Pairing Phases of Polaritons

Size: px
Start display at page:

Download "Pairing Phases of Polaritons"

Transcription

1 Pairing Phases of Polaritons Jonathan Keeling University of St Andrews 6 YEARS St Petersburg, March 14 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 1 / 11

2 Outline 1 Introduction Pairing phases of atoms Feshbach for polaritons Pairing phases for polaritons Phase diagram: Critical detunings Signatures Phase diagram: Critical temperatures Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 / 11

3 Tuning pair interactions Different F z states (F=J + I), tune by E(r ) = const + (µ a µ b )B z Energy "closed" µb r "open" Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 3 / 11

4 Tuning pair interactions Different F z states (F=J + I), tune by E(r ) = const + (µ a µ b )B z Energy "closed" µb r "open" Energy "closed" µb r "open" Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 3 / 11

5 Tuning pair interactions Different F z states (F=J + I), tune by E(r ) = const + (µ a µ b )B z Energy "closed" µb r "open" Energy "closed" µb r "open" Energy "closed" µb r "open" Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 3 / 11

6 Tuning pair interactions Different F z states (F=J + I), tune by E(r ) = const + (µ a µ b )B z Energy "closed" µb r "open" Energy "closed" µb r "open" Energy "closed" µb r "open" E Open channel (atoms) Closed channel Bound state (B-B ) Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 3 / 11

7 Tuning pair interactions Different F z states (F=J + I), tune by E(r ) = const + (µ a µ b )B z Energy "closed" µb r "open" Energy "closed" µb r "open" Energy "closed" µb r "open" E = Repulsive E = Attractive E Open channel (atoms) Closed channel Bound state (B-B ) Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 3 / 11

8 Pairing phases of atoms Fermions From Randeria, at. Phys. 1 o phase transition, BEC-BCS crossover BEC of atoms or pairs Ĥ =... + ˆψ m ˆψ a1 ˆψa + h.c. If ˆψ m, If ˆψ a1, ˆψ a. High density metastability. [Eagles, Leggett, Keldysh, ozières, Randeria,... ] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 4 / 11

9 Pairing phases of atoms Fermions Bosons T (B B ) From Randeria, at. Phys. 1 o phase transition, BEC-BCS crossover [Eagles, Leggett, Keldysh, ozières, Randeria,... ] BEC of atoms or pairs Ĥ =... + ˆψ m ˆψ a1 ˆψa + h.c. If ˆψ m, If ˆψ a1, ˆψ a. High density metastability. [ozières, St James, Timmermanns, Mueller, Thouless, Radzihovsky, Stoof, Sachdev... ] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 4 / 11

10 Pairing phases of atoms Fermions Bosons T (B B ) From Randeria, at. Phys. 1 o phase transition, BEC-BCS crossover [Eagles, Leggett, Keldysh, ozières, Randeria,... ] BEC of atoms or pairs Ĥ =... + ˆψ m ˆψ a1 ˆψa + h.c. If ˆψ m, If ˆψ a1, ˆψ a. High density metastability. [ozières, St James, Timmermanns, Mueller, Thouless, Radzihovsky, Stoof, Sachdev... ] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 4 / 11

11 Polariton Feshbach Hybridisation of bound states: Biexciton: opposite spins (two-species): ω X [ E b Hybridisation with photons: 1 (ωc + ωx ) ] 1 Ω r + δ Control δ change ν, m, Interaction... [Ivanov, Haug, Keldysh 98], [Wouters 7], [Caursotto et al. 1], [Deveaud-Pledran et al. 13] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 5 / 11

12 Polariton Feshbach Hybridisation of bound states: Biexciton: opposite spins (two-species): ω X [ E b Hybridisation with photons: 1 (ωc + ωx ) ] 1 Ω r + δ Control δ change ν, m, Interaction... [Ivanov, Haug, Keldysh 98], [Wouters 7], [Caursotto et al. 1], [Deveaud-Pledran et al. 13] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 5 / 11

13 Polariton Feshbach Hybridisation of bound states: Biexciton: opposite spins (two-species): ω X [ E b Hybridisation with photons: 1 (ωc + ωx ) ] 1 Ω r + δ E X ω ω XX LP ω E b ν > E ω X [mev] 6 4 UP ω UP Control δ change ν, m, Interaction... C C ω X X ω δ (Ω R +δ ) 1/ 4 LP 4 k [µm 1 ] LP ω [Ivanov, Haug, Keldysh 98], [Wouters 7], [Caursotto et al. 1], [Deveaud-Pledran et al. 13] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 5 / 11

