Pairing Phases of Polaritons, and photon condensates

Size: px
Start display at page:

Download "Pairing Phases of Polaritons, and photon condensates"

Transcription

1 Pairing Phases of Polaritons, and photon condensates Jonathan Keeling University of St Andrews 6 YEARS ICSCE7, Hakone, April 14 Jonathan Keeling Pairing phases & photons ICSCE7, April 14 1 / 1

2 Outline 1 Pairing phases of polaritons Pairing phases and Feshbach for polaritons Phase diagram: Critical detunings Signatures Phase diagram: Critical temperatures Photon condensation Modelling organic molecules: Vibrational modes Strong coupling? Jonathan Keeling Pairing phases & photons ICSCE7, April 14 / 1

3 Pairing phases of atoms Fermions From Randeria, Nat. Phys. 1 BEC-BCS crossover BEC-BEC transition Ĥ =... + ˆψ m ˆψ a1 ˆψ a + h.c. If ˆψm, If ˆψ a1, ˆψ a. High density metastability. [Eagles, Leggett, Keldysh, Nozières, Randeria,... ] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 3 / 1

4 Pairing phases of atoms Fermions Bosons T (B B ) From Randeria, Nat. Phys. 1 BEC-BCS crossover [Eagles, Leggett, Keldysh, Nozières, Randeria,... ] BEC-BEC transition Ĥ =... + ˆψ m ˆψ a1 ˆψ a + h.c. If ˆψm, If ˆψ a1, ˆψ a. High density metastability. [Nozières, St James, Timmermanns, Mueller, Thouless, Radzihovsky, Stoof, Sachdev... ] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 3 / 1

5 Pairing phases of atoms Fermions Bosons T (B B ) From Randeria, Nat. Phys. 1 BEC-BCS crossover [Eagles, Leggett, Keldysh, Nozières, Randeria,... ] BEC-BEC transition Ĥ =... + ˆψ m ˆψ a1 ˆψ a + h.c. If ˆψm, If ˆψ a1, ˆψ a. High density metastability. [Nozières, St James, Timmermanns, Mueller, Thouless, Radzihovsky, Stoof, Sachdev... ] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 3 / 1

6 Polariton Feshbach Hybridisation of bound states: Biexciton: opposite spins (two-species): ω X [ E b Hybridisation with photons: 1 (ωc + ωx ) ] 1 Ω r + δ Control δ change ν, m, Interaction... [Ivanov, Haug, Keldysh 98], [Wouters 7], [Caursotto et al. 1], [Deveaud-Pledran et al. 13] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 4 / 1

7 Polariton Feshbach Hybridisation of bound states: Biexciton: opposite spins (two-species): ω X [ E b Hybridisation with photons: 1 (ωc + ωx ) ] 1 Ω r + δ Control δ change ν, m, Interaction... [Ivanov, Haug, Keldysh 98], [Wouters 7], [Caursotto et al. 1], [Deveaud-Pledran et al. 13] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 4 / 1

8 Polariton Feshbach Hybridisation of bound states: Biexciton: opposite spins (two-species): ω X [ E b Hybridisation with photons: 1 (ωc + ωx ) ] 1 Ω r + δ E X ω ω XX LP ω E b ν > E ω X [mev] 6 4 UP ω UP Control δ change ν, m, Interaction... C C ω X X ω δ (Ω R +δ ) 1/ 4 LP 4 k [µm 1 ] LP ω [Ivanov, Haug, Keldysh 98], [Wouters 7], [Caursotto et al. 1], [Deveaud-Pledran et al. 13] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 4 / 1

9 Polariton Feshbach Hybridisation of bound states: Biexciton: opposite spins (two-species): ω X [ E b Hybridisation with photons: 1 (ωc + ωx ) ] 1 Ω r + δ E ω = X ω LP ω XX E b ν = X [mev] ω E 6 4 UP C X LP 4 k [µm 1 ] 4 ω UP ω C X ω LP ω δ (Ω R +δ ) 1/ Control δ change ν, m, Interaction... [Ivanov, Haug, Keldysh 98], [Wouters 7], [Caursotto et al. 1], [Deveaud-Pledran et al. 13] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 4 / 1

10 Polariton Feshbach X [mev] ω E 6 4 Hybridisation of bound states: Biexciton: opposite spins (two-species): ω X [ E b Hybridisation with photons: 1 (ωc + ωx ) ] 1 Ω r + δ UP C X LP 4 k [µm 1 ] 4 ω = X ω LP ω XX ω UP ω C X ω LP ω E E b ν = δ (Ω R +δ ) 1/ [mev] ν Control δ change ν, m, Interaction... Bound state δ [mev] [Ivanov, Haug, Keldysh 98], [Wouters 7], [Caursotto et al. 1], [Deveaud-Pledran et al. 13] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 4 / 1 E b

11 Phase diagram (ground state, T = ) δ [mev] N.6.4. µ [mev] PS 1x1 11 n [cm ] δ < : standard BEC. Small δ : 1st order transition Larkin-Pikin mechanism Large phase-separation region Jonathan Keeling Pairing phases & photons ICSCE7, April 14 5 / 1

12 Phase diagram (ground state, T = ) δ [mev] N.6.4. µ [mev] PS 1x1 11 n [cm ] δ < : standard BEC. Small δ : 1st order transition Larkin-Pikin mechanism Large phase-separation region Jonathan Keeling Pairing phases & photons ICSCE7, April 14 5 / 1

13 Phase diagram (ground state, T = ) δ [mev] N.6.4. µ [mev] PS 1x1 11 n [cm ] δ < : standard BEC. Small δ : 1st order transition Larkin-Pikin mechanism Large phase-separation region Jonathan Keeling Pairing phases & photons ICSCE7, April 14 5 / 1

14 Consequences and Signatures Phase separation Phase coherence (1) : standard g σ = ψ σ(r, t)ψ σ (, ). (D, QLRO) Novel half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Previous half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 6 / 1

15 Consequences and Signatures Phase separation Phase coherence (1) : standard g σ = ψ σ(r, t)ψ σ (, ). (D, QLRO) Novel half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Previous half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 6 / 1

16 Consequences and Signatures Phase separation Phase coherence (1) : standard g σ = ψ σ(r, t)ψ σ (, ). (D, QLRO) Novel half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Previous half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 6 / 1

17 Consequences and Signatures Phase separation Phase coherence (1) : standard g σ = ψ σ(r, t)ψ σ (, ). (D, QLRO) Novel half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Previous half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 6 / 1

18 Consequences and Signatures Phase separation Phase coherence (1) : standard g σ = ψ σ(r, t)ψ σ (, ). (D, QLRO) APD : g (1) σ = but Adjustable delay φ APD A g (1) m = ψ (r, t)ψ (r, t)ψ (, )ψ (, ) APD θ APD B Novel half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Previous half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 6 / 1

