observtions were mde in [7] nd [8]. Now the point is tht we cn continue to 6

7 rise the order of pproximtion by further restricting the loctions of the t i. Notice tht the order of the integrl I 2 in (13) is lredy very high, nmely 2n + 1 which mens tht we cn rise the order of the whole error (13) by mnipulting the first integrl I 1. To do this we borrow from the ide of Guss qudrture. Lemm 6 Suppose f C 2n [α, β] nd regulr, nd tht t 0 =, t n = b nd where ψ n (t) := (t t 0 ) (t t n ). Then ψ n (t)t k dt = 0, k = 0, 1,..., n 2, (15) L(f [,b] ) L(p n [,b] ) = O(h 2n+1 ). Proof. It is enough to show tht I 1 in (13) is of order O(h 2n+1 ). Since e(t) = ψ n (t)[t 0, t 1,..., t n, t]f, where [t 0, t 1,..., t n, t]f denotes the divided difference of f t the points t 0, t 1,..., t n, t, we cn write I 1 in (14) s I 1 = ψ n (t)γ(t) dt, γ(t) := ([t 0, t 1,..., t n, t]f) g (t). Thus if we expnd γ in Tylor series bout, γ(t) = n 2 k=0 1 k! (t )k γ (k) () + 1 (n 1)! (t )n 1 γ (n 1) (ξ t ), with ξ t t, the orthogonlity conditions (15) imply tht Therefore since I 1 = 1 ψ n (t)(t ) n 1 γ (n 1) (ξ t ) dt. (n 1)! ψ n (t)(t ) n 1 h 2n, t b, the lemm will be complete when we hve shown tht γ (n 1) is bounded s h 0. To see this, observe tht Leibniz rule gives γ (n 1) (t) = n 1 (n 1)! (n 1 j)! ([t 0, t 1,..., t n, t,..., t]f) g (n j) (t). }{{} j+1 Since [t 0, t 1,..., t n, t,..., t]f }{{} i = f (n+1+j) i (µ j,i )/(n j)! j+1 7

8 for ech component f i of f nd f C 2n [α, β], nd since ll the derivtives g..., g (n) re bounded by lemm 4, this shows tht γ (n 1) is bounded s climed. Thus in order to increse the pproximtion order we cn choose the t i so tht both t 0 = nd t n = b nd ψ n is orthogonl to π n 2 (the spce of polynomils of degree t most n 2) on [, b]. This cn be done by choosing ψ n (t) = (t )(t b)p n(t) where P n is the Legendre polynomil of degree n on the intervl [, b]. A short clcultion yields ψ n (t)t k dt = + ) P n (t) ((t )(t b)kt k 1 + (2t b)t k dt [ P n (t)(t )(t b)t k ] b. For k = 0,..., n 2 this is zero, since P n is orthogonl to π n 1. The interpoltion nodes we chieve in this mnner re known in numericl integrtion s Guss-Lobtto qudrture nodes. A tble of nodes cn be found in [1]. We re now ble to give our min result. Theorem 2 Suppose tht f C 2n [α, β], f is regulr, nd tht {t i } n i=0 re the Guss-Lobtto points in [, b]. Suppose lso tht {q j } m nd {w j } m re the nodes nd weights, respectively, of qudrture rule with degree of ccurcy 2n 1 on [, b]. Then L(f [,b] ) w j p n(q j ) = O(h 2n+1 ). Proof. This follows from the tringle inequlity L(f [,b] ) w j p n(q j ) L(f [,b] ) L(p n [,b] ) + L(p n [,b] ) w j p n(q j ). nd Lemms 6 nd 3. Using our nlysis, we now see tht the point-bsed method is more robust thn the derivtive-bsed method from the point of view of the smoothness 8

