Polariton and photon condensates with organic molecules

Size: px
Start display at page:

Download "Polariton and photon condensates with organic molecules"

Transcription

1 Polariton and photon condensates with organic molecules Jonathan Keeling University of St Andrews 6 YEARS Telluride, July 213 Jonathan Keeling Polariton and photon condensates Telluride, July / 37

2 Polariton and photon condensates with organic molecules: The Dicke-Holstein model Jonathan Keeling University of St Andrews 6 YEARS Telluride, July 213 Jonathan Keeling Polariton and photon condensates Telluride, July / 37

3 Coherent states of matter and light Atomic BEC T 1 7 K Polariton Condensate T 2K Cavity Quantum Wells [Kasprzak et al. Nature, 6] [Anderson et al. Science 95] Photon Condensate T 3K Laser T?, <, Superradiance transition T κ κ z x [Klaers et al. Nature, 1] Jonathan Keeling Pump [Baumann et al. Nature, 1] Polariton and photon condensates Telluride, July / 37

4 Textbook BEC Non-interacting viewpoint BE distribution: µ < ω ( ) 2/d T c = 2π 2 n m Temperature Normal ξ d Density BEC Interacting approach (WIDBG) H = k ω k ψ k ψ k + g 2V Occupation k,k,q Density of states Energy ψ k+q ψ k q ψ k+qψ k Decreasing T Mean field: ψ 2 = (µ ω )/V Fluctuations deplete condensate, vanishes at T > Tc Jonathan Keeling Polariton and photon condensates Telluride, July / 37

5 Textbook BEC Non-interacting viewpoint BE distribution: µ < ω ( ) 2/d T c = 2π 2 n m Temperature Normal ξ d Density BEC Interacting approach (WIDBG) H = k ω k ψ k ψ k + g 2V Occupation k,k,q Density of states Energy ψ k+q ψ k q ψ k+qψ k Decreasing T Mean field: ψ 2 = (µ ω )/V Fluctuations deplete condensate, vanishes at T > Tc Jonathan Keeling Polariton and photon condensates Telluride, July / 37

6 Textbook BEC Non-interacting viewpoint BE distribution: µ < ω ( ) 2/d T c = 2π 2 n m Temperature Normal ξ d Density BEC Interacting approach (WIDBG) H = k ω k ψ k ψ k + g 2V Occupation k,k,q Density of states Energy ψ k+q ψ k q ψ k+qψ k Decreasing T Mean field: ψ 2 = (µ ω )/V Fluctuations deplete condensate, vanishes at T > Tc Jonathan Keeling Polariton and photon condensates Telluride, July / 37

7 Textbook Laser: Maxwell Bloch equations H = ω ψ ψ + ɛ α Sα z + g α,k (ψs α + + ψ Sα α γn Maxwell-Bloch eqns: P = i S, N = 2 S z g t ψ = iω ψ κψ + α g αp α ) γn κ t P α = 2iɛ α P α 2γP + g α ψn α t N α = 2γ(N N α ) 2g α (ψ P α + P αψ) Jonathan Keeling Polariton and photon condensates Telluride, July / 37

8 Textbook Laser: Maxwell Bloch equations H = ω ψ ψ + ɛ α Sα z + g α,k (ψs α + + ψ Sα α γn Maxwell-Bloch eqns: P = i S, N = 2 S z g t ψ = iω ψ κψ + α g αp α ) γn κ t P α = 2iɛ α P α 2γP + g α ψn α t N α = 2γ(N N α ) 2g α (ψ P α + P αψ) 2γκ/g 2 N α bg.dat N α ψ 2 ψ 2 ψ 2 > if N g 2 > 2γκ N 2γκ/g 2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37

9 Textbook Dicke-Hepp-Lieb superradiance H = ωψ ψ + α ( ) ɛsα z + g ψ Sα + ψs α + Coherent state: Ψ e λψ +ηs + Ω Small g, min at λ, η = [Hepp, Lieb, Ann. Phys. 73] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

10 Textbook Dicke-Hepp-Lieb superradiance H = ωψ ψ + α ( ) ɛsα z + g ψ Sα + ψs α + Coherent state: Ψ e λψ +ηs + Ω Small g, min at λ, η = [Hepp, Lieb, Ann. Phys. 73] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

11 Textbook Dicke-Hepp-Lieb superradiance H = ωψ ψ + α ( ) ɛsα z + g ψ Sα + ψs α + Coherent state: Ψ e λψ +ηs + Ω Small g, min at λ, η = Spontaneous polarisation if: Ng 2 > ωɛ [Hepp, Lieb, Ann. Phys. 73] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

12 Textbook Dicke-Hepp-Lieb superradiance H = ωψ ψ + α ( ) ɛsα z + g ψ Sα + ψs α + ω SR Coherent state: Ψ e λψ +ηs + Ω Small g, min at λ, η = Spontaneous polarisation if: Ng 2 > ωɛ ḡ N [Hepp, Lieb, Ann. Phys. 73] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

13 Outline 1 Introduction Polariton condensation Condensation, superradiance, lasing Condensation vs superradiance transition Non-equilibrium condensation vs lasing 2 Room temperature condensates: Organic polaritons Dicke phase diagram with phonons Condensation of phonon replicas? Ultra-strong phonon coupling? 3 Room temperature condensates: Photons Lasing model and thermalisation Critical properties Jonathan Keeling Polariton and photon condensates Telluride, July / 37

14 Acknowledgements GROUP: COLLABORATORS: Szymanska (Warwick), Reja (Cam.), Littlewood (ANL) FUNDING: Jonathan Keeling Polariton and photon condensates Telluride, July / 37

15 Microcavity polaritons Cavity Quantum Wells Jonathan Keeling Polariton and photon condensates Telluride, July / 37

16 Microcavity polaritons Cavity Quantum Wells Cavity photons: ω k = ω 2 + c2 k 2 ω + k 2 /2m m 1 4 m e Energy n=4 n=3 n=2 n=1 Bulk Momentum Jonathan Keeling Polariton and photon condensates Telluride, July / 37

17 Microcavity polaritons Cavity Quantum Wells Cavity photons: ω k = ω 2 + c2 k 2 ω + k 2 /2m m 1 4 m e Energy Photon Exciton In plane momentum Jonathan Keeling Polariton and photon condensates Telluride, July / 37

18 Microcavity polaritons Cavity Quantum Wells Cavity photons: ω k = ω 2 + c2 k 2 ω + k 2 /2m m 1 4 m e Energy Photon Exciton In plane momentum Jonathan Keeling Polariton and photon condensates Telluride, July / 37