19 Consequences and Signatures Phase separation Phase coherence (1) : standard g σ = ψ σ(r, t)ψ σ (, ). (D, QLRO) APD : g (1) σ = but Adjustable delay φ APD A g (1) m = ψ (r, t)ψ (r, t)ψ (, )ψ (, ) APD θ APD B Novel half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Previous half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 6 / 1

20 Phase diagram, T > N T=.58 K µ [mev] N PS x1 11 n [cm ] δ [mev] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 7 / 1

21 Phase diagram, T > N T=.58 K N PS δ [mev] 3 δ=1 mev N PS µ [mev] 11 n [cm ] x1 T [K] 1 N µ [mev] 11 x1 n [cm ] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 7 / 1

22 Phase diagram, T > T [K] 1 3 δ=8.3 mev N δ=1 mev N PS N PS T=.58 K N x1 µ [mev] n [cm ] N PS δ [mev] T [K] 1 N µ [mev] 11 x1 n [cm ] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 7 / 1

23 Phase diagram, T > T [K] T [K] δ=6.5 mev N δ=8.3 mev N δ=1 mev N PS N PS N PS T=.58 K N x1 µ [mev] n [cm ] N PS [mev] δ T [K] 1 N µ [mev] 11 x1 n [cm ] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 7 / 1

24 Evolution of triple point Exciton fraction = 1 [ ] δ 1 +. δ + Ω GaAs, need low T/high exciton fraction ZnO, easy to attain Jonathan Keeling Pairing phases & photons ICSCE7, April 14 8 / 1

25 Evolution of triple point δ [mev] GaAs ZnO T [K] Exciton fraction = 1 [ T [K] ] δ. δ + Ω excitonic fraction [%] GaAs, need low T/high exciton fraction ZnO, easy to attain Jonathan Keeling Pairing phases & photons ICSCE7, April 14 8 / 1

26 Evolution of triple point δ [mev] GaAs ZnO T [K] Exciton fraction = 1 [ T [K] ] δ. δ + Ω excitonic fraction [%] GaAs, need low T/high exciton fraction ZnO, easy to attain Jonathan Keeling Pairing phases & photons ICSCE7, April 14 8 / 1

27 Evolution of triple point δ [mev] GaAs ZnO T [K] Exciton fraction = 1 [ T [K] ] δ. δ + Ω excitonic fraction [%] GaAs, need low T/high exciton fraction ZnO, easy to attain Jonathan Keeling Pairing phases & photons ICSCE7, April 14 8 / 1

28 Outline 1 Pairing phases of polaritons Pairing phases and Feshbach for polaritons Phase diagram: Critical detunings Signatures Phase diagram: Critical temperatures Photon condensation Modelling organic molecules: Vibrational modes Strong coupling? Jonathan Keeling Pairing phases & photons ICSCE7, April 14 9 / 1

29 Photon BEC experiments Dye filled microcavity No strong coupling [Klaers et al, Nature, 1] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 1 / 1

30 Photon BEC experiments Dye filled microcavity No strong coupling [Klaers et al, Nature, 1] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 1 / 1

31 Photon BEC experiments Dye filled microcavity No strong coupling [Klaers et al, Nature, 1] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 1 / 1

32 Relation to dye laser No single cavity mode Condensate mode is not maximum gain Gain/Absorption in balance Thermalised many-mode system Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

33 Relation to dye laser 4 Level Dye Laser Energy Cavity nuclear coordinate No single cavity mode Condensate mode is not maximum gain Gain/Absorption in balance Thermalised many-mode system Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

34 Relation to dye laser 4 Level Dye Laser Energy Cavity nuclear coordinate But: No single cavity mode Condensate mode is not maximum gain Gain/Absorption in balance Thermalised many-mode system Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

35 Relation to dye laser 4 Level Dye Laser Energy Cavity nuclear coordinate But: No single cavity mode Condensate mode is not maximum gain Gain/Absorption in balance Thermalised many-mode system Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

36 Modelling [ ɛ σz α + g ( ψ m σ + α + H.c. )] H sys = m ω m ψ mψ m + α D harmonic cavity ω m = ω cutoff + mω H.O. Degeneracies g m = m + 1 Local vibrational mode Phonon frequency Ω Huang-Rhys parameter S phonon coupling Jonathan Keeling Pairing phases & photons ICSCE7, April 14 1 / 1

37 Modelling H sys = m ω m ψ mψ m + α [ ɛ σz α + g ( ψ m σ + α + H.c. )] α { +Ω b αb α + }) Sσα (b z α + b α D harmonic cavity ω m = ω cutoff + mω H.O. Degeneracies g m = m + 1 Local vibrational mode Phonon frequency Ω Huang-Rhys parameter S phonon coupling Jonathan Keeling Pairing phases & photons ICSCE7, April 14 1 / 1

38 Modelling Rate equation ρ = i[h, ρ] L[ψ m] m α [ Γ(δm = ω m ɛ) m,α κ [ Γ L[σ+ α ] + Γ ] L[σ α ] L[σ α + ψ m ] + Γ( δ m = ɛ ω m ) L[σα ψ m] ] Γ( δ) Γ(δ) 1 1 δ [THz] [Marthaler et al PRL 11, Kirton & JK PRL 13] Kennard-Stepanov Γ(+δ) Γ( δ)e βδ Expt: ω < ɛ Γ at large δ Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

39 Modelling Rate equation ρ = i[h, ρ] L[ψ m] m α [ Γ(δm = ω m ɛ) m,α κ [ Γ L[σ+ α ] + Γ ] L[σ α ] L[σ α + ψ m ] + Γ( δ m = ɛ ω m ) L[σα ψ m] ] Γ( δ) Γ(δ) 1 1 δ [THz] [Marthaler et al PRL 11, Kirton & JK PRL 13] Kennard-Stepanov Γ(+δ) Γ( δ)e βδ Expt: ω < ɛ Γ at large δ Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

40 Distribution g m n m Rate equation include spontaneous emission Bose-Einstein distribution without losses [Kirton & JK PRL 13] Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

41 Distribution g m n m Rate equation include spontaneous emission Bose-Einstein distribution without losses Low loss: Thermal [Kirton & JK PRL 13] Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

42 Distribution g m n m Rate equation include spontaneous emission Bose-Einstein distribution without losses Low loss: Thermal [Kirton & JK PRL 13] High loss Laser Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

43 Outline 1 Pairing phases of polaritons Pairing phases and Feshbach for polaritons Phase diagram: Critical detunings Signatures Phase diagram: Critical temperatures Photon condensation Modelling organic molecules: Vibrational modes Strong coupling? Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

44 Strong coupling limit Energy H = ωψ ψ+ α [ ɛ ( ) σz α + g ψσ α + + ψ σα { +Ω b αb α + ) }] S (b α + b α σα z Photon l S l nuclear coordinate Phonon frequency Ω Huang-Rhys parameter S phonon coupling Polaron formation (dressing by vibrational modes) Vibrational replicas and BEC Ultra-strong phonon coupling Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