14 Polariton Feshbach Hybridisation of bound states: Biexciton: opposite spins (two-species): ω X [ E b Hybridisation with photons: 1 (ωc + ωx ) ] 1 Ω r + δ E ω = X ω LP ω XX E b ν = X [mev] ω E 6 4 UP C X LP 4 k [µm 1 ] 4 ω UP ω C X ω LP ω δ (Ω R +δ ) 1/ Control δ change ν, m, Interaction... [Ivanov, Haug, Keldysh 98], [Wouters 7], [Caursotto et al. 1], [Deveaud-Pledran et al. 13] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 5 / 11

15 Polariton Feshbach X [mev] ω E 6 4 Hybridisation of bound states: Biexciton: opposite spins (two-species): ω X [ E b Hybridisation with photons: 1 (ωc + ωx ) ] 1 Ω r + δ UP C X LP 4 k [µm 1 ] 4 ω = X ω LP ω XX ω UP ω C X ω LP ω E E b ν = δ (Ω R +δ ) 1/ [mev] ν Control δ change ν, m, Interaction... Bound state δ [mev] [Ivanov, Haug, Keldysh 98], [Wouters 7], [Caursotto et al. 1], [Deveaud-Pledran et al. 13] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 5 / 11 E b

16 Phase diagram (ground state, T = ) δ [mev] µ [mev] PS 1x1 11 n [cm ] δ <, no biexciton physics standard BEC. Small δ : Fluctuations drive 1st order Larkin-Pikin mechanism, coupling gψ ψ m Large phase-separation region aive resonance δ r = 3.84,replaced by critical end-point at δ > δ r Large δ: - transition always occurs as U mm renormalises energy. Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 6 / 11

17 Phase diagram (ground state, T = ) δ [mev] µ [mev] PS 1x1 11 n [cm ] δ <, no biexciton physics standard BEC. Small δ : Fluctuations drive 1st order Larkin-Pikin mechanism, coupling gψ ψ m Large phase-separation region aive resonance δ r = 3.84,replaced by critical end-point at δ > δ r Large δ: - transition always occurs as U mm renormalises energy. Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 6 / 11

18 Phase diagram (ground state, T = ) δ [mev] µ [mev] PS 1x1 11 n [cm ] δ <, no biexciton physics standard BEC. Small δ : Fluctuations drive 1st order Larkin-Pikin mechanism, coupling gψ ψ m Large phase-separation region aive resonance δ r = 3.84,replaced by critical end-point at δ > δ r Large δ: - transition always occurs as U mm renormalises energy. Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 6 / 11

19 Phase diagram (ground state, T = ) δ [mev] µ [mev] PS 1x1 11 n [cm ] δ <, no biexciton physics standard BEC. Small δ : Fluctuations drive 1st order Larkin-Pikin mechanism, coupling gψ ψ m Large phase-separation region aive resonance δ r = 3.84,replaced by critical end-point at δ > δ r Large δ: - transition always occurs as U mm renormalises energy. Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 6 / 11

20 Phase diagram (ground state, T = ) δ [mev] µ [mev] PS 1x1 11 n [cm ] δ <, no biexciton physics standard BEC. Small δ : Fluctuations drive 1st order Larkin-Pikin mechanism, coupling gψ ψ m Large phase-separation region aive resonance δ r = 3.84,replaced by critical end-point at δ > δ r Large δ: - transition always occurs as U mm renormalises energy. Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 6 / 11

21 Consequences and Signatures 1st-order near resonance phase separation Direct access to polariton phase coherence : standard g σ (1) = ψ σ(r, t)ψ σ (, ). (D, QLRO) Vortex structure novel half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Previous half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 7 / 11

22 Consequences and Signatures 1st-order near resonance phase separation Direct access to polariton phase coherence : standard g σ (1) = ψ σ(r, t)ψ σ (, ). (D, QLRO) Vortex structure novel half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Previous half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 7 / 11

23 Consequences and Signatures 1st-order near resonance phase separation Direct access to polariton phase coherence : standard g σ (1) = ψ σ(r, t)ψ σ (, ). (D, QLRO) Vortex structure novel half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Previous half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 7 / 11

24 Consequences and Signatures 1st-order near resonance phase separation Direct access to polariton phase coherence : standard g σ (1) = ψ σ(r, t)ψ σ (, ). (D, QLRO) Vortex structure novel half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Previous half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 7 / 11

25 Consequences and Signatures 1st-order near resonance phase separation Direct access to polariton phase coherence : standard g σ (1) = ψ σ(r, t)ψ σ (, ). (D, QLRO) : no atomic coherence, but: APD φ APD A g (1) m = ψ (r, t)ψ (r, t)ψ (, )ψ (, ) Adjustable delay APD B not g see time/space labels θ APD Vortex structure novel half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Previous half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 7 / 11

26 Consequences and Signatures 1st-order near resonance phase separation Direct access to polariton phase coherence : standard g σ (1) = ψ σ(r, t)ψ σ (, ). (D, QLRO) : no atomic coherence, but: APD φ APD A g (1) m = ψ (r, t)ψ (r, t)ψ (, )ψ (, ) Adjustable delay APD B not g see time/space labels θ APD Vortex structure novel half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Previous half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 7 / 11