19 Microcavity polaritons θ Cavity Quantum Wells Cavity Cavity photons: ω k = ω 2 + c2 k 2 ω + k 2 /2m m 1 4 m e Energy Photon Exciton In plane momentum Jonathan Keeling Polariton and photon condensates Telluride, July / 37

20 Polariton experiments: occupation and coherence [Kasprzak, et al. Nature, 6] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

21 Polariton experiments: occupation and coherence Sample Coherence map: CCD Beam Splitter Tunable Delay + = Retroreflector [Kasprzak, et al. Nature, 6] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

22 (Some) other polariton condensation experiments Quantised vortices [Lagoudakis et al. Nat. Phys. 8. Science 9, PRL 1; Sanvitto et al. Nat. Phys. 1; Roumpos et al. Nat. Phys. 1 ] Josephson oscillations [Lagoudakis et al. PRL 1] = + Pattern formation/hydrodynamics [Amo et al. Science 11, Nature 9; Wertz et al. Nat. Phys 1] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

23 Non-equilibrium condensation vs lasing 1 Introduction Polariton condensation Condensation, superradiance, lasing Condensation vs superradiance transition Non-equilibrium condensation vs lasing 2 Room temperature condensates: Organic polaritons Dicke phase diagram with phonons Condensation of phonon replicas? Ultra-strong phonon coupling? 3 Room temperature condensates: Photons Lasing model and thermalisation Critical properties Jonathan Keeling Polariton and photon condensates Telluride, July / 37

24 Lasing-condensation crossover model Use model that can show lasing and condensation: γn g γn κ Energy Photon Exciton In plane momentum Jonathan Keeling Polariton and photon condensates Telluride, July / 37

25 Lasing-condensation crossover model Use model that can show lasing and condensation: γn g γn κ Energy Photon Exciton In plane momentum Dicke model: [ ɛs z α + g α,k ψ k S + α + H.c. ] H sys = k ω k ψ k ψ k + α Jonathan Keeling Polariton and photon condensates Telluride, July / 37

26 Dicke-Hepp-Lieb superradiance and modes H = ωψ ψ + ɛs z + g (ψ S + ψs +) Spontaneous polarisation if: Ng 2 > ωɛ ω SR Normal state, S z = N/2 + B B H = ωψ ψ + ɛb B + g N (ψ B + ψb ) Excitation cost E: (E ω)(e ɛ) = g 2 N ḡ N [Hepp, Lieb, Ann. Phys. 73] Transition when E = Jonathan Keeling Polariton and photon condensates Telluride, July / 37

27 Dicke-Hepp-Lieb superradiance and modes H = ωψ ψ + ɛs z + g (ψ S + ψs +) Spontaneous polarisation if: Ng 2 > ωɛ ω SR Normal state, S z = N/2 + B B H = ωψ ψ + ɛb B + g N (ψ B + ψb ) Excitation cost E: (E ω)(e ɛ) = g 2 N ḡ N [Hepp, Lieb, Ann. Phys. 73] Transition when E = Jonathan Keeling Polariton and photon condensates Telluride, July / 37

28 Dicke-Hepp-Lieb superradiance and modes H = ωψ ψ + ɛs z + g (ψ S + ψs +) Spontaneous polarisation if: Ng 2 > ωɛ ω SR Normal state, S z = N/2 + B B H = ωψ ψ + ɛb B + g N (ψ B + ψb ) Excitation cost E: (E ω)(e ɛ) = g 2 N ḡ N [Hepp, Lieb, Ann. Phys. 73] Transition when E = Jonathan Keeling Polariton and photon condensates Telluride, July / 37

29 Dicke-Hepp-Lieb superradiance and modes H = ωψ ψ + ɛs z + g (ψ S + ψs +) Spontaneous polarisation if: Ng 2 > ωɛ ω SR Normal state, S z = N/2 + B B H = ωψ ψ + ɛb B + g N (ψ B + ψb ) Excitation cost E: (E ω)(e ɛ) = g 2 N ḡ N [Hepp, Lieb, Ann. Phys. 73] Transition when E = Jonathan Keeling Polariton and photon condensates Telluride, July / 37

30 Grand canonical ensemble Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ) ɛ µ Fix density / fix µ > pumping Transition at: g 2 N > (ω µ)(ɛ µ) µ hits lowest mode [Eastham and Littlewood, PRB 1] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

31 Grand canonical ensemble Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ) ɛ µ Fix density / fix µ > pumping Transition at: g 2 N > (ω µ)(ɛ µ) µ hits lowest mode [Eastham and Littlewood, PRB 1] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

32 Grand canonical ensemble Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ) ɛ µ Fix density / fix µ > pumping (µ-ω)/g 2 1 unstable -1 SR (ε - ω)/g [Eastham and Littlewood, PRB 1] Transition at: g 2 N > (ω µ)(ɛ µ) µ hits lowest mode Jonathan Keeling Polariton and photon condensates Telluride, July / 37

33 Grand canonical Dicke, finite temperature Finite temperature: Ng 2 tanh(βɛ) > ωɛ ω SR = T SR ḡ N ḡ N [Hepp, Lieb, Ann. Phys. 73] With chemical potential Ng 2 tanh(β(ɛ µ)) > (ω µ)(ɛ µ) Jonathan Keeling Polariton and photon condensates Telluride, July / 37

34 Grand canonical Dicke, finite temperature Finite temperature: Ng 2 tanh(βɛ) > ωɛ ω SR = T SR ḡ N ḡ N [Hepp, Lieb, Ann. Phys. 73] With chemical potential Ng 2 tanh(β(ɛ µ)) > (ω µ)(ɛ µ) (µ-ω)/g unstable T c /g 1-1 SR -1-2 = (µ-ω)/g (ε - ω)/g Jonathan Keeling (ε - ω)/g Polariton and photon condensates Telluride, July / 37

35 Polariton model and equilibrium results Localised excitons, propagating photons H µn = (ω k µ)ψ k ψ k + (ɛ α µ)sα z + g α,k ψ k S α + + H.c. k α Self-consistent polarisation and field (ω µ) ψ = α g 2 αψ 2E α tanh (βe α ), E α 2 = ( ɛα µ 2 ) 2 + g 2 α ψ 2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37