45 Strong coupling limit Energy H = ωψ ψ+ α [ ɛ ( ) σz α + g ψσ α + + ψ σα { +Ω b αb α + ) }] S (b α + b α σα z Photon l S l nuclear coordinate Strong coupling and vibrational modes Phonon frequency Ω Huang-Rhys parameter S phonon coupling Polaron formation (dressing by vibrational modes) Vibrational replicas and BEC Ultra-strong phonon coupling Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

46 Strong coupling limit Energy H = ωψ ψ+ α [ ɛ ( ) σz α + g ψσ α + + ψ σα { +Ω b αb α + ) }] S (b α + b α σα z Photon l S l nuclear coordinate Strong coupling and vibrational modes Phonon frequency Ω Huang-Rhys parameter S phonon coupling Polaron formation (dressing by vibrational modes) Vibrational replicas and BEC Ultra-strong phonon coupling Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

47 Strong coupling limit Energy H = ωψ ψ+ α [ ɛ ( ) σz α + g ψσ α + + ψ σα { +Ω b αb α + ) }] S (b α + b α σα z Photon l S l nuclear coordinate Strong coupling and vibrational modes Phonon frequency Ω Huang-Rhys parameter S phonon coupling Polaron formation (dressing by vibrational modes) Vibrational replicas and BEC Ultra-strong phonon coupling First attempt equilibrium [Cwik et al. EPL 14] Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

48 Organic materials in microcavities Strong coupling with organic materials Polariton lasing [Lidzey, Nature 98] Ωr '.1eV [Kena Cohen and Forrest, Nat. Photon 1] Thermalisation, condensation interactions T = 3K [Daskalakis et al. Nat. Photon 14; Plumhoff et al. ibid.] Ultrastrong coupling regime Ωr '.6eV! [Canaguier-Durand Ang. Chem. 13,... ] Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

49 Phase diagram H = ωψ ψ+ α [ ( ) { ɛsα z + g ψs α + + ψ Sα +Ω b αb α + ) }] S (b α + b α Sα z S suppresses condensation reduces overlap Reentrant behaviour Min µ at T. [Cwik et al. EPL 14] Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

50 Phase diagram H = ωψ ψ+ α [ ( ) { ɛsα z + g ψs α + + ψ Sα +Ω b αb α + ) }] S (b α + b α Sα z T g=. S=, =4, Ω=.1 S= -x*y Coherent field ψ µ-ω c S suppresses condensation reduces overlap Reentrant behaviour Min µ at T. [Cwik et al. EPL 14] Jonathan Keeling Pairing phases & photons ICSCE7, April / 1

51 [Cwik et Jonathan al. EPL Keeling 14] Pairing phases & photons ICSCE7, April / 1 Critical coupling with increasing S 4 ε - ω=-4 3 Re-orient phase diagram g vs µ, T Colors Jump of ψ g c Ν µ-ω T

52 [Cwik et Jonathan al. EPL Keeling 14] Pairing phases & photons ICSCE7, April / 1 Critical coupling with increasing S 4 ε - ω=-4 3 Re-orient phase diagram g vs µ, T Colors Jump of ψ g c Ν µ-ω T g c Ν µ-ω -3 S= =4, Ω=1 - T.1 7 S= µ-ω -3 g c Ν - T.1 7 S= µ-ω -3 g c Ν - T Jump in ψ

53 Acknowledgements GROUP: COLLABORATORS: Francesca Marchetti, UAM FUNDING: Jonathan Keeling Pairing phases & photons ICSCE7, April 14 / 1

54 T Adjustable delay φ θ APD APD A B Summary Polaritons pairing phase feasible for ZnO, signatures in coherence and vortices δ [mev] N.6.4. µ [mev] PS 1x1 11 n [cm ] T [K] 3 1 δ=1 mev N µ [mev] N PS x1 11 n [cm ] [Marchetti and Keeling, arxiv:138.13] δ [mev] GaAs ZnO T [K] T [K] Photon condensation and thermalisation; vibrational modes [Kirton and Keeling, PRL 13] excitonic fraction [%] APD APD Vibrational modes and strong coupling.6 g=. S=, =4, Ω=.1 -x*y.5 S= µ-ω c Coherent field ψ g c Ν 7 S= 6 =4, Ω= µ-ω -3 - T g c Ν. 7 S= µ-ω T g c Ν. 7 S= µ-ω T Jump in ψ [Cwik, Reja, Littlewood, Keeling EPL 14] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 1 / 1

55 Jonathan Keeling Pairing phases & photons ICSCE7, April 14 / 39

56 3 Pairing phases model Excitons and photons Polaritons Exciton spin 4 Calculation details Variational wavefunction Variational MFT WIDBG result 5 More phase diagrams 6 Photon phase diagram 7 Organic polaritons Polarons Condensation of phonon replicas? Anticrossing vs ρ Jonathan Keeling Pairing phases & photons ICSCE7, April 14 3 / 39

57 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing phases & photons ICSCE7, April 14 4 / 39 )

58 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing phases & photons ICSCE7, April 14 4 / 39 )

59 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing phases & photons ICSCE7, April 14 4 / 39 )

60 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing phases & photons ICSCE7, April 14 4 / 39 )

61 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing phases & photons ICSCE7, April 14 4 / 39 )

62 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing phases & photons ICSCE7, April 14 5 / 39 )

63 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing phases & photons ICSCE7, April 14 5 / 39 )

64 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing phases & photons ICSCE7, April 14 5 / 39 )

65 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing phases & photons ICSCE7, April 14 5 / 39 )

66 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing phases & photons ICSCE7, April 14 5 / 39 )

67 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψ σ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. E Polariton dispersion m, detuning ν, interactions depend on δ Resonance width, dispersion derived from dressed exciton T matrix. E ω X [mev] 6 4 UP C X LP 4 4 k [µm 1 ] X ω ω XX LP ω ω UP ω C ω X ω LP E b ν > δ (Ω R +δ ) 1/ Jonathan Keeling Pairing phases & photons ICSCE7, April 14 6 / 39

68 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψ σ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. E Polariton dispersion m, detuning ν, interactions depend on δ Resonance width, dispersion derived from dressed exciton T matrix. E ω X [mev] 6 4 UP C X LP 4 4 k [µm 1 ] X ω ω XX LP ω ω UP ω C ω X ω LP E b ν > δ (Ω R +δ ) 1/ Jonathan Keeling Pairing phases & photons ICSCE7, April 14 6 / 39