27 Phase diagram, T > T=.58 K µ [mev] PS x1 11 n [cm ] δ [mev] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 8 / 11

28 Phase diagram, T > T=.58 K PS δ [mev] 3 δ=1 mev PS µ [mev] 11 n [cm ] x1 T [K] µ [mev] 11 x1 n [cm ] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 8 / 11

29 Phase diagram, T > T [K] 1 3 δ=8.3 mev δ=1 mev PS PS T=.58 K x1 µ [mev] n [cm ] PS δ [mev] T [K] µ [mev] 11 x1 n [cm ] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 8 / 11

30 Phase diagram, T > T [K] T [K] δ=6.5 mev δ=8.3 mev δ=1 mev PS PS PS T=.58 K x1 µ [mev] n [cm ] PS [mev] δ T [K] µ [mev] 11 x1 n [cm ] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 8 / 11

31 Evolution of triple point Required T, δ for : Triple point Excitonic fraction c = 1 [ ] δ 1 +. δ Ω: Pure exciton δ + Ω GaAs, need low T/high exciton fraction ZnO, easy to attain Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 9 / 11

32 Evolution of triple point Required T, δ for : Triple point Excitonic fraction c = 1 [ ] δ 1 +. δ Ω: Pure exciton δ + Ω δ [mev] GaAs ZnO T [K] GaAs, need low T/high exciton fraction ZnO, easy to attain T [K] excitonic fraction [%] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 9 / 11

33 Evolution of triple point Required T, δ for : Triple point Excitonic fraction c = 1 [ ] δ 1 +. δ Ω: Pure exciton δ + Ω δ [mev] GaAs ZnO T [K] GaAs, need low T/high exciton fraction ZnO, easy to attain T [K] excitonic fraction [%] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 9 / 11

34 Evolution of triple point Required T, δ for : Triple point Excitonic fraction c = 1 [ ] δ 1 +. δ Ω: Pure exciton δ + Ω δ [mev] GaAs ZnO T [K] GaAs, need low T/high exciton fraction ZnO, easy to attain T [K] excitonic fraction [%] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 9 / 11

35 Acknowledgements GROUP: COLLABORATORS: Francesca Marchetti, UAM FUDIG: Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 1 / 11

36 Adjustable delay φ θ APD APD A B ν Summary Polariton biexciton detuning Feshbach resonance E ω X [mev] 6 4 LP UP C X 4 4 k [µm 1 ] [mev] Bound state δ [mev] Polaritons can show pairing phase δ [mev] µ [mev] PS 1x1 11 n [cm ] T [K] 3 1 δ=1 mev E b µ [mev] PS x1 11 n [cm ] easily attainable for ZnO; for GaAs δ [mev] GaAs ZnO T [K] T [K] excitonic fraction [%] Possible signatures in coherence and vortices APD APD [Marchetti and Keeling, arxiv:138.13] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March / 11

37 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 1 /

38 3 Model Exciton spin 4 Calculation details Variational wavefunction Variational MFT 5 More phase diagrams Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

39 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton B, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March / )

40 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton B, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March / )

41 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton B, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March / )

42 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton B, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March / )

43 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton B, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March / )

44 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψ σ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. E Polariton dispersion m, detuning ν, interactions depend on δ Resonance width, dispersion derived from dressed exciton T matrix. E ω X [mev] 6 4 UP C X LP 4 4 k [µm 1 ] X ω ω XX LP ω ω UP ω C ω X ω LP E b ν > δ (Ω R +δ ) 1/ Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

45 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψ σ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. E Polariton dispersion m, detuning ν, interactions depend on δ Resonance width, dispersion derived from dressed exciton T matrix. E ω X [mev] 6 4 UP C X LP 4 4 k [µm 1 ] X ω ω XX LP ω ω UP ω C ω X ω LP E b ν > δ (Ω R +δ ) 1/ Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

46 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψ σ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. E Polariton dispersion m, detuning ν, interactions depend on δ Resonance width, dispersion derived from dressed exciton T matrix. X [mev] ω E 6 4 UP C X LP 4 k [µm 1 ] 4 X ω LP ω = ω XX ω UP ω C X ω LP ω E b ν = δ (Ω R +δ ) 1/ Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

47 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψ σ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. E Polariton dispersion m, detuning ν, interactions depend on δ Resonance width, dispersion derived from dressed exciton T matrix. X [mev] ω E 6 4 UP C X LP 4 k [µm 1 ] 4 X ω LP ω = ω XX ω UP ω C X ω LP ω E b ν = δ (Ω R +δ ) 1/ Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

48 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψσ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. ν > Biexciton in continuum m LP /m X E b ~m C /m X δ [mev] ν [mev] ν < Bound biexciton. (Excitonic limit) Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