36 Polariton model and equilibrium results Localised excitons, propagating photons H µn = (ω k µ)ψ k ψ k + (ɛ α µ)sα z + g α,k ψ k S α + + H.c. k α Self-consistent polarisation and field (ω µ) ψ = α g 2 αψ 2E α tanh (βe α ), E α 2 = ( ɛα µ 2 ) 2 + g 2 α ψ 2 Phase diagram: 4 non-condensed 3 condensed T (K) n (cm) -2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37

37 Polariton model and equilibrium results Localised excitons, propagating photons H µn = (ω k µ)ψ k ψ k + (ɛ α µ)sα z + g α,k ψ k S α + + H.c. k α Self-consistent polarisation and field (ω µ) ψ = α g 2 αψ 2E α tanh (βe α ), E α 2 = ( ɛα µ 2 ) 2 + g 2 α ψ 2 Phase diagram: 4 non-condensed 3 condensed T (K) n (cm) -2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37

38 Polariton model and equilibrium results Localised excitons, propagating photons H µn = (ω k µ)ψ k ψ k + (ɛ α µ)sα z + g α,k ψ k S α + + H.c. k α Self-consistent polarisation and field (ω µ) ψ = α g 2 αψ 2E α tanh (βe α ), E α 2 = ( ɛα µ 2 ) 2 + g 2 α ψ 2 Phase diagram: 4 non-condensed 3 condensed T (K) n (cm) -2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37

39 Simple Laser: Maxwell Bloch equations H = ωψ ψ + ) ɛ α Sα z + g α,k (ψs α + + ψ Sα α γn g γn κ Maxwell-Bloch eqns: P = i S, N = 2 S z t ψ = iωψ κψ + α g αp α 2γκ/g 2 N α bg.dat N α ψ 2 ψ 2 t P α = 2iɛ α P α 2γP + g α ψn α t N α = 2γ(N N α ) 2g α (ψ P α + P αψ) N 2γκ/g 2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37

40 Simple Laser: Maxwell Bloch equations H = ωψ ψ + ) ɛ α Sα z + g α,k (ψs α + + ψ Sα α γn g γn κ Maxwell-Bloch eqns: P = i S, N = 2 S z 2γκ/g 2 bg.dat N α ψ 2 t ψ = iωψ κψ + α g αp α N α ψ 2 t P α = 2iɛ α P α 2γP + g α ψn α t N α = 2γ(N N α ) 2g α (ψ P α + P αψ) N 2γκ/g Absorption N Strong coupling. κ, γ < g n Inversion causes collapse before g 2 N = 2γκ -1 1 Energy/g Jonathan Keeling Polariton and photon condensates Telluride, July / 37

41 Simple Laser: Maxwell Bloch equations H = ωψ ψ + ) ɛ α Sα z + g α,k (ψs α + + ψ Sα α γn g γn κ Maxwell-Bloch eqns: P = i S, N = 2 S z 2γκ/g 2 bg.dat N α ψ 2 t ψ = iωψ κψ + α g αp α N α ψ 2 t P α = 2iɛ α P α 2γP + g α ψn α t N α = 2γ(N N α ) 2g α (ψ P α + P αψ) N 2γκ/g Absorption N Strong coupling. κ, γ < g n Inversion causes collapse before g 2 N = 2γκ -1 1 Energy/g Jonathan Keeling Polariton and photon condensates Telluride, July / 37

42 Simple Laser: Maxwell Bloch equations H = ωψ ψ + ) ɛ α Sα z + g α,k (ψs α + + ψ Sα α γn g γn κ Maxwell-Bloch eqns: P = i S, N = 2 S z 2γκ/g 2 bg.dat N α ψ 2 t ψ = iωψ κψ + α g αp α N α ψ 2 t P α = 2iɛ α P α 2γP + g α ψn α t N α = 2γ(N N α ) 2g α (ψ P α + P αψ) N 2γκ/g Absorption N Strong coupling. κ, γ < g n Inversion causes collapse before g 2 N = 2γκ -1 1 Energy/g Jonathan Keeling Polariton and photon condensates Telluride, July / 37

43 Poles of Retarded Green s function and gain [ 1 D (ν)] R g 2 N = ν ωk + iκ + ν 2ɛ + i2γ Jonathan Keeling Polariton and photon condensates Telluride, July / 37

44 Poles of Retarded Green s function and gain [ 1 D (ν)] R g 2 N = ν ωk + iκ + ν 2ɛ + i2γ = A(ν) + ib(ν) 1-1 (a) A(ν) B(ν) Absorption N Energy/g -1 1 Energy/g Jonathan Keeling Polariton and photon condensates Telluride, July / 37

45 Poles of Retarded Green s function and gain [ 1 D (ν)] R g 2 N = ν ωk + iκ + ν 2ɛ + i2γ = A(ν) + ib(ν) 1-1 (a) A(ν) B(ν) Absorption N (b) A(ν) B(ν) -1 1 Energy/g -1 1 Energy/g -1 1 Energy/g Jonathan Keeling Polariton and photon condensates Telluride, July / 37

46 Poles of Retarded Green s function and gain [ 1 D (ν)] R g 2 N = ν ωk + iκ + ν 2ɛ + i2γ = A(ν) + ib(ν) 1-1 Laser: 2 (a) -1 1 (a) Energy/g A(ν) B(ν) (b) Absorption Energy/g N (b) -1 1 Energy/g A(ν) B(ν) 1 ω/g -1-2 Zero of Re Zero of Im -(2γ/g) 2 2γκ/g 2 Inversion, N Jonathan Keeling Polariton and photon condensates Telluride, July / 37

47 Poles of Retarded Green s function and gain [ 1 D (ν)] R g 2 N = ν ωk + iκ + ν 2ɛ + i2γ = A(ν) + ib(ν) 1-1 Laser: 2 1 (a) -1 1 (a) Energy/g A(ν) B(ν) (b) Absorption Energy/g N 1-1 Equilibrium: 2 UP (b) -1 1 Energy/g A(ν) B(ν) ω/g -1-2 Zero of Re Zero of Im -(2γ/g) 2 2γκ/g 2 Inversion, N Energies/g -2-4 LP µ non-condensed µ/g condensed Jonathan Keeling Polariton and photon condensates Telluride, July / 37

48 Non-equilibrium description: baths Pumping Bath γ Excitons System Cavity mode κ Bulk photon modes Pump bath Photon Energy Exciton H = H sys + H sys,bath + H bath Decay bath: Empty (µ ) System In plane momentum Decay bath Pump bath: Thermal µ B, T B Jonathan Keeling Polariton and photon condensates Telluride, July / 37