69 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψ σ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. E Polariton dispersion m, detuning ν, interactions depend on δ Resonance width, dispersion derived from dressed exciton T matrix. X [mev] ω E 6 4 UP C X LP 4 k [µm 1 ] 4 X ω LP ω = ω XX ω UP ω C X ω LP ω E b ν = δ (Ω R +δ ) 1/ Jonathan Keeling Pairing phases & photons ICSCE7, April 14 6 / 39

70 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψ σ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. E Polariton dispersion m, detuning ν, interactions depend on δ Resonance width, dispersion derived from dressed exciton T matrix. X [mev] ω E 6 4 UP C X LP 4 k [µm 1 ] 4 X ω LP ω = ω XX ω UP ω C X ω LP ω E b ν = δ (Ω R +δ ) 1/ Jonathan Keeling Pairing phases & photons ICSCE7, April 14 6 / 39

71 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψσ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. ν > Biexciton in continuum m LP /m X E b ~m C /m X δ [mev] ν [mev] ν < Bound biexciton. (Excitonic limit) Jonathan Keeling Pairing phases & photons ICSCE7, April 14 7 / 39

72 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing phases & photons ICSCE7, April 14 8 / 39

73 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole E c v J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing phases & photons ICSCE7, April 14 8 / 39

74 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole E c v, J=3/ HH v, J=3/ LH v, J=1/ J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing phases & photons ICSCE7, April 14 8 / 39

75 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole z Cavity E c v, J=3/ HH v, J=3/ LH v, J=1/ J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing phases & photons ICSCE7, April 14 8 / 39

76 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole z Cavity E c v, J=3/ HH v, J=3/ LH v, J=1/ J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing phases & photons ICSCE7, April 14 8 / 39

77 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole z Cavity E c v, J=3/ HH v, J=3/ LH v, J=1/ J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing phases & photons ICSCE7, April 14 8 / 39

78 Beyond mean-field Fluctuation effects? Polariton fluctuations irrelevant: mu 1 4. Exciton fluctuations important: m m U 1. Next order theory: [Nozières & St James, J. Phys 8] Ψ exp ψ σ ˆψ k=,σ + tanh(θ kγ )ˆb ˆb kγ kγ. σ=,,m k,γ=a,b,m ( ) ˆψ where ˆb km = ˆψ km and k ˆψ = 1 ( 1 1 k 1 1 Variational functional E[ψ, ψ m, θ kγ ] ) ( ˆb ka ˆb kb Can show minimum θ kγ has form tanh(θ kγ ) = β γ + k /m γ Finite only if αγ < β γ Variational function E(ψ, ψ m, α γ, β γ ) ) α γ, Jonathan Keeling Pairing phases & photons ICSCE7, April 14 9 / 39

79 Beyond mean-field Fluctuation effects? Polariton fluctuations irrelevant: mu 1 4. Exciton fluctuations important: m m U 1. Next order theory: [Nozières & St James, J. Phys 8] Ψ exp ψ σ ˆψ k=,σ + tanh(θ kγ )ˆb ˆb kγ kγ. σ=,,m k,γ=a,b,m ( ) ˆψ where ˆb km = ˆψ km and k ˆψ = 1 ( 1 1 k 1 1 Variational functional E[ψ, ψ m, θ kγ ] ) ( ˆb ka ˆb kb Can show minimum θ kγ has form tanh(θ kγ ) = β γ + k /m γ Finite only if αγ < β γ Variational function E(ψ, ψ m, α γ, β γ ) ) α γ, Jonathan Keeling Pairing phases & photons ICSCE7, April 14 9 / 39

80 Beyond mean-field Fluctuation effects? Polariton fluctuations irrelevant: mu 1 4. Exciton fluctuations important: m m U 1. Next order theory: [Nozières & St James, J. Phys 8] Ψ exp ψ σ ˆψ k=,σ + tanh(θ kγ )ˆb ˆb kγ kγ. σ=,,m k,γ=a,b,m ( ) ˆψ where ˆb km = ˆψ km and k ˆψ = 1 ( 1 1 k 1 1 Variational functional E[ψ, ψ m, θ kγ ] ) ( ˆb ka ˆb kb Can show minimum θ kγ has form tanh(θ kγ ) = β γ + k /m γ Finite only if αγ < β γ Variational function E(ψ, ψ m, α γ, β γ ) ) α γ, Jonathan Keeling Pairing phases & photons ICSCE7, April 14 9 / 39

81 Beyond mean-field Fluctuation effects? Polariton fluctuations irrelevant: mu 1 4. Exciton fluctuations important: m m U 1. Next order theory: [Nozières & St James, J. Phys 8] Ψ exp ψ σ ˆψ k=,σ + tanh(θ kγ )ˆb ˆb kγ kγ. σ=,,m k,γ=a,b,m ( ) ˆψ where ˆb km = ˆψ km and k ˆψ = 1 ( 1 1 k 1 1 Variational functional E[ψ, ψ m, θ kγ ] ) ( ˆb ka ˆb kb Can show minimum θ kγ has form tanh(θ kγ ) = β γ + k /m γ Finite only if αγ < β γ Variational function E(ψ, ψ m, α γ, β γ ) ) α γ, Jonathan Keeling Pairing phases & photons ICSCE7, April 14 9 / 39

82 Finite T calculation Finite T minimize free energy Use Feynman-Jensen inequality: [ ] F = k B T ln Tre Ĥ/k BT F MF + Ĥ ĤMF MF Where... MF calculated using ρ = e (F MF ĤMF)/k B T Ansatz ĤMF Variational F(ψ, ψ m, α γ, β γ ). Ĥ MF = γ { + 1 Aψ γ (α γ + β γ ) (ˆb γ + ˆb ) γ k (ˆb kγ ˆb kγ ) ( ɛ kγ + β γ α γ ) ( ) } α γ ˆbkγ. ɛ kγ + β γ ˆb kγ Jonathan Keeling Pairing phases & photons ICSCE7, April 14 3 / 39

83 Finite T calculation Finite T minimize free energy Use Feynman-Jensen inequality: [ ] F = k B T ln Tre Ĥ/k BT F MF + Ĥ ĤMF MF Where... MF calculated using ρ = e (F MF ĤMF)/k B T Ansatz ĤMF Variational F(ψ, ψ m, α γ, β γ ). Ĥ MF = γ { + 1 Aψ γ (α γ + β γ ) (ˆb γ + ˆb ) γ k (ˆb kγ ˆb kγ ) ( ɛ kγ + β γ α γ ) ( ) } α γ ˆbkγ. ɛ kγ + β γ ˆb kγ Jonathan Keeling Pairing phases & photons ICSCE7, April 14 3 / 39