9 of f. Given desired locl order of pproximtion, sy 2n + 1, the point-bsed method of theorem 2 only requires f C 2n [α, β], while the derivtive-bsed method of theorem 1 requires f C 2n+1 [α, β]. 4 Exmples 4.1 Second order method For n = 1 the only choice of interpoltion points stisfying lemm 5 is t 0 = nd t 1 = b. Computing the length of liner curve does not cll for qudrture, nd we re left with the fmilir chord length rule: L(f [,b] ) f(b) f(). (16) By theorem 2, this rule hs locl error of O(h 3 ), so when used s composite rule, it hs globl error of O(h 2 ). We hve thus proved tht the chord length rule hs order of ccurcy 2. According to theorem 2, the required smoothness is tht f C 2 [α, β]. If we compre this to the midpoint method (8), we see tht we hve the sme order of ccurcy, but the midpoint rule requires f C 3 [α, β]. 4.2 Fourth order methods For n = 2 there is precisely one choice of the points t 0, t 1, t 2 which stisfies the condition of lemm 6. We must set t 0 = nd t 2 = b. Then we must choose t 1 in order to mke ψ 2 orthogonl with π 0, i.e., with the constnt function 1. The only wy this cn be chieved is by the symmetric solution t 1 = (+b)/2. With this choice, if f C 4 [α, β] then L(f [,b] ) L(p 2 ) = O(h 5 ) s h 0. Now we consider three choices of qudrture rule for p 2 in order to chieve n O(h 5 ) rule for L(f [,b] ). All methods presented in this subsection will thus hve locl pproximtion order 5, nd globl order 4 (when used s composite method). 9

10 4.2.1 Simpson-bsed rule Simpson s rule pplied to p 2 gives L(f [,b] ) (b ) ( p 6 2(q 0 ) + 4 p 2(q 1 ) + p 2(q 2 ) ), where t i = q i. Writing out the rule with f i := f(t i ), we get L(f [,b] ) 1 6 ( ) 3f 0 + 4f 1 f f 2 f 0 + f 0 4f 1 + 3f Guss-bsed ( 3 ) rule The two-point Guss rule gives L(f [,b] ) (b ) ( p 2 2(q 0 ) + p 2(q 1 ) ), where q 0, q 1 re +b b Writing out this rule gives where L(f [,b] ) r f 0 + f 2 r, (17) r = 1 2 (f 0 + f 2 ) ( f0 + 2f 1 f 2 ). This rule my be the one best suited for implementtion, s it requires the computtion of only two Euclidin norms, i.e., squre roots. The other fourth order methods require three such computtions The Vincent-Forsey rule A third choice gives very simple rule in terms of the points f i, i = 0, 1, 2. The open Newton-Cotes rule with three nodes hs degree of precision 3, nd gives (b ) L(f [,b] ) (2 p 3 2(q 0 ) p 2(q 1 ) + 2 p 2(q 2 ) ), where q 0 = (3 + b)/4, q 1 = ( + b)/2, q 2 = ( + 3b)/4. This cn be written s L(f [,b] ) 4 3 ( ) f(q 1 ) f() + f(b) f(q 1 ) 1 f(b) f(), (18) 3 which is the method of Vincent nd Forsey proposed in [15]. Their resoning ws bsed on pproximting circulr segment, however nd not polynomils. Since the method stisfies the conditions of theorem 2, we hve proved tht the Vincent-Forsey method hs locl error O(h 5 ), nd globl error O(h 4 ). Therefore it hs fourth order of ccurcy when used s composite method. 10

11 4.3 Sixth order method We now derive sixth order method, by tking n = 3 nd choosing interpoltion nodes fulfilling the conditions of lemm 6. To do this, we must tke the interpoltion nodes to be the nodes of the four-node Guss-Lobtto scheme (see for instnce [1]): t 0 =, t 1 = + b 2 (1 α), t 2 = + b 2 (1 + α), t 3 = b where α = In order to get optimum order, we must pick qudrture method with locl error O(h 7 ). If we use the three-point Guss method with the nodes L(f [,b] ) q 0 = + b 2 (b ) (5 p 18 3(q 0 ) + 8 p 3(q 1 ) + 5 p 3(q 2 ) ), (1 β), q 1 = + b 2, q 2 = + b (1 + β) 2 where β = , then we get the formul L(f [,b] ) r 1 f 0 + r 2 r 1 + f 3 r 2, (19) 3 3 r 1 = η i f i, r 2 = η 3 i f i, i=0 i=0 where the coefficients η i re given by η = 1 ( , , , 20 5 ) In figure 1, we hve results from evluting the length of smple curve (in this cse circulr segment) with composite rules built on vrious bsic rules. We cn see tht we get the expected slope of 6 for the order 6 method until roundoff error becomes dominnt. For the other methods, we lso get the expected pproximtion order. 5 Geometric properties As we hve seen, the pproximtions of the 3 method (17) nd the 6th order method (19) cn be written s the lengths of certin polygons. This 11