49 Non-equilibrium description: baths Pumping Bath γ Excitons System Cavity mode κ Bulk photon modes Pump bath Photon Energy Exciton H = H sys + H sys,bath + H bath Decay bath: Empty (µ ) System In plane momentum Decay bath Pump bath: Thermal µ B, T B Jonathan Keeling Polariton and photon condensates Telluride, July / 37

50 Strong coupling and lasing low temperature phenomenon Energy/g Eqbm. polariton ξ µ eff condensed -2-1 µ/g Inversionless allows strong coupling Non-eqbm. polariton condensed -2-1 µ B /g requires low T condensation Related weak-coupling inversionless lasing Laser noncondensed noncondensed noncondensed [Szymanska et al. PRL 6; Keeling et al. book chapter ] condensed -1 1 Inversion, N Jonathan Keeling Polariton and photon condensates Telluride, July / 37

51 Strong coupling and lasing low temperature phenomenon Energy/g Eqbm. polariton ξ µ eff condensed -2-1 µ/g Inversionless allows strong coupling Non-eqbm. polariton condensed -2-1 µ B /g requires low T condensation Related weak-coupling inversionless lasing Laser noncondensed noncondensed noncondensed [Szymanska et al. PRL 6; Keeling et al. book chapter ] condensed -1 1 Inversion, N Jonathan Keeling Polariton and photon condensates Telluride, July / 37

52 Strong coupling and lasing low temperature phenomenon Energy/g Eqbm. polariton ξ µ eff condensed -2-1 µ/g Inversionless allows strong coupling Non-eqbm. polariton condensed -2-1 µ B /g requires low T condensation Related weak-coupling inversionless lasing Laser noncondensed noncondensed noncondensed [Szymanska et al. PRL 6; Keeling et al. book chapter ] condensed -1 1 Inversion, N Jonathan Keeling Polariton and photon condensates Telluride, July / 37

53 Organic polaritons: photon-exciton-phonon coupling 1 Introduction Polariton condensation Condensation, superradiance, lasing Condensation vs superradiance transition Non-equilibrium condensation vs lasing 2 Room temperature condensates: Organic polaritons Dicke phase diagram with phonons Condensation of phonon replicas? Ultra-strong phonon coupling? 3 Room temperature condensates: Photons Lasing model and thermalisation Critical properties Jonathan Keeling Polariton and photon condensates Telluride, July / 37

54 Dicke Holstein Model Energy H = ωψ ψ+ α [ ( ) ɛsα z + g ψs α + + ψ Sα { +Ω b αb α + ) }] S (b α + b α Sα z Photon l S l nuclear coordinate Phonon frequency Ω Huang-Rhys parameter S phonon coupling Phase diagram with S 2LS energy ɛ nω Polariton spectrum, phonon replicas Ultra-strong phonon coupling? Jonathan Keeling Polariton and photon condensates Telluride, July / 37

55 Dicke Holstein Model Energy H = ωψ ψ+ α [ ( ) ɛsα z + g ψs α + + ψ Sα { +Ω b αb α + ) }] S (b α + b α Sα z Photon l S l nuclear coordinate Phonon frequency Ω Huang-Rhys parameter S phonon coupling Phase diagram with S 2LS energy ɛ nω Polariton spectrum, phonon replicas Ultra-strong phonon coupling? Jonathan Keeling Polariton and photon condensates Telluride, July / 37

56 Dicke Holstein Model Energy H = ωψ ψ+ α [ ( ) ɛsα z + g ψs α + + ψ Sα { +Ω b αb α + ) }] S (b α + b α Sα z Photon l S l nuclear coordinate Questions? Phase diagram with S 2LS energy ɛ nω Polariton spectrum, phonon replicas Ultra-strong phonon coupling? Phonon frequency Ω Huang-Rhys parameter S phonon coupling Jonathan Keeling Polariton and photon condensates Telluride, July / 37

57 Dicke Holstein Model Energy H = ωψ ψ+ α [ ( ) ɛsα z + g ψs α + + ψ Sα { +Ω b αb α + ) }] S (b α + b α Sα z Photon l S l nuclear coordinate Questions? Phase diagram with S 2LS energy ɛ nω Polariton spectrum, phonon replicas Ultra-strong phonon coupling? Phonon frequency Ω Huang-Rhys parameter S phonon coupling Jonathan Keeling Polariton and photon condensates Telluride, July / 37

58 Dicke Holstein Model Energy H = ωψ ψ+ α [ ( ) ɛsα z + g ψs α + + ψ Sα { +Ω b αb α + ) }] S (b α + b α Sα z Photon l S l nuclear coordinate Questions? Phase diagram with S 2LS energy ɛ nω Polariton spectrum, phonon replicas Ultra-strong phonon coupling? Phonon frequency Ω Huang-Rhys parameter S phonon coupling Jonathan Keeling Polariton and photon condensates Telluride, July / 37

59 Phase diagram H = ωψ ψ+ α [ ( ) { ɛsα z + g ψs α + + ψ Sα +Ω b αb α + ) }] S (b α + b α Sα z S suppresses condensation reduces overlap Reentrant behaviour Min µ at T.2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37

60 Phase diagram H = ωψ ψ+ α [ ( ) { ɛsα z + g ψs α + + ψ Sα +Ω b αb α + ) }] S (b α + b α Sα z T g=2. S=2, =4, Ω=.1 S= -x*y Coherent field ψ µ-ω c S suppresses condensation reduces overlap Reentrant behaviour Min µ at T.2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37

61 Polariton spectrum: photon weight Energy -4.4 T=.4, S=2, =4, Ω=.1, g= µ.1.2 Density ρ Photon spectral weight Saturating 2LS: g 2 eff g2 (1 2ρ) What is nature of polariton mode? D(t) = i ψ (t)ψ(), D(ω) = n Z n ω ω n [Cwik et al. arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

62 Polariton spectrum: photon weight Energy -4.4 T=.4, S=2, =4, Ω=.1, g= µ.1.2 Density ρ Photon spectral weight Saturating 2LS: g 2 eff g2 (1 2ρ) What is nature of polariton mode? D(t) = i ψ (t)ψ(), D(ω) = n Z n ω ω n [Cwik et al. arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

63 Polariton spectrum: photon weight Energy -4.4 T=.4, S=2, =4, Ω=.1, g= µ.1.2 Density ρ Photon spectral weight Saturating 2LS: g 2 eff g2 (1 2ρ) What is nature of polariton mode? D(t) = i ψ (t)ψ(), D(ω) = n Z n ω ω n [Cwik et al. arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