84 Finite T calculation Finite T minimize free energy Use Feynman-Jensen inequality: [ ] F = k B T ln Tre Ĥ/k BT F MF + Ĥ ĤMF MF Where... MF calculated using ρ = e (F MF ĤMF)/k B T Ansatz ĤMF Variational F(ψ, ψ m, α γ, β γ ). Ĥ MF = γ { + 1 Aψ γ (α γ + β γ ) (ˆb γ + ˆb ) γ k (ˆb kγ ˆb kγ ) ( ɛ kγ + β γ α γ ) ( ) } α γ ˆbkγ. ɛ kγ + β γ ˆb kγ Jonathan Keeling Pairing phases & photons ICSCE7, April 14 3 / 39

85 Variational MFT for WIDBG Test validity. WIDBG Ĥ = k VMFT for WIDBG: k m ψ k ψ k + U d rψ ψ ψψ Ĥ MF = Aψ(α + β)(ˆb + ˆb ) + 1 ) (ˆb ( ) ( ) ɛ k ˆb k + β α ˆbk k. α ɛ k + β k ˆb k Compare to D EOS, ρ(µ) = Tf (µ/t ) CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

86 Variational MFT for WIDBG Test validity. WIDBG Ĥ = k VMFT for WIDBG: k m ψ k ψ k + U d rψ ψ ψψ Ĥ MF = Aψ(α + β)(ˆb + ˆb ) + 1 ) (ˆb ( ) ( ) ɛ k ˆb k + β α ˆbk k. α ɛ k + β k ˆb k Compare to D EOS, ρ(µ) = Tf (µ/t ) CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

87 Variational MFT for WIDBG Test validity. WIDBG Ĥ = k k m ψ k ψ k + U d rψ ψ ψψ VMFT for WIDBG: Ĥ MF = Aψ(α + β)(ˆb + ˆb ) + 1 ) (ˆb ( ) ( 3 ) ɛ k ˆb k + β α ˆbk k. α ɛ k + β 1 k ˆb k Compare to D EOS, ρ(µ) = Tf (µ/t ) Density ρ/t VMFT QMC [PRA ] mu=.1, ε c =1 [a.u.] CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ µ/t Temperature, T [a.u.] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

88 Variational MFT for WIDBG Test validity. WIDBG Ĥ = k k m ψ k ψ k + U d rψ ψ ψψ VMFT for WIDBG: Ĥ MF = Aψ(α + β)(ˆb + ˆb ) + 1 ) (ˆb ( ) ( 3 ) ɛ k ˆb k + β α ˆbk k. α ɛ k + β 1 k ˆb k Compare to D EOS, ρ(µ) = Tf (µ/t ) Density ρ/t VMFT QMC [PRA ] mu=.1, ε c =1 [a.u.] CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ µ/t Temperature, T [a.u.] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

89 Phase diagram, finite temperature δ [mev] N T=.58 K µ [mev] N PS x1 11 n [cm ] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 3 / 39

90 Phase diagram, finite temperature δ [mev] δ [mev] N N T=.58 K T=1.16 K µ [mev] N N PS PS n [cm ] x1 11 Jonathan Keeling Pairing phases & photons ICSCE7, April 14 3 / 39

91 Phase diagram, finite temperature δ [mev] δ [mev] δ [mev] N N N T=.58 K T=1.16 K T =.3 K µ [mev] N N N PS PS PS x1 11 n [cm ] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 3 / 39

92 Phase diagram, finite temperature δ [mev] δ [mev] δ [mev] N N N T=.58 K T=1.16 K T =.3 K µ [mev] N N N PS PS PS x1 11 n [cm ] δ [mev] 5 N PS n [cm ] Jonathan Keeling Pairing phases & photons ICSCE7, April 14 3 / 39

93 Phase diagram, vs temperature N T=.58 K N PS δ [mev] 3 δ=1 mev N PS µ [mev] 11 n [cm ] x1 T [K] 1 N µ [mev] 11 x1 n [cm ] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

94 Phase diagram, vs temperature T [K] 1 3 δ=8.3 mev N δ=1 mev N PS N PS T=.58 K N x1 µ [mev] n [cm ] N PS δ [mev] T [K] 1 N µ [mev] 11 x1 n [cm ] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

95 Phase diagram, vs temperature T [K] T [K] δ=6.5 mev N δ=8.3 mev N δ=1 mev N PS N PS N PS T=.58 K N x1 µ [mev] n [cm ] N PS [mev] δ T [K] 1 N µ [mev] 11 x1 n [cm ] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

96 Threshold condition 6 κ κ κ κ =1 MHz κ =.5 GHz κ =5 GHz Increasing loss Compare threshold: Pump rate (Laser) Critical density (condensate) Thermal at low κ/high temperature High loss, κ competes with Γ(±δ ) Low temperature, Γ(±δ ) shrinks [Kirton & JK PRL 13] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

97 Threshold condition 6 κ κ κ κ =1 MHz κ =.5 GHz κ =5 GHz Increasing loss Compare threshold: Pump rate (Laser) Critical density (condensate) Thermal at low κ/high temperature High loss, κ competes with Γ(±δ ) Low temperature, Γ(±δ ) shrinks [Kirton & JK PRL 13] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

98 Threshold condition 6 κ κ κ κ =1 MHz κ =.5 GHz κ =5 GHz Increasing loss Compare threshold: Pump rate (Laser) Critical density (condensate) Thermal at low κ/high temperature High loss, κ competes with Γ(±δ ) Low temperature, Γ(±δ ) shrinks [Kirton & JK PRL 13] Γ( δ) Γ(δ) 1 1 δ [THz] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

99 Threshold condition 6 κ κ κ κ =1 MHz κ =.5 GHz κ =5 GHz Increasing loss Compare threshold: Pump rate (Laser) Critical density (condensate) Thermal at low κ/high temperature High loss, κ competes with Γ(±δ ) Low temperature, Γ(±δ ) shrinks [Kirton & JK PRL 13] Γ( δ) Γ(δ) 1 1 δ [THz] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

100 Explanation: Polaron formation Unitary transform H α H α = e Kα H α e Kα K = SS z α(b α b α ) Coupling moves to S ± [ ] H α = const. + ɛsα z + Ωb αb α + g ψs α + S(b e α b α ) + H.c. Optimal phonon displacements, S Reduced g eff g exp( S/) For ψ, competition Variational MFT ψ α exp( ηk α ζb α), S α Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

101 Explanation: Polaron formation Unitary transform H α H α = e Kα H α e Kα K = SS z α(b α b α ) Coupling moves to S ± [ ] H α = const. + ɛsα z + Ωb αb α + g ψs α + S(b e α b α ) + H.c. Optimal phonon displacements, S Reduced g eff g exp( S/) For ψ, competition Variational MFT ψ α exp( ηk α ζb α), S α Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

102 Explanation: Polaron formation Unitary transform H α H α = e Kα H α e Kα K = SS z α(b α b α ) Coupling moves to S ± [ ] H α = const. + ɛsα z + Ωb αb α + g ψs α + S(b e α b α ) + H.c. Optimal phonon displacements, S Reduced g eff g exp( S/) For ψ, competition Variational MFT ψ α exp( ηk α ζb α), S α Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