12 5 0 chord length Vincent-Forsey sqrt(3) order ln(error) ln(num_intervls) Fig. 1. Method error comprison geometric interprettion of the point-bsed method turns out to hold under firly generl conditions. Theorem 3 Suppose the qudrture weights w j of the rule (6) re positive, tht the rule hs precision of degree n 1, nd tht t 0 = nd t n = b. Then the length estimte of (6) is equl to the length of polygon with end points f() nd f(b). Proof. We strt from (6) nd compute n w j L m i(q j )f(t i ) = n w j L i(q j )f(t i ) = m j = r j+1 r j i=0 i=0 where r 0 = f() nd r j = f() j 1. This is the length of the polygon with vertices r 0,..., r m+1. It remins to show tht r m+1 = f(b). This follows from n r m+1 = f() + j = f() + w j L i(q j )f(t i ) i=0 n n = f() + f(t i ) w j L i(q j ) = f() + f(t i ) L i(t) dt i=0 i=0 n = f() + f(t i ) (L i (b) L i ()) = f(b). i=0 12

13 Now, we know tht for ny (continuous) curve f, L(f [,b] ) f(b) f(). It turns out tht the estimted curve length given by the point-bsed rule (6) hs the sme property: Corollry 1 Under the ssumptions of theorem 3, the length estimte of (6) hs the chord length s lower bound: w j p n(q j ) f(b) f(). Proof. The length of ny polygon from f() to f(b) is greter thn or equl to the length of the stright line from f() to f(b) by the tringle inequlity. Note tht the conditions of the theorem re sufficient, but not necessry. For exmple, the Vincent-Forsey rule (18) is bounded below by chord length, in spite of not fulfilling the conditions of the theorem. 6 PH curve exctness For generl curves, it is not possible to find n nlytic form for the rc length. However, there re clsses of curves for which the rc length indeed hs n nlytic form. Exmples of this include the pythgoren hodogrph (PH) curves of Frouki [5], nd the curve fmily introduced by Gil nd Keren [9]. In this section we show tht some of the point-bsed methods constructed re exct for PH curves. The PH curves re plnr polynomil curves f : [α, β] lr 2 with the property tht f is lso polynomil. One of the simplest exmples is the curve f(t) = (x(t), y(t)) where x(t) = t t 3 /3, y(t) = t 2. Since it follows tht (x (t)) 2 + (y (t)) 2 = (1 + t 2 ) 2, f (t) = 1 + t 2. Thus f is PH cubic. In generl PH curve is ny plnr polynomil curve of degree 2k + 1 such tht f is polynomil of degree 2k. If we pply the derivtive-bsed method (2) to estimte the length of curve f over n intervl [, b], s long s we use qudrture rule with degree of 13