64 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Optimal T 2Ω [Cwik et al. arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

65 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Sideband spectral weight S=2, =4, Ω=.1, g=2 T=. Optimal T 2Ω Absorbed phonons: q-p [Cwik et al. arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

66 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Sideband spectral weight S=2, =4, Ω=.1, g=2 T=. T=.5 T=.15 Optimal T 2Ω Absorbed phonons: q-p [Cwik et al. arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

67 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Sideband spectral weight S=2, =4, Ω=.1, g=2 T=. T=.5 T=.15 T=.2 T=.3 T=.4 T=.45 Optimal T 2Ω Absorbed phonons: q-p [Cwik et al. arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

68 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Sideband spectral weight S=2, =4, Ω=.1, g=2 T=. T=.5 T=.15 T=.2 T=.3 T=.4 T= Absorbed phonons: q-p T Optimal T 2Ω g=2. S=2, =4, Ω=.1 -x*y µ-ω c Coherent field ψ [Cwik et al. arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

69 Organic polaritons 1 Introduction Polariton condensation Condensation, superradiance, lasing Condensation vs superradiance transition Non-equilibrium condensation vs lasing 2 Room temperature condensates: Organic polaritons Dicke phase diagram with phonons Condensation of phonon replicas? Ultra-strong phonon coupling? 3 Room temperature condensates: Photons Lasing model and thermalisation Critical properties Jonathan Keeling Polariton and photon condensates Telluride, July / 37

70 Critical coupling with increasing S 4 ε - ω=-4 3 Re-orient phase diagram g vs µ, T Colors Jump of ψ 2 g c Ν µ-ω T Jonathan Keeling Polariton and photon condensates Telluride, July / 37

71 Critical coupling with increasing S 4 ε - ω=-4 3 Re-orient phase diagram g vs µ, T Colors Jump of ψ 2 g c Ν µ-ω T g c Ν µ-ω -3 S= =4, Ω=1-2 T.1 7 S= µ-ω -3 g c Ν -2 T.1 7 S= µ-ω -3 g c Ν -2 T Jump in ψ Jonathan Keeling Polariton and photon condensates Telluride, July / 37

72 Explanation: Polaron formation Unitary transform H α H α = e Kα H α e Kα K = SS z α(b α b α ) Coupling moves to S ± [ ] H α = const. + ɛsα z + Ωb αb α + g ψs α + S(b e α b α ) + H.c. Optimal phonon displacements, S Reduced g eff g exp( S/2) For ψ, competition Variational MFT ψ α exp( ηk α ζb α), S α Jonathan Keeling Polariton and photon condensates Telluride, July / 37

73 Explanation: Polaron formation Unitary transform H α H α = e Kα H α e Kα K = SS z α(b α b α ) Coupling moves to S ± [ ] H α = const. + ɛsα z + Ωb αb α + g ψs α + S(b e α b α ) + H.c. Optimal phonon displacements, S Reduced g eff g exp( S/2) For ψ, competition Variational MFT ψ α exp( ηk α ζb α), S α Jonathan Keeling Polariton and photon condensates Telluride, July / 37

74 Explanation: Polaron formation Unitary transform H α H α = e Kα H α e Kα K = SS z α(b α b α ) Coupling moves to S ± [ ] H α = const. + ɛsα z + Ωb αb α + g ψs α + S(b e α b α ) + H.c. Optimal phonon displacements, S Reduced g eff g exp( S/2) For ψ, competition Variational MFT ψ α exp( ηk α ζb α), S α Jonathan Keeling Polariton and photon condensates Telluride, July / 37

75 Explanation: Polaron formation Unitary transform H α H α = e Kα H α e Kα K = SS z α(b α b α ) Coupling moves to S ± [ ] H α = const. + ɛsα z + Ωb αb α + g ψs α + S(b e α b α ) + H.c. Optimal phonon displacements, S Reduced g eff g exp( S/2) For ψ, competition Variational MFT ψ α exp( ηk α ζb α), S α Jonathan Keeling Polariton and photon condensates Telluride, July / 37

76 Explanation: Polaron formation Unitary transform H α H α = e Kα H α e Kα K = SS z α(b α b α ) Coupling moves to S ± [ ] H α = const. + ɛsα z + Ωb αb α + g ψs α + S(b e α b α ) + H.c. Optimal phonon displacements, S Reduced g eff g exp( S/2) For ψ, competition Variational MFT ψ α exp( ηk α ζb α), S α Jonathan Keeling Polariton and photon condensates Telluride, July / 37

77 Collective polaron formation Compares well at S 1 Coherent bosonic state g Ν 3 Feedback: Large/small g eff λ = ψ Variational free energy F = (ω c µ)λ 2 + N { Ω Effective 2LS energy in field: ( ɛ µ ξ 2 = 2 [Cwik et al. arxiv: ] [ ζ 2 S 2 (a) Exact diagonalization 4 g Ν µ-ω -2 T T c µ-ω c (b) Ansatz S=6, =4, Ω= ] [ ( )]} η(2 η) ξ T ln 2 cosh 4 T + Ω ) 2 S(1 η)ζ + g 2 λ 2 e Sη2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37 λ

78 Collective polaron formation Compares well at S 1 Coherent bosonic state g Ν 3 Feedback: Large/small g eff λ = ψ Variational free energy F = (ω c µ)λ 2 + N { Ω Effective 2LS energy in field: ( ɛ µ ξ 2 = 2 [Cwik et al. arxiv: ] [ ζ 2 S 2 (a) Exact diagonalization 4 g Ν µ-ω -2 T T c µ-ω c (b) Ansatz S=6, =4, Ω= ] [ ( )]} η(2 η) ξ T ln 2 cosh 4 T + Ω ) 2 S(1 η)ζ + g 2 λ 2 e Sη2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37 λ

79 Collective polaron formation Compares well at S 1 Coherent bosonic state g Ν 3 Feedback: Large/small g eff λ = ψ Variational free energy F = (ω c µ)λ 2 + N { Ω Effective 2LS energy in field: ( ɛ µ ξ 2 = 2 [Cwik et al. arxiv: ] [ ζ 2 S 2 (a) Exact diagonalization 4 g Ν µ-ω -2 T T c µ-ω c (b) Ansatz S=6, =4, Ω= ] [ ( )]} η(2 η) ξ T ln 2 cosh 4 T + Ω ) 2 S(1 η)ζ + g 2 λ 2 e Sη2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37 λ