49 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

50 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole E c v J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

51 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole E c v, J=3/ HH v, J=3/ LH v, J=1/ J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

52 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole z Cavity E c v, J=3/ HH v, J=3/ LH v, J=1/ J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

53 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole z Cavity E c v, J=3/ HH v, J=3/ LH v, J=1/ J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

54 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole z Cavity E c v, J=3/ HH v, J=3/ LH v, J=1/ J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

55 Beyond mean-field Fluctuation effects? Polariton fluctuations irrelevant: mu 1 4. Exciton fluctuations important: m m U 1. ext order theory: [ozières & St James, J. Phys 8] Ψ exp ψ σ ˆψ k=,σ + tanh(θ kγ )ˆb ˆb kγ kγ. σ=,,m k,γ=a,b,m ( ) ˆψ where ˆb km = ˆψ km and k ˆψ = 1 ( 1 1 k 1 1 Variational functional E[ψ, ψ m, θ kγ ] ) ( ˆb ka ˆb kb Can show minimum θ kγ has form tanh(θ kγ ) = β γ + k /m γ Finite only if αγ < β γ Variational function E(ψ, ψ m, α γ, β γ ) ) α γ, Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

56 Beyond mean-field Fluctuation effects? Polariton fluctuations irrelevant: mu 1 4. Exciton fluctuations important: m m U 1. ext order theory: [ozières & St James, J. Phys 8] Ψ exp ψ σ ˆψ k=,σ + tanh(θ kγ )ˆb ˆb kγ kγ. σ=,,m k,γ=a,b,m ( ) ˆψ where ˆb km = ˆψ km and k ˆψ = 1 ( 1 1 k 1 1 Variational functional E[ψ, ψ m, θ kγ ] ) ( ˆb ka ˆb kb Can show minimum θ kγ has form tanh(θ kγ ) = β γ + k /m γ Finite only if αγ < β γ Variational function E(ψ, ψ m, α γ, β γ ) ) α γ, Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

57 Beyond mean-field Fluctuation effects? Polariton fluctuations irrelevant: mu 1 4. Exciton fluctuations important: m m U 1. ext order theory: [ozières & St James, J. Phys 8] Ψ exp ψ σ ˆψ k=,σ + tanh(θ kγ )ˆb ˆb kγ kγ. σ=,,m k,γ=a,b,m ( ) ˆψ where ˆb km = ˆψ km and k ˆψ = 1 ( 1 1 k 1 1 Variational functional E[ψ, ψ m, θ kγ ] ) ( ˆb ka ˆb kb Can show minimum θ kγ has form tanh(θ kγ ) = β γ + k /m γ Finite only if αγ < β γ Variational function E(ψ, ψ m, α γ, β γ ) ) α γ, Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

58 Beyond mean-field Fluctuation effects? Polariton fluctuations irrelevant: mu 1 4. Exciton fluctuations important: m m U 1. ext order theory: [ozières & St James, J. Phys 8] Ψ exp ψ σ ˆψ k=,σ + tanh(θ kγ )ˆb ˆb kγ kγ. σ=,,m k,γ=a,b,m ( ) ˆψ where ˆb km = ˆψ km and k ˆψ = 1 ( 1 1 k 1 1 Variational functional E[ψ, ψ m, θ kγ ] ) ( ˆb ka ˆb kb Can show minimum θ kγ has form tanh(θ kγ ) = β γ + k /m γ Finite only if αγ < β γ Variational function E(ψ, ψ m, α γ, β γ ) ) α γ, Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

59 Finite T calculation Finite T minimize free energy Use Feynman-Jensen inequality: [ ] F = k B T ln Tre Ĥ/k BT F MF + Ĥ ĤMF MF Where... MF calculated using ρ = e (F MF ĤMF)/k B T Ansatz ĤMF Variational F(ψ, ψ m, α γ, β γ ). Ĥ MF = γ { + 1 Aψ γ (α γ + β γ ) (ˆb γ + ˆb ) γ k (ˆb kγ ˆb kγ ) ( ɛ kγ + β γ α γ ) ( ) } α γ ˆbkγ. ɛ kγ + β γ ˆb kγ Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

60 Finite T calculation Finite T minimize free energy Use Feynman-Jensen inequality: [ ] F = k B T ln Tre Ĥ/k BT F MF + Ĥ ĤMF MF Where... MF calculated using ρ = e (F MF ĤMF)/k B T Ansatz ĤMF Variational F(ψ, ψ m, α γ, β γ ). Ĥ MF = γ { + 1 Aψ γ (α γ + β γ ) (ˆb γ + ˆb ) γ k (ˆb kγ ˆb kγ ) ( ɛ kγ + β γ α γ ) ( ) } α γ ˆbkγ. ɛ kγ + β γ ˆb kγ Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