14 precision 2k, the method will clerly be exct when f is PH curve of degree 2k + 1. Thus for exmple, if we pply Simpson s rule or the two-point Guss rule to estimte the length of PH cubic, the error will be zero. Next consider the point-bsed method (6). Clerly, if f is polynomil of degree n then p n = f nd so p n = f. In this cse the point-bsed method reduces to the derivtive-bsed one. Thus, for exmple, point-bsed method with n 3 (t lest four points) will be exct for PH cubics f. An interesting sitution is the cse tht f is polynomil of exct degree n+1, one higher thn p n. This is the cse when f is for exmple PH cubic nd we use the Guss-bsed 3 rule (17). Recll tht f(t) p n (t) = ψ n (t)[t 0, t 1,..., t n, t]f. Therefore if f is polynomil of degree n + 1, f (t) p n(t) = ψ n(t)[t 0, t 1,..., t n, t]f. Thus we gin find p n(q i ) = f (q i ) t certin points q i, nmely those for which ψ n(q i ) = 0. Now if the points t 0, t 1,..., t n re the Guss-Lobtto points then one cn show tht the points q 1,..., q n for which ψ n(q i ) = 0 re precisely the Guss points. Thus if we use Guss-Lobtto points in the first prt nd Guss points in the second, we get exctness for PH curves f of degree n + 1. This is precisely wht hppens in the 3 rule when pplied to PH cubic. The Vincent-Forsey rule on the other hnd does not shre this property. More generlly, if f is ny cubic polynomil curve then the 3 rule is the sme s pplying 2-point Guss integrtion to the speed function f. 7 Concluding remrks We hve mde frmework for computing lengths of curves with only point evlutions, nd shown tht we don t lose ccurcy compred to methods bsed on evluting derivtives. We hve lso observed tht the methods re robust, requiring one less order of smoothness thn derivtive-bsed methods with the sme order of ccurcy. We hve shown tht some previously investigted methods fit in the frmework, nd thereby been ble to give proofs of their pproximtion order. In future rticle we will investigte evluting the res of surfces with only point evlutions. 14

15 References [1] M. Abrmowitz nd I. A. Stegun. Hndbook of Mthemticl Functions with Formuls, Grphs, nd Mthemticl Tbles. Dover, 9th edition, [2] G. Csciol nd S. Morigi. Reprmetriztion of NURBS curves. Int. Journl of Shpe Modelling, 2: , [3] P. Constntini, R. T. Frouki, C. Mnni, nd A. Sestini. Computtion of optiml composite re-prmetriztions. Computer Aided Geometric Design, 18: , [4] R. T. Frouki. Optiml prmetriztions. Computer Aided Geometric Design, 8: , [5] R. T. Frouki. Pythgoren-hodogrph curves. In Hndbook of Computer Aided Geometric Design, pges , [6] R. T. Frouki nd T. Skklis. Rel rtionl curves re not unit speed. Computer Aided Geometric Design, 8: , [7] M. S. Floter. Arc length estimtion nd the convergence of polynomil curve interpoltion. To pper in BIT. [8] M. S. Floter. Chordl cubic spline interpoltion is fourth order ccurte. To pper in IMA J. Numer. Anl., [9] J. Gil nd D. Keren. New pproch to the rc length prmeteriztion problem. In 13th spring conference on computer grphics, pges 27 34, [10] Jens Grvesen. Adptive subdivision nd the length nd energy of Bézier curves. Comput. Geom., 8:13 31, [11] B. Guenter nd R. Prent. Computing the rc length of prmetric curves. IEEE Comp. Grph. nd Appl., 5:72 78, [12] E. Iscson nd H. B. Keller. Anlysis of numericl methods. Wiley, [13] E. Kreyszig. Differentil Geometry. Dover, [14] R. J. Shrpe nd R. W. Thorne. Numericl method for extrcting n rc length prmeteriztion from prmetric curves. Computer-Aided Design, 14(2):79 81, [15] S. Vincent nd D. Forsey. Fst nd ccurte prmetric curve length computtion. J. Grph. Tools, 6(4):29 40, [16] M. Wlter nd A. Fournier. Approximte rc length prmeteriztion. In Proceedings of the 9th Brzilin symposium on computer grphics nd imge processing, pges , [17] F.-C. Wng nd D. C. H. Yng. Nerly rc-length prmeterized quintic-spline interpoltion for precision mchining. Computer-Aided Design, 25(5): ,

16 [18] H. Wng, J. Kerney, nd K. Atkinson. Arc-length prmeterized spline curves for rel-time simultion. In Curve nd Surfce Design, Sint-Mlo, pges ,

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

1 The Lagrange interpolation formula

1 The Lagrange interpolation formula Notes on Qudrture 1 The Lgrnge interpoltion formul We briefly recll the Lgrnge interpoltion formul. The strting point is collection of N + 1 rel points (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ), with x