80 Polariton and photon Condensation 1 Introduction Polariton condensation Condensation, superradiance, lasing Condensation vs superradiance transition Non-equilibrium condensation vs lasing 2 Room temperature condensates: Organic polaritons Dicke phase diagram with phonons Condensation of phonon replicas? Ultra-strong phonon coupling? 3 Room temperature condensates: Photons Lasing model and thermalisation Critical properties Jonathan Keeling Polariton and photon condensates Telluride, July / 37

81 Photon BEC experiments Dye filled microcavity No strong coupling [Klaers et al, Nature, 21] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

82 Photon BEC experiments Dye filled microcavity No strong coupling [Klaers et al, Nature, 21] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

83 Photon BEC experiments Dye filled microcavity No strong coupling [Klaers et al, Nature, 21] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

84 Relation to dye laser No electronic inversion No strong coupling No single cavity mode Condensate mode is not maximum gain Gain/Absorption in balance Thermalised many-mode system Jonathan Keeling Polariton and photon condensates Telluride, July / 37

85 Relation to dye laser No electronic inversion No strong coupling 4 Level Dye Laser Energy Cavity nuclear coordinate No single cavity mode Condensate mode is not maximum gain Gain/Absorption in balance Thermalised many-mode system Jonathan Keeling Polariton and photon condensates Telluride, July / 37

86 Relation to dye laser No electronic inversion No strong coupling 4 Level Dye Laser Energy Cavity nuclear coordinate But: No single cavity mode Condensate mode is not maximum gain Gain/Absorption in balance Thermalised many-mode system Jonathan Keeling Polariton and photon condensates Telluride, July / 37

87 Relation to dye laser No electronic inversion No strong coupling 4 Level Dye Laser Energy Cavity nuclear coordinate But: No single cavity mode Condensate mode is not maximum gain Gain/Absorption in balance Thermalised many-mode system Jonathan Keeling Polariton and photon condensates Telluride, July / 37

88 Modelling H sys = m ω m ψ mψ m + α ] [ ɛs z α + g ( ψ m S + α + H.c. ) 2D harmonic cavity ω m = ω cutoff + mω H.O. Degeneracies g m = m + 1 Local vibrational mode Jonathan Keeling Polariton and photon condensates Telluride, July / 37

89 Modelling H sys = m ω m ψ mψ m + α [ ɛs z α + g ( ψ m S + α + H.c. ) { +Ω b αb α + 2 })] SSα (b z α + b α 2D harmonic cavity ω m = ω cutoff + mω H.O. Degeneracies g m = m + 1 Local vibrational mode Jonathan Keeling Polariton and photon condensates Telluride, July / 37

90 Modelling Rate equation ρ = i[h, ρ] 2 L[ψ m] m α [ Γ(δm = ω m ɛ) 2 m,α κ [ Γ 2 L[S+ α ] + Γ ] 2 L[S α ] L[S α + ψ m ] + Γ( δ m = ɛ ω m ) L[Sα ψ 2 m] ] Γ( δ) Γ(δ) Γ(+δ) Γ( δ)e βδ Γ at large δ δ [Marthaler et al PRL 11, Kirton & JK arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

91 Modelling Rate equation ρ = i[h, ρ] 2 L[ψ m] m α [ Γ(δm = ω m ɛ) 2 m,α κ [ Γ 2 L[S+ α ] + Γ ] 2 L[S α ] L[S α + ψ m ] + Γ( δ m = ɛ ω m ) L[Sα ψ 2 m] ] Γ( δ) Γ(δ) Γ(+δ) Γ( δ)e βδ Γ at large δ δ [Marthaler et al PRL 11, Kirton & JK arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

92 Distribution g m n m Rate equation include spontaneous emission Bose-Einstein distribution without losses [Kirton & JK arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

93 Distribution g m n m Rate equation include spontaneous emission Bose-Einstein distribution without losses Low loss: Thermal [Kirton & JK arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

94 Distribution g m n m Rate equation include spontaneous emission Bose-Einstein distribution without losses Low loss: Thermal [Kirton & JK arxiv: ] High loss Laser Jonathan Keeling Polariton and photon condensates Telluride, July / 37

95 Threshold condition 6 κ κ κ κ =1 MHz κ =.5 GHz κ =5 GHz Increasing loss Compare threshold: Pump rate (Laser) Critical density (condensate) Thermal at low κ/high temperature High loss, κ competes with Γ(±δ ) Low temperature, Γ(±δ ) shrinks [Kirton & JK arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

96 Threshold condition 6 κ κ κ κ =1 MHz κ =.5 GHz κ =5 GHz Increasing loss Compare threshold: Pump rate (Laser) Critical density (condensate) Thermal at low κ/high temperature High loss, κ competes with Γ(±δ ) Low temperature, Γ(±δ ) shrinks [Kirton & JK arxiv: ] Jonathan Keeling Polariton and photon condensates Telluride, July / 37

97 Threshold condition 6 κ κ κ κ =1 MHz κ =.5 GHz κ =5 GHz Increasing loss Compare threshold: Pump rate (Laser) Critical density (condensate) Thermal at low κ/high temperature High loss, κ competes with Γ(±δ ) Low temperature, Γ(±δ ) shrinks [Kirton & JK arxiv: ].8.6 Γ( δ) Γ(δ) δ 1 2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37

98 Threshold condition 6 κ κ κ κ =1 MHz κ =.5 GHz κ =5 GHz Increasing loss Compare threshold: Pump rate (Laser) Critical density (condensate) Thermal at low κ/high temperature High loss, κ competes with Γ(±δ ) Low temperature, Γ(±δ ) shrinks [Kirton & JK arxiv: ].8.6 Γ( δ) Γ(δ) δ 1 2 Jonathan Keeling Polariton and photon condensates Telluride, July / 37

99 Summary Reentrance, phonon assisted transition, 1st order at S µ.1 Density ρ S=2, =4, Ω=.1, g=2 1 -x*y.4 Coherent field ψ -4.7 g=2. S=2, =4, Ω=.1.5 Sideband spectral weight T Energy 1 Photon spectral weight (a) Exact diagonalization T=. T=.5 T=.15 T=.2 T=.3 T=.4 T= µ-ωc g Ν 3 g Ν (b) Ansatz Absorbed phonons: q-p S=6, =4, Ω=1 2-4 µ-ωc T µ-ωc λ.4 T=.4, S=2, =4, Ω=.1, g= T Photon condensation and thermalisation Jonathan Keeling Polariton and photon condensates Telluride, July / 37