61 Finite T calculation Finite T minimize free energy Use Feynman-Jensen inequality: [ ] F = k B T ln Tre Ĥ/k BT F MF + Ĥ ĤMF MF Where... MF calculated using ρ = e (F MF ĤMF)/k B T Ansatz ĤMF Variational F(ψ, ψ m, α γ, β γ ). Ĥ MF = γ { + 1 Aψ γ (α γ + β γ ) (ˆb γ + ˆb ) γ k (ˆb kγ ˆb kγ ) ( ɛ kγ + β γ α γ ) ( ) } α γ ˆbkγ. ɛ kγ + β γ ˆb kγ Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March /

62 Variational MFT for WIDBG Test validity. WIDBG Ĥ = k VMFT for WIDBG: k m ψ k ψ k + U d rψ ψ ψψ Ĥ MF = Aψ(α + β)(ˆb + ˆb ) + 1 ) (ˆb ( ) ( ) ɛ k ˆb k + β α ˆbk k. α ɛ k + β k ˆb k Compare to D EOS, ρ(µ) = Tf (µ/t ) CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 /

63 Variational MFT for WIDBG Test validity. WIDBG Ĥ = k VMFT for WIDBG: k m ψ k ψ k + U d rψ ψ ψψ Ĥ MF = Aψ(α + β)(ˆb + ˆb ) + 1 ) (ˆb ( ) ( ) ɛ k ˆb k + β α ˆbk k. α ɛ k + β k ˆb k Compare to D EOS, ρ(µ) = Tf (µ/t ) CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 /

64 Variational MFT for WIDBG Test validity. WIDBG Ĥ = k k m ψ k ψ k + U d rψ ψ ψψ VMFT for WIDBG: Ĥ MF = Aψ(α + β)(ˆb + ˆb ) + 1 ) (ˆb ( ) ( 3 ) ɛ k ˆb k + β α ˆbk k. α ɛ k + β 1 k ˆb k Compare to D EOS, ρ(µ) = Tf (µ/t ) Density ρ/t VMFT QMC [PRA ] mu=.1, ε c =1 [a.u.] CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ µ/t Temperature, T [a.u.] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 /

65 Variational MFT for WIDBG Test validity. WIDBG Ĥ = k k m ψ k ψ k + U d rψ ψ ψψ VMFT for WIDBG: Ĥ MF = Aψ(α + β)(ˆb + ˆb ) + 1 ) (ˆb ( ) ( 3 ) ɛ k ˆb k + β α ˆbk k. α ɛ k + β 1 k ˆb k Compare to D EOS, ρ(µ) = Tf (µ/t ) Density ρ/t VMFT QMC [PRA ] mu=.1, ε c =1 [a.u.] CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ µ/t Temperature, T [a.u.] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 /

66 Phase diagram, finite temperature δ [mev] T=.58 K µ [mev] PS x1 11 n [cm ] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 1 /

67 Phase diagram, finite temperature δ [mev] δ [mev] T=.58 K T=1.16 K µ [mev] PS PS n [cm ] x1 11 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 1 /

68 Phase diagram, finite temperature δ [mev] δ [mev] δ [mev] T=.58 K T=1.16 K T =.3 K µ [mev] PS PS PS x1 11 n [cm ] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 1 /

69 Phase diagram, finite temperature δ [mev] δ [mev] δ [mev] T=.58 K T=1.16 K T =.3 K µ [mev] PS PS PS x1 11 n [cm ] δ [mev] 5 PS n [cm ] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 1 /

70 Phase diagram, vs temperature T=.58 K PS δ [mev] 3 δ=1 mev PS µ [mev] 11 n [cm ] x1 T [K] µ [mev] 11 x1 n [cm ] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 /

71 Phase diagram, vs temperature T [K] 1 3 δ=8.3 mev δ=1 mev PS PS T=.58 K x1 µ [mev] n [cm ] PS δ [mev] T [K] µ [mev] 11 x1 n [cm ] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 /

72 Phase diagram, vs temperature T [K] T [K] δ=6.5 mev δ=8.3 mev δ=1 mev PS PS PS T=.58 K x1 µ [mev] n [cm ] PS [mev] δ T [K] µ [mev] 11 x1 n [cm ] Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 /

Pairing Phases of Polaritons

Pairing Phases of Polaritons Pairing Phases of Polaritons Jonathan Keeling 1 University of St Andrews 6 YEARS Pisa, January 14 Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 1 / 34 Bose-Einstein condensation: macroscopic

More information

Pairing Phases of Polaritons, and photon condensates

Pairing Phases of Polaritons, and photon condensates Pairing Phases of Polaritons, and photon condensates Jonathan Keeling University of St Andrews 6 YEARS ICSCE7, Hakone, April 14 Jonathan Keeling Pairing phases & photons ICSCE7, April 14 1 / 1 Outline

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Sarma phase in relativistic and non-relativistic systems