More information

Numerical Integration

Numerical Integration Chpter 5 Numericl Integrtion Numericl integrtion is the study of how the numericl vlue of n integrl cn be found. Methods of function pproximtion discussed in Chpter??, i.e., function pproximtion vi the

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ), 1. Guss-Jcobi qudrture nd Legendre polynomils Simpson s rule for evluting n integrl f(t)dt gives the correct nswer with error of bout O(n 4 ) (with constnt tht depends on f, in prticulr, it depends on

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

An optimal 3-point quadrature formula of closed type and error bounds

An optimal 3-point quadrature formula of closed type and error bounds Revist Colombin de Mtemátics Volumen 8), págins 9- An optiml 3-point qudrture formul of closed type nd error bounds Un fórmul de cudrtur óptim de 3 puntos de tipo cerrdo y error de fronter Nend Ujević,

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Lecture 20: Numerical Integration III

Lecture 20: Numerical Integration III cs4: introduction to numericl nlysis /8/0 Lecture 0: Numericl Integrtion III Instructor: Professor Amos Ron Scribes: Mrk Cowlishw, Yunpeng Li, Nthnel Fillmore For the lst few lectures we hve discussed

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information

Orthogonal Polynomials

Orthogonal Polynomials Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils

More information

QUADRATURE is an old-fashioned word that refers to

QUADRATURE is an old-fashioned word that refers to World Acdemy of Science Engineering nd Technology Interntionl Journl of Mthemticl nd Computtionl Sciences Vol:5 No:7 011 A New Qudrture Rule Derived from Spline Interpoltion with Error Anlysis Hdi Tghvfrd

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Numerical quadrature based on interpolating functions: A MATLAB implementation

Numerical quadrature based on interpolating functions: A MATLAB implementation SEMINAR REPORT Numericl qudrture bsed on interpolting functions: A MATLAB implementtion by Venkt Ayylsomyjul A seminr report submitted in prtil fulfillment for the degree of Mster of Science (M.Sc) in

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

Numerical Analysis. 10th ed. R L Burden, J D Faires, and A M Burden

Numerical Analysis. 10th ed. R L Burden, J D Faires, and A M Burden Numericl Anlysis 10th ed R L Burden, J D Fires, nd A M Burden Bemer Presenttion Slides Prepred by Dr. Annette M. Burden Youngstown Stte University July 9, 2015 Chpter 4.1: Numericl Differentition 1 Three-Point

More information

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), ) Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s

More information

Numerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1

Numerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1 AMSC/CMSC 46/466 T. von Petersdorff 1 umericl Integrtion 1 Introduction We wnt to pproximte the integrl I := f xdx where we re given, b nd the function f s subroutine. We evlute f t points x 1,...,x n

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

Undergraduate Research

Undergraduate Research Undergrdute Reserch A Trigonometric Simpson s Rule By Ctherine Cusimno Kirby nd Sony Stnley Biogrphicl Sketch Ctherine Cusimno Kirby is the dughter of Donn nd Sm Cusimno. Originlly from Vestvi Hills, Albm,

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Abstract inner product spaces

Abstract inner product spaces WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014 Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t Urbn-Chmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method

More information

Construction of Gauss Quadrature Rules

Construction of Gauss Quadrature Rules Jim Lmbers MAT 772 Fll Semester 2010-11 Lecture 15 Notes These notes correspond to Sections 10.2 nd 10.3 in the text. Construction of Guss Qudrture Rules Previously, we lerned tht Newton-Cotes qudrture

More information

Numerical Analysis. Doron Levy. Department of Mathematics Stanford University

Numerical Analysis. Doron Levy. Department of Mathematics Stanford University Numericl Anlysis Doron Levy Deprtment of Mthemtics Stnford University December 1, 2005 D. Levy Prefce i D. Levy CONTENTS Contents Prefce i 1 Introduction 1 2 Interpoltion 2 2.1 Wht is Interpoltion?............................