103 Explanation: Polaron formation Unitary transform H α H α = e Kα H α e Kα K = SS z α(b α b α ) Coupling moves to S ± [ ] H α = const. + ɛsα z + Ωb αb α + g ψs α + S(b e α b α ) + H.c. Optimal phonon displacements, S Reduced g eff g exp( S/) For ψ, competition Variational MFT ψ α exp( ηk α ζb α), S α Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

104 Explanation: Polaron formation Unitary transform H α H α = e Kα H α e Kα K = SS z α(b α b α ) Coupling moves to S ± [ ] H α = const. + ɛsα z + Ωb αb α + g ψs α + S(b e α b α ) + H.c. Optimal phonon displacements, S Reduced g eff g exp( S/) For ψ, competition Variational MFT ψ α exp( ηk α ζb α), S α Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

105 Collective polaron formation Compares well at S 1 Coherent bosonic state g Ν 3 Feedback: Large/small g eff λ = ψ Variational free energy F = (ω c µ)λ + N { Ω Effective LS energy in field: [Cwik et al. EPL 14] ( ɛ µ ξ = [ ζ S (a) Exact diagonalization 4 g Ν µ-ω - T T c µ-ω c 6 5 (b) Ansatz S=6, =4, Ω= ] [ ( )]} η( η) ξ T ln cosh 4 T + Ω ) S(1 η)ζ + g λ e Sη Jonathan Keeling Pairing phases & photons ICSCE7, April / 39 λ

106 Collective polaron formation Compares well at S 1 Coherent bosonic state g Ν 3 Feedback: Large/small g eff λ = ψ Variational free energy F = (ω c µ)λ + N { Ω Effective LS energy in field: [Cwik et al. EPL 14] ( ɛ µ ξ = [ ζ S (a) Exact diagonalization 4 g Ν µ-ω - T T c µ-ω c 6 5 (b) Ansatz S=6, =4, Ω= ] [ ( )]} η( η) ξ T ln cosh 4 T + Ω ) S(1 η)ζ + g λ e Sη Jonathan Keeling Pairing phases & photons ICSCE7, April / 39 λ

107 Collective polaron formation Compares well at S 1 Coherent bosonic state g Ν 3 Feedback: Large/small g eff λ = ψ Variational free energy F = (ω c µ)λ + N { Ω Effective LS energy in field: [Cwik et al. EPL 14] ( ɛ µ ξ = [ ζ S (a) Exact diagonalization 4 g Ν µ-ω - T T c µ-ω c 6 5 (b) Ansatz S=6, =4, Ω= ] [ ( )]} η( η) ξ T ln cosh 4 T + Ω ) S(1 η)ζ + g λ e Sη Jonathan Keeling Pairing phases & photons ICSCE7, April / 39 λ

108 Polariton spectrum: photon weight Energy -4.4 T=.4, S=, =4, Ω=.1, g= µ.1. Density ρ Photon weight, Z n Saturating LS: g eff g (1 ρ) What is nature of polariton mode? D(t) = i ψ (t)ψ(), D(ω) = n Z n ω ω n [Cwik et al. EPL 14] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

109 Polariton spectrum: photon weight Energy -4.4 T=.4, S=, =4, Ω=.1, g= µ.1. Density ρ Photon weight, Z n Saturating LS: g eff g (1 ρ) What is nature of polariton mode? D(t) = i ψ (t)ψ(), D(ω) = n Z n ω ω n [Cwik et al. EPL 14] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

110 Polariton spectrum: photon weight Energy -4.4 T=.4, S=, =4, Ω=.1, g= µ.1. Density ρ Photon weight, Z n Saturating LS: g eff g (1 ρ) What is nature of polariton mode? D(t) = i ψ (t)ψ(), D(ω) = n Z n ω ω n [Cwik et al. EPL 14] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

111 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Optimal T Ω [Cwik et al. EPL 14] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

112 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Sideband spectral weight S=, =4, Ω=.1, g= T=. Optimal T Ω Absorbed phonons: q-p [Cwik et al. EPL 14] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

113 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Sideband spectral weight S=, =4, Ω=.1, g= T=. T=.5 T=.15 Optimal T Ω Absorbed phonons: q-p [Cwik et al. EPL 14] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

114 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Sideband spectral weight S=, =4, Ω=.1, g= T=. T=.5 T=.15 T=. T=.3 T=.4 T=.45 Optimal T Ω Absorbed phonons: q-p [Cwik et al. EPL 14] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

115 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Sideband spectral weight S=, =4, Ω=.1, g= T=. T=.5 T=.15 T=. T=.3 T=.4 T= Absorbed phonons: q-p T Optimal T Ω g=. S=, =4, Ω=.1 -x*y µ-ω c Coherent field ψ [Cwik et al. EPL 14] Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

116 Polariton spectrum coupled oscillators Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

117 Polariton spectrum coupled oscillators 1 Photon Exciton UP Energy -1 - LP Coupling, g Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

118 Polariton spectrum coupled oscillators 1 Photon Exciton Exciton-Ω UP Energy -1 - LP Coupling, g Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

119 Polariton spectrum coupled oscillators 1 Photon Exciton-nΩ UP Energy Coupling, g Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

120 Polariton spectrum coupled oscillators 1 Photon Exciton-nΩ UP Energy Coupling, g Jonathan Keeling Pairing phases & photons ICSCE7, April / 39

Pairing Phases of Polaritons

Pairing Phases of Polaritons Pairing Phases of Polaritons Jonathan Keeling University of St Andrews 6 YEARS St Petersburg, March 14 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 1 / 11 Outline 1 Introduction

More information

Pairing Phases of Polaritons

Pairing Phases of Polaritons Pairing Phases of Polaritons Jonathan Keeling 1 University of St Andrews 6 YEARS Pisa, January 14 Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 1 / 34 Bose-Einstein condensation: macroscopic

More information

Polariton and photon condensates in organic materials. Jonathan Keeling. Sheffield, October 2014

Polariton and photon condensates in organic materials. Jonathan Keeling. Sheffield, October 2014 Polariton and photon condensates in organic materials Jonathan Keeling SUPA University of St Andrews 1413-213 Sheffield, October 214 Jonathan Keeling Polariton and photon condensates Sheffield, October

More information

Polariton and photon condensates with organic molecules

Polariton and photon condensates with organic molecules Polariton and photon condensates with organic molecules Jonathan Keeling University of St Andrews 6 YEARS Telluride, July 213 Jonathan Keeling Polariton and photon condensates Telluride, July 213 1 / 37

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

Microcavity Exciton-Polariton

Microcavity Exciton-Polariton Microcavity Exciton-Polariton Neil Na ( 那允中 ) Institute of Photonics Technologies National Tsing-Hua University 5/3/2012 Outline Microcavity Exciton-polariton QW excitons Microcavity photons Strong coupling