Sarma phase in relativistic and non-relativistic systems phase in relativistic and non-relativistic systems Tina Katharina Herbst In Collaboration with I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich arxiv:149.5232

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Driven-dissipative polariton quantum fluids in and out of equilibrium

Driven-dissipative polariton quantum fluids in and out of equilibrium Driven-dissipative polariton quantum fluids in and out of equilibrium Marzena Szymańska Designer Quantum Systems Out of Equilibrium KITP, November 2016 Acknowledgements Group: A. Zamora G. Dagvadorj In

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Microcavity Exciton-Polariton

Microcavity Exciton-Polariton Microcavity Exciton-Polariton Neil Na ( 那允中 ) Institute of Photonics Technologies National Tsing-Hua University 5/3/2012 Outline Microcavity Exciton-polariton QW excitons Microcavity photons Strong coupling

More information

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics, ETH Zürich, Switzerland

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft An imbalanced Fermi gas in 1 + ɛ dimensions Andrew J. A. James A. Lamacraft 2009 Quantum Liquids Interactions and statistics (indistinguishability) Some examples: 4 He 3 He Electrons in a metal Ultracold

More information

Dynamical Condensation of ExcitonPolaritons

Dynamical Condensation of ExcitonPolaritons ICSCE 2008 Dynamical Condensation of ExcitonPolaritons Y. Yamamoto, H. Deng, G. Weihs, C.W. Lai, G. Roumpos and S. Utsunomiya Stanford University and National Institute of Informatics Loeffler, S. Hoefling,

More information

Polaritons in some interacting exciton systems

Polaritons in some interacting exciton systems Polaritons in some interacting exciton systems Peter Littlewood, Argonne and U Chicago Richard Brierley (Yale) Cele Creatore (Cambridge) Paul Eastham (Trinity College, Dublin) Francesca Marchetti (Madrid)

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Some theory of polariton condensation and dynamics

Some theory of polariton condensation and dynamics Some theory of polariton condensation and dynamics Peter Littlewood, Argonne and U Chicago Richard Brierley, Yale, Cele Creatore, Cambridge Sahinur Reja, Dresden Paul Eastham, Trinity College, Dublin Francesca

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

Signatures of the precursor superconductivity above T c

Signatures of the precursor superconductivity above T c Dresden, 18 April 2007 Signatures of the precursor superconductivity above T c T. DOMANSKI M. Curie-Skłodowska University, 20-031 Lublin, Poland http://kft.umcs.lublin.pl/doman Outline Outline Introduction

More information

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices Marzena Szymanska Collaborators Theory F. M. Marchetti E. Cancellieri C. Tejedor D. Whittaker Experiment D. Sanvitto,

More information

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover 6th APCWQIS, December 2012 Bilal Tanatar December 6, 2012 Prologue 1 Introduction Prologue Cooling Techniques 2 BCS-BEC Crossover

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Solution of the Anderson impurity model via the functional renormalization group

Solution of the Anderson impurity model via the functional renormalization group Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe

More information

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Quantum Gases Conference, Paris, 30 June 2007. Gunnar Möller

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons.

Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons. Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons. Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons Jonathan Mark James Keeling Jesus College University

More information

Many-body physics 2: Homework 8

Many-body physics 2: Homework 8 Last update: 215.1.31 Many-body physics 2: Homework 8 1. (1 pts) Ideal quantum gases (a)foranidealquantumgas,showthatthegrandpartitionfunctionz G = Tre β(ĥ µ ˆN) is given by { [ ] 1 Z G = i=1 for bosons,

More information

Towards a quantitative FRG approach for the BCS-BEC crossover

Towards a quantitative FRG approach for the BCS-BEC crossover Towards a quantitative FRG approach for the BCS-BEC crossover Michael M. Scherer Theoretisch Physikalisches Institut, Jena University in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies,

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

8 Quantized Interaction of Light and Matter

8 Quantized Interaction of Light and Matter 8 Quantized Interaction of Light and Matter 8.1 Dressed States Before we start with a fully quantized description of matter and light we would like to discuss the evolution of a two-level atom interacting

More information

Pairing in Nuclear and Neutron Matter Screening effects

Pairing in Nuclear and Neutron Matter Screening effects Pairing Degrees of Freedom in Nuclei and Nuclear Medium Seattle, Nov. 14-17, 2005 Outline: Pairing in Nuclear and Neutron Matter Screening effects U. Lombardo pairing due to the nuclear (realistic) interaction

More information

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008 New Physics with Interacting Cold Atomic Gases California Condensed Matter Theory Meeting UC Riverside November 2, 2008 Ryan Barnett Caltech Collaborators: H.P. Buchler, E. Chen, E. Demler, J. Moore, S.