More information

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015 Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n

More information

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9 III Lecture on Numericl Integrtion File fclib/dttb/lecture-notes/numerical-inter03.tex /by EC, 3/14/008 t 15:11, version 9 1 Sttement of the Numericl Integrtion Problem In this lecture we consider the

More information

Chapter 3 Polynomials

Chapter 3 Polynomials Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

II. Integration and Cauchy s Theorem

II. Integration and Cauchy s Theorem MTH6111 Complex Anlysis 2009-10 Lecture Notes c Shun Bullett QMUL 2009 II. Integrtion nd Cuchy s Theorem 1. Pths nd integrtion Wrning Different uthors hve different definitions for terms like pth nd curve.

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration.

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration. Advnced Computtionl Fluid Dynmics AA215A Lecture 3 Polynomil Interpoltion: Numericl Differentition nd Integrtion Antony Jmeson Winter Qurter, 2016, Stnford, CA Lst revised on Jnury 7, 2016 Contents 3 Polynomil

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls

More information

Lecture 23: Interpolatory Quadrature

Lecture 23: Interpolatory Quadrature Lecture 3: Interpoltory Qudrture. Qudrture. The computtion of continuous lest squres pproximtions to f C[, b] required evlutions of the inner product f, φ j = fxφ jx dx, where φ j is polynomil bsis function

More information

Integral points on the rational curve

Integral points on the rational curve Integrl points on the rtionl curve y x bx c x ;, b, c integers. Konstntine Zeltor Mthemtics University of Wisconsin - Mrinette 750 W. Byshore Street Mrinette, WI 5443-453 Also: Konstntine Zeltor P.O. Box

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION Applied Mthemtics E-Notes, 5(005), 53-60 c ISSN 1607-510 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

Notes on length and conformal metrics

Notes on length and conformal metrics Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

More information

Introduction to the Calculus of Variations

Introduction to the Calculus of Variations Introduction to the Clculus of Vritions Jim Fischer Mrch 20, 1999 Abstrct This is self-contined pper which introduces fundmentl problem in the clculus of vritions, the problem of finding extreme vlues

More information

Sections 5.2: The Definite Integral

Sections 5.2: The Definite Integral Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)

More information

Numerical Integration

Numerical Integration Chpter 1 Numericl Integrtion Numericl differentition methods compute pproximtions to the derivtive of function from known vlues of the function. Numericl integrtion uses the sme informtion to compute numericl

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

1.3 The Lemma of DuBois-Reymond

1.3 The Lemma of DuBois-Reymond 28 CHAPTER 1. INDIRECT METHODS 1.3 The Lemm of DuBois-Reymond We needed extr regulrity to integrte by prts nd obtin the Euler- Lgrnge eqution. The following result shows tht, t lest sometimes, the extr

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

APPROXIMATE INTEGRATION

APPROXIMATE INTEGRATION APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose nti-derivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be

More information

Lecture 14 Numerical integration: advanced topics

Lecture 14 Numerical integration: advanced topics Lecture 14 Numericl integrtion: dvnced topics Weinn E 1,2 nd Tiejun Li 2 1 Deprtment of Mthemtics, Princeton University, weinn@princeton.edu 2 School of Mthemticl Sciences, Peking University, tieli@pku.edu.cn

More information

Key words. Numerical quadrature, piecewise polynomial, convergence rate, trapezoidal rule, midpoint rule, Simpson s rule, spectral accuracy.

Key words. Numerical quadrature, piecewise polynomial, convergence rate, trapezoidal rule, midpoint rule, Simpson s rule, spectral accuracy. O SPECTRA ACCURACY OF QUADRATURE FORMUAE BASED O PIECEWISE POYOMIA ITERPOATIO A KURGAOV AD S TSYKOV Abstrct It is well-known tt te trpezoidl rule, wile being only second-order ccurte in generl, improves

More information

MATH 144: Business Calculus Final Review

MATH 144: Business Calculus Final Review MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives

More information

Arithmetic Mean Derivative Based Midpoint Rule

Arithmetic Mean Derivative Based Midpoint Rule Applied Mthemticl Sciences, Vol. 1, 018, no. 13, 65-633 HIKARI Ltd www.m-hikri.com https://doi.org/10.1988/ms.018.858 Arithmetic Men Derivtive Bsed Midpoint Rule Rike Mrjulis 1, M. Imrn, Symsudhuh Numericl