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Polaritons in some interacting exciton systems

Polaritons in some interacting exciton systems Polaritons in some interacting exciton systems Peter Littlewood, Argonne and U Chicago Richard Brierley (Yale) Cele Creatore (Cambridge) Paul Eastham (Trinity College, Dublin) Francesca Marchetti (Madrid)

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

Dynamical Condensation of ExcitonPolaritons

Dynamical Condensation of ExcitonPolaritons ICSCE 2008 Dynamical Condensation of ExcitonPolaritons Y. Yamamoto, H. Deng, G. Weihs, C.W. Lai, G. Roumpos and S. Utsunomiya Stanford University and National Institute of Informatics Loeffler, S. Hoefling,

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Sarma phase in relativistic and non-relativistic systems

Sarma phase in relativistic and non-relativistic systems phase in relativistic and non-relativistic systems Tina Katharina Herbst In Collaboration with I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich arxiv:149.5232

More information

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research

More information

Driven-dissipative polariton quantum fluids in and out of equilibrium

Driven-dissipative polariton quantum fluids in and out of equilibrium Driven-dissipative polariton quantum fluids in and out of equilibrium Marzena Szymańska Designer Quantum Systems Out of Equilibrium KITP, November 2016 Acknowledgements Group: A. Zamora G. Dagvadorj In

More information

Some theory of polariton condensation and dynamics

Some theory of polariton condensation and dynamics Some theory of polariton condensation and dynamics Peter Littlewood, Argonne and U Chicago Richard Brierley, Yale, Cele Creatore, Cambridge Sahinur Reja, Dresden Paul Eastham, Trinity College, Dublin Francesca

More information

Collective Dynamics of a Generalized Dicke Model

Collective Dynamics of a Generalized Dicke Model Collective Dynamics of a Generalized Dicke Model J. Keeling, J. A. Mayoh, M. J. Bhaseen, B. D. Simons Harvard, January 212 Funding: Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25 Coupling

More information

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover 6th APCWQIS, December 2012 Bilal Tanatar December 6, 2012 Prologue 1 Introduction Prologue Cooling Techniques 2 BCS-BEC Crossover

More information

Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate. Frank Vewinger Universität Bonn

Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate. Frank Vewinger Universität Bonn Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate Frank Vewinger Universität Bonn What are we dealing with? System: 0 4 0 5 Photons ultracold : 300K Box: Curved mirror cavity A few

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics, ETH Zürich, Switzerland

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices Marzena Szymanska Collaborators Theory F. M. Marchetti E. Cancellieri C. Tejedor D. Whittaker Experiment D. Sanvitto,

More information

Hydrodynamic solitons in polariton superfluids

Hydrodynamic solitons in polariton superfluids Hydrodynamic solitons in polariton superfluids Laboratoire Kastler Brossel (Paris) A. Amo * V.G. Sala,, R. Hivet, C. Adrados,, F. Pisanello, G. Lemenager,, J. Lefrère re, E. Giacobino, A. Bramati Laboratoire

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

SUPA. Quantum Many-Body Physics with Multimode Cavity QED. Jonathan Keeling FOUNDED. University of St Andrews

SUPA. Quantum Many-Body Physics with Multimode Cavity QED. Jonathan Keeling FOUNDED. University of St Andrews Quantum Many-Body Physics with Multimode Cavity QED Jonathan Keeling University of St Andrews FOUNDED 113 SUPA CONDMAT17, Copenhagen, May 17 Jonathan Keeling Multimode cavity QED CONDMAT17 1 What can quantum

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by Supplementary Figure : Bandstructure of the spin-dependent hexagonal lattice. The lattice depth used here is V 0 = E rec, E rec the single photon recoil energy. In a and b, we choose the spin dependence

More information

Optomechanically induced transparency of x-rays via optical control: Supplementary Information

Optomechanically induced transparency of x-rays via optical control: Supplementary Information Optomechanically induced transparency of x-rays via optical control: Supplementary Information Wen-Te Liao 1, and Adriana Pálffy 1 1 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg,

More information

Entangled Photon Generation via Biexciton in a Thin Film

Entangled Photon Generation via Biexciton in a Thin Film Entangled Photon Generation via Biexciton in a Thin Film Hiroshi Ajiki Tokyo Denki University 24,Apr. 2017 Emerging Topics in Optics (IMA, Univ. Minnesota) Entangled Photon Generation Two-photon cascade

More information

Cavity optomechanics in new regimes and with new devices

Cavity optomechanics in new regimes and with new devices Cavity optomechanics in new regimes and with new devices Andreas Nunnenkamp University of Basel 1. What? Why? How? 2. Single-photon regime 3. Dissipative coupling Introduction Cavity optomechanics radiation

More information

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41 Supplementary Figure γ 4 Δ+δe Γ34 Γ43 γ 3 Δ Ω3,4 Pump Ω3,4, Ω3 Γ3 Γ3 Γ4 Γ4 Γ Γ Supplementary Figure Schematic picture of theoretical model: The picture shows a schematic representation of the theoretical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Summary We describe the signatures of exciton-polariton condensation without a periodically modulated potential, focusing on the spatial coherence properties and condensation in momentum space. The characteristics

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati Quantum fluid phenomena with Microcavity Polaritons Alberto Bramati Quantum Optics Team: topics Quantum fluid phenomena in polariton gases An ideal system to study out of equilibrium quantum fluids Obstacle

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Piotr Magierski (Warsaw University of Technology/ University of Washington, Seattle) Collaborators: Aurel Bulgac (Seattle)

More information

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Michiel Wouters BEC CNR-INFM and Università di Trento,

More information

Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons.

Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons. Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons. Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons Jonathan Mark James Keeling Jesus College University

More information

STIMULATED RAMAN ATOM-MOLECULE CONVERSION IN A BOSE-EINSTEIN CONDENSATE. Chisinau, Republic of Moldova. (Received 15 December 2006) 1.