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Hydrodynamic solitons in polariton superfluids

Hydrodynamic solitons in polariton superfluids Hydrodynamic solitons in polariton superfluids Laboratoire Kastler Brossel (Paris) A. Amo * V.G. Sala,, R. Hivet, C. Adrados,, F. Pisanello, G. Lemenager,, J. Lefrère re, E. Giacobino, A. Bramati Laboratoire

More information

Entangled Photon Generation via Biexciton in a Thin Film

Entangled Photon Generation via Biexciton in a Thin Film Entangled Photon Generation via Biexciton in a Thin Film Hiroshi Ajiki Tokyo Denki University 24,Apr. 2017 Emerging Topics in Optics (IMA, Univ. Minnesota) Entangled Photon Generation Two-photon cascade

More information

Polariton condensation: A Green s Function approach

Polariton condensation: A Green s Function approach Polariton condensation: A Green s Function approach Jonathan Keeling MathNanoSci Intensive Programme, L Aquila 2010. Contents Contents List of Figures Introduction Books and Review articles......................

More information

JQI summer school. Aug 12, 2013 Mohammad Hafezi

JQI summer school. Aug 12, 2013 Mohammad Hafezi JQI summer school Aug 12, 2013 Mohammad Hafezi Electromagnetically induced transparency (EIT) (classical and quantum picture) Optomechanics: Optomechanically induced transparency (OMIT) Ask questions!

More information

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by Supplementary Figure : Bandstructure of the spin-dependent hexagonal lattice. The lattice depth used here is V 0 = E rec, E rec the single photon recoil energy. In a and b, we choose the spin dependence

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information

Collision dynamics of molecules and rotational excitons! in an ultracold gas confined by an optical lattice!

Collision dynamics of molecules and rotational excitons! in an ultracold gas confined by an optical lattice! Collision dynamics of molecules and rotational excitons! in an ultracold gas confined by an optical lattice! Sergey Alyabyshev Chris Hemming Felipe Herrera Zhiying Li UBC Physics Marina Litinskaya Timur

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

Single-mode Polariton Laser in a Designable Microcavity

Single-mode Polariton Laser in a Designable Microcavity Single-mode Polariton Laser in a Designable Microcavity Hui Deng Physics, University of Michigan, Ann Arbor Michigan Team: Bo Zhang Zhaorong Wang Seonghoon Kim Collaborators: S Brodbeck, C Schneider, M

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Giuseppe Morandi and me. PhD In Bologna years : very fruitful and formative period. Collaboration continued for some years after.

Giuseppe Morandi and me. PhD In Bologna years : very fruitful and formative period. Collaboration continued for some years after. Giuseppe Morandi and me PhD In Bologna years 1994-96: very fruitful and formative period. Collaboration continued for some years after. What I have learned from him Follow the beauty (and don t care too

More information

Quantised Vortices in an Exciton- Polariton Condensate

Quantised Vortices in an Exciton- Polariton Condensate 4 th International Conference on Spontaneous Coherence in Excitonic Systems Quantised Vortices in an Exciton- Polariton Condensate Konstantinos G. Lagoudakis 1, Michiel Wouters 2, Maxime Richard 1, Augustin

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan) Supersymmetry

More information

PHY 396 K. Problem set #5. Due October 9, 2008.

PHY 396 K. Problem set #5. Due October 9, 2008. PHY 396 K. Problem set #5. Due October 9, 2008.. First, an exercise in bosonic commutation relations [â α, â β = 0, [â α, â β = 0, [â α, â β = δ αβ. ( (a Calculate the commutators [â αâ β, â γ, [â αâ β,

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

BEC meets Cavity QED

BEC meets Cavity QED BEC meets Cavity QED Tilman Esslinger ETH ZürichZ Funding: ETH, EU (OLAQUI, Scala), QSIT, SNF www.quantumoptics.ethz.ch Superconductivity BCS-Theory Model Experiment Fermi-Hubbard = J cˆ ˆ U nˆ ˆ i, σ

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires

Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires Superlattices and Microstructures, Vol. 23, No. 6, 998 Article No. sm96258 Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires A. BALANDIN, S.BANDYOPADHYAY Department

More information

Fate of the Kondo impurity in a superconducting medium

Fate of the Kondo impurity in a superconducting medium Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Motivation Physical dilemma

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Quantum Monte Carlo Simulations of Exciton Condensates

Quantum Monte Carlo Simulations of Exciton Condensates Quantum Monte Carlo Simulations of Exciton Condensates J. Shumway a and D. M. Ceperley b a Dept. of Physics and Astronomy, Arizona State University, Tempe, AZ 8583 b Dept. of Physics, University of Illinois,

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University Molecular production at broad Feshbach resonance in cold Fermi-gas D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University College Station, Wednesday, Dec 5, 007 OUTLINE Alkali

More information

Quantum numbers and collective phases of composite fermions

Quantum numbers and collective phases of composite fermions Quantum numbers and collective phases of composite fermions Quantum numbers Effective magnetic field Mass Magnetic moment Charge Statistics Fermi wave vector Vorticity (vortex charge) Effective magnetic