More information

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature COSC 336 Numericl Anlysis I Numericl Integrtion nd Dierentition III - Guss Qudrture nd Adptive Qudrture Edgr Griel Fll 5 COSC 336 Numericl Anlysis I Edgr Griel Summry o the lst lecture I For pproximting

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

Main topics for the First Midterm

Main topics for the First Midterm Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 2-3, Sections 4.1-4.8, nd Sections 5.1-5.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2. Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

More information

Introduction to Numerical Analysis

Introduction to Numerical Analysis Introduction to Numericl Anlysis Doron Levy Deprtment of Mthemtics nd Center for Scientific Computtion nd Mthemticl Modeling (CSCAMM) University of Mrylnd June 14, 2012 D. Levy CONTENTS Contents 1 Introduction

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

Chapter 5. Numerical Integration

Chapter 5. Numerical Integration Chpter 5. Numericl Integrtion These re just summries of the lecture notes, nd few detils re included. Most of wht we include here is to be found in more detil in Anton. 5. Remrk. There re two topics with

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES DOIG PHYSICS WITH MATLAB MATHEMATICAL ROUTIES COMPUTATIO OF OE-DIMESIOAL ITEGRALS In Cooper School of Physics, University of Sydney in.cooper@sydney.edu.u DOWLOAD DIRECTORY FOR MATLAB SCRIPTS mth_integrtion_1d.m

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE HANS RINGSTRÖM. Questions nd exmples In the study of Fourier series, severl questions rise nturlly, such s: () (2) re there conditions on c n, n Z, which ensure

More information

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemann is the Mann! (But Lebesgue may besgue to differ.) Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

More information

LECTURE 19. Numerical Integration. Z b. is generally thought of as representing the area under the graph of fèxè between the points x = a and

LECTURE 19. Numerical Integration. Z b. is generally thought of as representing the area under the graph of fèxè between the points x = a and LECTURE 9 Numericl Integrtion Recll from Clculus I tht denite integrl is generlly thought of s representing the re under the grph of fèxè between the points x = nd x = b, even though this is ctully only

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

Taylor Polynomial Inequalities

Taylor Polynomial Inequalities Tylor Polynomil Inequlities Ben Glin September 17, 24 Abstrct There re instnces where we my wish to pproximte the vlue of complicted function round given point by constructing simpler function such s polynomil

More information

Math 270A: Numerical Linear Algebra

Math 270A: Numerical Linear Algebra Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner

More information

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but... Chpter 7 Numericl Methods 7. Introduction In mny cses the integrl f(x)dx cn be found by finding function F (x) such tht F 0 (x) =f(x), nd using f(x)dx = F (b) F () which is known s the nlyticl (exct) solution.

More information

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula. Generliztions of the Ostrowski s inequlity K. S. Anstsiou Aristides I. Kechriniotis B. A. Kotsos Technologicl Eductionl Institute T.E.I.) of Lmi 3rd Km. O.N.R. Lmi-Athens Lmi 3500 Greece Abstrct Using

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Numerical Methods I Orthogonal Polynomials

Numerical Methods I Orthogonal Polynomials Numericl Methods I Orthogonl Polynomils Aleksndr Donev Cournt Institute, NYU 1 donev@cournt.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fll 2014 Nov 6th, 2014 A. Donev (Cournt Institute) Lecture IX

More information

p(x) = 3x 3 + x n 3 k=0 so the right hand side of the equality we have to show is obtained for r = b 0, s = b 1 and 2n 3 b k x k, q 2n 3 (x) =

p(x) = 3x 3 + x n 3 k=0 so the right hand side of the equality we have to show is obtained for r = b 0, s = b 1 and 2n 3 b k x k, q 2n 3 (x) = Norwegin University of Science nd Technology Deprtment of Mthemticl Sciences Pge 1 of 5 Contct during the exm: Elen Celledoni, tlf. 73593541, cell phone 48238584 PLESE NOTE: this solution is for the students

More information

Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Least Squares Approximation Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

More information