STIMULATED RAMAN ATOM-MOLECULE CONVERSION IN A BOSE-EINSTEIN CONDENSATE. Chisinau, Republic of Moldova. (Received 15 December 2006) 1. STIMULATED RAMAN ATOM-MOLECULE CONVERSION IN A BOSE-EINSTEIN CONDENSATE P.I. Khadzhi D.V. Tkachenko Institute of Applied Physics Academy of Sciences of Moldova 5 Academiei str. MD-8 Chisinau Republic of

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

The Connection of Polaritons and Vacuum Rabi Splitting

The Connection of Polaritons and Vacuum Rabi Splitting The Connection of Polaritons and Vacuum Rabi Splitting David Snoe Department of Physics and Astronomy, University of Pittsburgh 3941 O Hara St., Pittsburgh, PA 1560 Abstract Polaritons, in particular microcavity

More information

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF Natal 2016 1 1 OUTLINE Classical SASE and spiking Semi-classical FEL theory: quantum purification Fully quantum

More information

David Snoke Department of Physics and Astronomy, University of Pittsburgh

David Snoke Department of Physics and Astronomy, University of Pittsburgh The 6 th International Conference on Spontaneous Coherence in Excitonic Systems Closing Remarks David Snoke Department of Physics and Astronomy, University of Pittsburgh ICSCE6, Stanford University, USA

More information

Quantised Vortices in an Exciton- Polariton Condensate

Quantised Vortices in an Exciton- Polariton Condensate 4 th International Conference on Spontaneous Coherence in Excitonic Systems Quantised Vortices in an Exciton- Polariton Condensate Konstantinos G. Lagoudakis 1, Michiel Wouters 2, Maxime Richard 1, Augustin

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

PHY 396 K. Problem set #5. Due October 9, 2008.

PHY 396 K. Problem set #5. Due October 9, 2008. PHY 396 K. Problem set #5. Due October 9, 2008.. First, an exercise in bosonic commutation relations [â α, â β = 0, [â α, â β = 0, [â α, â β = δ αβ. ( (a Calculate the commutators [â αâ β, â γ, [â αâ β,

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

PART 2 : BALANCED HOMODYNE DETECTION

PART 2 : BALANCED HOMODYNE DETECTION PART 2 : BALANCED HOMODYNE DETECTION Michael G. Raymer Oregon Center for Optics, University of Oregon raymer@uoregon.edu 1 of 31 OUTLINE PART 1 1. Noise Properties of Photodetectors 2. Quantization of

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

Single-mode Polariton Laser in a Designable Microcavity

Single-mode Polariton Laser in a Designable Microcavity Single-mode Polariton Laser in a Designable Microcavity Hui Deng Physics, University of Michigan, Ann Arbor Michigan Team: Bo Zhang Zhaorong Wang Seonghoon Kim Collaborators: S Brodbeck, C Schneider, M

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Quantum Gases Conference, Paris, 30 June 2007. Gunnar Möller

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

8 Quantized Interaction of Light and Matter

8 Quantized Interaction of Light and Matter 8 Quantized Interaction of Light and Matter 8.1 Dressed States Before we start with a fully quantized description of matter and light we would like to discuss the evolution of a two-level atom interacting

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

Manipulating Polariton Condensates on a Chip

Manipulating Polariton Condensates on a Chip Manipulating Polariton Condensates on a Chip Pavlos G. Savvidis University of Crete, FORTH-IESL Tbilisi 19.09.12 Acknowledgements Prof. PG Savvidis Dr. Peter Eldridge Dr. Simos Tsintzos PhD Niccolo Somaschi

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Lecture 2: Open quantum systems

Lecture 2: Open quantum systems Phys 769 Selected Topics in Condensed Matter Physics Summer 21 Lecture 2: Open quantum systems Lecturer: Anthony J. Leggett TA: Bill Coish 1. No (micro- or macro-) system is ever truly isolated U = S +

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

Atoms and photons. Chapter 1. J.M. Raimond. September 6, J.M. Raimond Atoms and photons September 6, / 36

Atoms and photons. Chapter 1. J.M. Raimond. September 6, J.M. Raimond Atoms and photons September 6, / 36 Atoms and photons Chapter 1 J.M. Raimond September 6, 2016 J.M. Raimond Atoms and photons September 6, 2016 1 / 36 Introduction Introduction The fundamental importance of the atom-field interaction problem

More information

The octagon method for finding exceptional points, and application to hydrogen-like systems in parallel electric and magnetic fields

The octagon method for finding exceptional points, and application to hydrogen-like systems in parallel electric and magnetic fields Institute of Theoretical Physics, University of Stuttgart, in collaboration with M. Feldmaier, F. Schweiner, J. Main, and H. Cartarius The octagon method for finding exceptional points, and application

More information

Bogoliubov theory of the weakly interacting Bose gas

Bogoliubov theory of the weakly interacting Bose gas Chapter 4 Bogoliubov theory of the wealy interacting Bose gas In the presence of BEC, the ideal Bose gas has a constant pressure against variation of volume, so that the system features infinite compressibility.

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Bose gas in atom-chip experiment: from ideal gas to quasi-condensate

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Bose gas in atom-chip experiment: from ideal gas to quasi-condensate 2030-25 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 2009 Bose gas in atom-chip experiment: from ideal gas to quasi-condensate BOUCHOULE Isabelle Chargee de Recherche au CNRS Laboratoire

More information

OIST, April 16, 2014

OIST, April 16, 2014 C3QS @ OIST, April 16, 2014 Brian Muenzenmeyer Dissipative preparation of squeezed states with ultracold atomic gases GW & Mäkelä, Phys. Rev. A 85, 023604 (2012) Caballar et al., Phys. Rev. A 89, 013620

More information

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Michiel Wouters EPFL, Lausanne, Switzerland Cristiano

More information

Many-body physics 2: Homework 8

Many-body physics 2: Homework 8 Last update: 215.1.31 Many-body physics 2: Homework 8 1. (1 pts) Ideal quantum gases (a)foranidealquantumgas,showthatthegrandpartitionfunctionz G = Tre β(ĥ µ ˆN) is given by { [ ] 1 Z G = i=1 for bosons,

More information

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Lianyi He ( 何联毅 ) Department of Physics, Tsinghua University 2016 Hangzhou Workshop on Quantum Degenerate Fermi Gases,

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Laser induced manipulation of atom pair interaction

Laser induced manipulation of atom pair interaction Laser induced manipulation of atom pair interaction St. Falke, Chr. Samuelis, H. Knöckel, and E. Tiemann Institute of Quantum Optics, European Research Training Network Cold Molecules SFB 407 Quantum limited

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Microjoule mode-locked oscillators: issues of stability and noise

Microjoule mode-locked oscillators: issues of stability and noise Microjoule mode-locked oscillators: issues of stability and noise Vladimir L. Kalashnikov Institut für Photonik, TU Wien, Gusshausstr. 7/387, A-14 Vienna, Austria Alexander Apolonski Department für Physik

More information

JQI summer school. Aug 12, 2013 Mohammad Hafezi

JQI summer school. Aug 12, 2013 Mohammad Hafezi JQI summer school Aug 12, 2013 Mohammad Hafezi Electromagnetically induced transparency (EIT) (classical and quantum picture) Optomechanics: Optomechanically induced transparency (OMIT) Ask questions!

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008 New Physics with Interacting Cold Atomic Gases California Condensed Matter Theory Meeting UC Riverside November 2, 2008 Ryan Barnett Caltech Collaborators: H.P. Buchler, E. Chen, E. Demler, J. Moore, S.

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Peer Review File Description: Optical frequency (THz) 05. 0 05. 5 05.7

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information