More information

From unitary dynamics to statistical mechanics in isolated quantum systems

From unitary dynamics to statistical mechanics in isolated quantum systems From unitary dynamics to statistical mechanics in isolated quantum systems Marcos Rigol Department of Physics The Pennsylvania State University The Tony and Pat Houghton Conference on Non-Equilibrium Statistical

More information

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Gunnar Möller & Nigel R Cooper Cavendish Laboratory, University of Cambridge Physical Review Letters 108, 043506 (2012) LPTHE / LPTMC

More information

Inclusion of Mean Field Effects in the Two-Mode Model of BECs in a Double Well

Inclusion of Mean Field Effects in the Two-Mode Model of BECs in a Double Well Inclusion of Mean Field Effects in the Two-Mode Model of BECs in a Double Well David Masiello in collaboration with Bill Reinhardt University of Washington, Seattle August 8th, 2005 masiello@u.washington.edu

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

arxiv: v1 [cond-mat.other] 9 Aug 2007

arxiv: v1 [cond-mat.other] 9 Aug 2007 Polariton amplification in a multiple-quantum-well resonant photonic crystal S. Schumacher, N. H. Kwong, and R. Binder College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA (Dated:

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

The octagon method for finding exceptional points, and application to hydrogen-like systems in parallel electric and magnetic fields

The octagon method for finding exceptional points, and application to hydrogen-like systems in parallel electric and magnetic fields Institute of Theoretical Physics, University of Stuttgart, in collaboration with M. Feldmaier, F. Schweiner, J. Main, and H. Cartarius The octagon method for finding exceptional points, and application

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

PHY331 Magnetism. Lecture 8

PHY331 Magnetism. Lecture 8 PHY331 Magnetism Lecture 8 Last week. We discussed domain theory of Ferromagnetism. We saw there is a motion of domain walls with applied magnetic field. Stabilization of domain walls due to competition

More information

Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases

Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases M.T. Batchelor Department of Theoretical Physics and Mathematical Sciences Institute In collaboration with X.W. Guan, C.

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Coherent excitonic matter

Coherent excitonic matter Coherent excitonic matter Peter Littlewood, University of Cambridge pbl21@cam.ac.uk Momentum distribution of cold atoms Momentum distribution of cold exciton-polaritons Rb atom condensate, JILA, Colorado

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Gareth Conduit, Ehud Altman Weizmann Institute of Science See: Phys. Rev. A 82, 043603 (2010) and arxiv: 0911.2839 Disentangling

More information

Path-integrals and the BEC/BCS crossover in dilute atomic gases

Path-integrals and the BEC/BCS crossover in dilute atomic gases Path-integrals and the BEC/BCS crossover in dilute atomic gases J. Tempere TFVS, Universiteit Antwerpen, Universiteitsplein 1, B261 Antwerpen, Belgium. J.T. Devreese TFVS, Universiteit Antwerpen, Universiteitsplein

More information

tunneling theory of few interacting atoms in a trap

tunneling theory of few interacting atoms in a trap tunneling theory of few interacting atoms in a trap Massimo Rontani CNR-NANO Research Center S3, Modena, Italy www.nano.cnr.it Pino D Amico, Andrea Secchi, Elisa Molinari G. Maruccio, M. Janson, C. Meyer,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Gareth Conduit Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localized ferromagnetism: moments localised in

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Computing the Adler function from the vacuum polarization

Computing the Adler function from the vacuum polarization Computing the Adler function from the vacuum polarization Hanno Horch Institute for Nuclear Physics, University of Mainz In collaboration with M. Della Morte, G. Herdoiza, B. Jäger, A. Jüttner, H. Wittig

More information

Manipulating Polariton Condensates on a Chip

Manipulating Polariton Condensates on a Chip Manipulating Polariton Condensates on a Chip Pavlos G. Savvidis University of Crete, FORTH-IESL Tbilisi 19.09.12 Acknowledgements Prof. PG Savvidis Dr. Peter Eldridge Dr. Simos Tsintzos PhD Niccolo Somaschi

More information

Lecture 2 2D Electrons in Excited Landau Levels

Lecture 2 2D Electrons in Excited Landau Levels Lecture 2 2D Electrons in Excited Landau Levels What is the Ground State of an Electron Gas? lower density Wigner Two Dimensional Electrons at High Magnetic Fields E Landau levels N=2 N=1 N= Hartree-Fock

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

Quantum Physics Lecture 9

Quantum Physics Lecture 9 Quantum Physics Lecture 9 Potential barriers and tunnelling Examples E < U o Scanning Tunelling Microscope E > U o Ramsauer-Townsend Effect Angular Momentum - Orbital - Spin Pauli exclusion principle potential

More information