100 Many body quantum optics and correlated states of light 9: am on Monday 28 October 213 5: pm on Tuesday 29 October 213 at:the Royal Society at Chicheley Hall, home of the Kavli Royal Society International Centre, Buckinghamshire Theo Murphy international scientific meeting organised by Dr Jonathan Keeling, Professor Steven Girvin, Dr Michael Hartmann and Professor Peter Littlewood FRS. List of speakers and chairs Professor Iacoppo Carusotto, Professor Andrew Cleland, Professor Hui Deng, Professor Tilman Esslinger, Professor Rosario Fazio, Professor Ed Hinds, Professor Andrew Houck, Professor Ataç İmamoğlu, Professor Jens Koch, Professor Misha Lukin, Professor Martin Plenio, Professor Arno Rauschenbeutel, Professor Timothy Spiller, Professor Jacob Taylor, Professor Hakan Tureci, Professor Andreas Wallraff Attending this event This is a residential conference which allows for increased discussion and networking. It is free to attend, however participants need to cover their accommodation and catering costs if required. Places are limited and therefore preregistration is essential.

101 Jonathan Keeling Polariton and photon condensates Telluride, July / 44

102 Extra slides 4 No go theorem 5 Retarded Green s function for laser 6 Organic properties 7 Anticrossing vs ρ Jonathan Keeling Polariton and photon condensates Telluride, July / 44

103 No go theorem and transition Spontaneous polarisation if: Ng 2 > ωɛ [Rzazewski et al PRL 75] Jonathan Keeling Polariton and photon condensates Telluride, July / 44

104 No go theorem and transition Spontaneous polarisation if: Ng 2 > ωɛ No go theorem:. Minimal coupling (p ea) 2 /2m i e m A p i g(ψ S + ψs + ), i A 2 2m Nζ(ψ + ψ ) 2 [Rzazewski et al PRL 75] Jonathan Keeling Polariton and photon condensates Telluride, July / 44

105 No go theorem and transition Spontaneous polarisation if: Ng 2 > ωɛ No go theorem:. Minimal coupling (p ea) 2 /2m i e m A p i g(ψ S + ψs + ), For large N, ω ω + 2Nζ. (RWA) i A 2 2m Nζ(ψ + ψ ) 2 [Rzazewski et al PRL 75] Jonathan Keeling Polariton and photon condensates Telluride, July / 44

106 No go theorem and transition Spontaneous polarisation if: Ng 2 > ωɛ No go theorem:. Minimal coupling (p ea) 2 /2m i e m A p i g(ψ S + ψs + ), For large N, ω ω + 2Nζ. (RWA) Need Ng 2 > ɛ(ω + 2Nζ). i A 2 2m Nζ(ψ + ψ ) 2 [Rzazewski et al PRL 75] Jonathan Keeling Polariton and photon condensates Telluride, July / 44

107 No go theorem and transition Spontaneous polarisation if: Ng 2 > ωɛ No go theorem:. Minimal coupling (p ea) 2 /2m i e m A p i g(ψ S + ψs + ), i A 2 2m Nζ(ψ + ψ ) 2 For large N, ω ω + 2Nζ. (RWA) Need Ng 2 > ɛ(ω + 2Nζ). But Thomas-Reiche-Kuhn sum rule states: g 2 /ɛ < 2ζ. No transition [Rzazewski et al PRL 75] Jonathan Keeling Polariton and photon condensates Telluride, July / 44

108 Dicke phase transition: ways out Problem: g 2 /ω < 2ζ for intrinsic parameters. Solutions: Interpretation Ferroelectric transition in D r gauge. [JK JPCM 7, Vukics & Domokos PRA 212 ] Circuit QED [Nataf and Ciuti, Nat. Comm. 1; Viehmann et al. PRL 11] Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ)(ω µ) Incoherent pumping polariton condensation. Dissociate g, ω, e.g. Raman scheme: ω ω. [Dimer et al. PRA 7; Baumann et al. Nature 1. Also, Black et al. PRL 3 ] Jonathan Keeling Polariton and photon condensates Telluride, July / 44

109 Dicke phase transition: ways out Problem: g 2 /ω < 2ζ for intrinsic parameters. Solutions: Interpretation Ferroelectric transition in D r gauge. [JK JPCM 7, Vukics & Domokos PRA 212 ] Circuit QED [Nataf and Ciuti, Nat. Comm. 1; Viehmann et al. PRL 11] Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ)(ω µ) Incoherent pumping polariton condensation. Dissociate g, ω, e.g. Raman scheme: ω ω. [Dimer et al. PRA 7; Baumann et al. Nature 1. Also, Black et al. PRL 3 ] Jonathan Keeling Polariton and photon condensates Telluride, July / 44

110 Dicke phase transition: ways out Problem: g 2 /ω < 2ζ for intrinsic parameters. Solutions: Interpretation Ferroelectric transition in D r gauge. [JK JPCM 7, Vukics & Domokos PRA 212 ] Circuit QED [Nataf and Ciuti, Nat. Comm. 1; Viehmann et al. PRL 11] Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ)(ω µ) Incoherent pumping polariton condensation. Dissociate g, ω, e.g. Raman scheme: ω ω. [Dimer et al. PRA 7; Baumann et al. Nature 1. Also, Black et al. PRL 3 ] Jonathan Keeling Polariton and photon condensates Telluride, July / 44

111 Dicke phase transition: ways out Problem: g 2 /ω < 2ζ for intrinsic parameters. Solutions: Interpretation Ferroelectric transition in D r gauge. [JK JPCM 7, Vukics & Domokos PRA 212 ] Circuit QED [Nataf and Ciuti, Nat. Comm. 1; Viehmann et al. PRL 11] Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ)(ω µ) Incoherent pumping polariton condensation. Dissociate g, ω, e.g. Raman scheme: ω ω. [Dimer et al. PRA 7; Baumann et al. Nature 1. Also, Black et al. PRL 3 ] Jonathan Keeling Polariton and photon condensates Telluride, July / 44

112 Dicke phase transition: ways out Problem: g 2 /ω < 2ζ for intrinsic parameters. Solutions: Interpretation Ferroelectric transition in D r gauge. [JK JPCM 7, Vukics & Domokos PRA 212 ] Circuit QED [Nataf and Ciuti, Nat. Comm. 1; Viehmann et al. PRL 11] Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ)(ω µ) Incoherent pumping polariton condensation. Dissociate g, ω, e.g. Raman scheme: ω ω. [Dimer et al. PRA 7; Baumann et al. Nature 1. Also, Black et al. PRL 3 ] κ Pump κ Cavity Pump Jonathan Keeling Polariton and photon condensates Telluride, July / 44

113 Maxwell-Bloch Equations: Retarded Green s function Absorption N Energy/g Introduce D R (ω): Response to perturbation Absorption = 2I[D R (ω)] Jonathan Keeling Polariton and photon condensates Telluride, July / 44

114 Maxwell-Bloch Equations: Retarded Green s function Absorption N Energy/g Introduce D R (ω): Response to perturbation t ψ = iω ψ κψ + α g αp α t P α = 2iɛ α P α 2γP + g α ψn α t N α = 2γ(N N α ) 2g α (ψ P α + P αψ) Absorption = 2I[D R (ω)] [ 1 D (ω)] R g 2 N = ω ωk + iκ + ω 2ɛ + i2γ Jonathan Keeling Polariton and photon condensates Telluride, July / 44

115 Maxwell-Bloch Equations: Retarded Green s function Absorption N Energy/g Introduce D R (ω): Response to perturbation t ψ = iω ψ κψ + α g αp α t P α = 2iɛ α P α 2γP + g α ψn α t N α = 2γ(N N α ) 2g α (ψ P α + P αψ) Absorption = 2I[D R (ω)] = 2B(ω) A(ω) 2 + B(ω) 2 [ 1 D (ω)] R g 2 N = ω ωk + iκ + ω 2ɛ + i2γ = A(ω) + ib(ω) Jonathan Keeling Polariton and photon condensates Telluride, July / 44

116 Maxwell-Bloch Equations: Retarded Green s function (a) Absorption N -1 A(ν) Energy/g Energy/g Introduce D R (ω): Response to perturbation t ψ = iω ψ κψ + α g αp α t P α = 2iɛ α P α 2γP + g α ψn α t N α = 2γ(N N α ) 2g α (ψ P α + P αψ) Absorption = 2I[D R (ω)] = 2B(ω) A(ω) 2 + B(ω) 2 [ 1 D (ω)] R g 2 N = ω ωk + iκ + ω 2ɛ + i2γ = A(ω) + ib(ω) Jonathan Keeling Polariton and photon condensates Telluride, July / 44

117 Maxwell-Bloch Equations: Retarded Green s function (a) Absorption N -1 A(ν) B(ν) Energy/g Energy/g Introduce D R (ω): Response to perturbation t ψ = iω ψ κψ + α g αp α t P α = 2iɛ α P α 2γP + g α ψn α t N α = 2γ(N N α ) 2g α (ψ P α + P αψ) Absorption = 2I[D R (ω)] = 2B(ω) A(ω) 2 + B(ω) 2 [ 1 D (ω)] R g 2 N = ω ωk + iκ + ω 2ɛ + i2γ = A(ω) + ib(ω) Jonathan Keeling Polariton and photon condensates Telluride, July / 44

118 Maxwell-Bloch Equations: Retarded Green s function (a) (b) 1 Absorption N -1 A(ν) B(ν) A(ν) B(ν) Energy/g Energy/g Energy/g Introduce D R (ω): Response to perturbation t ψ = iω ψ κψ + α g αp α t P α = 2iɛ α P α 2γP + g α ψn α t N α = 2γ(N N α ) 2g α (ψ P α + P αψ) Absorption = 2I[D R (ω)] = 2B(ω) A(ω) 2 + B(ω) 2 [ 1 D (ω)] R g 2 N = ω ωk + iκ + ω 2ɛ + i2γ = A(ω) + ib(ω) Jonathan Keeling Polariton and photon condensates Telluride, July / 44

119 Organic materials in microcavities State of art: Strong coupling: J aggregates [Bulovic et al. ] Crystaline anthracene [Forrest et al. ] Thresold: Anthracene [Kena Cohen and Forrest, Nat. Photon 21] Differences Stronger coupling Singlet-Triplet conversion dark states Vibrational sidebands Jonathan Keeling Polariton and photon condensates Telluride, July / 44

120 Organic materials in microcavities State of art: Strong coupling: J aggregates [Bulovic et al. ] Crystaline anthracene [Forrest et al. ] Thresold: Anthracene [Kena Cohen and Forrest, Nat. Photon 21] Differences Stronger coupling Singlet-Triplet conversion dark states Vibrational sidebands Jonathan Keeling Polariton and photon condensates Telluride, July / 44

121 Organic materials in microcavities State of art: Strong coupling: J aggregates [Bulovic et al. ] Crystaline anthracene [Forrest et al. ] Thresold: Anthracene [Kena Cohen and Forrest, Nat. Photon 21] Differences Stronger coupling Singlet-Triplet conversion dark states Vibrational sidebands Jonathan Keeling Polariton and photon condensates Telluride, July / 44

122 Organic materials in microcavities State of art: Strong coupling: J aggregates [Bulovic et al. ] Crystaline anthracene [Forrest et al. ] Thresold: Anthracene [Kena Cohen and Forrest, Nat. Photon 21] Differences Stronger coupling Singlet-Triplet conversion dark states Vibrational sidebands Jonathan Keeling Polariton and photon condensates Telluride, July / 44

123 Organic materials in microcavities State of art: Strong coupling: J aggregates [Bulovic et al. ] Crystaline anthracene [Forrest et al. ] Thresold: Anthracene [Kena Cohen and Forrest, Nat. Photon 21] Differences Stronger coupling Energy Singlet-Triplet conversion dark states Vibrational sidebands Photon nuclear coordinate l S l Jonathan Keeling Polariton and photon condensates Telluride, July / 44

124 Polariton spectrum coupled oscillators Jonathan Keeling Polariton and photon condensates Telluride, July / 44

125 Polariton spectrum coupled oscillators 1 Photon Exciton UP Energy -1-2 LP Coupling, g Jonathan Keeling Polariton and photon condensates Telluride, July / 44

126 Polariton spectrum coupled oscillators 1 Photon Exciton Exciton-Ω UP Energy -1-2 LP Coupling, g Jonathan Keeling Polariton and photon condensates Telluride, July / 44

127 Polariton spectrum coupled oscillators 1 Photon Exciton-nΩ UP Energy Coupling, g Jonathan Keeling Polariton and photon condensates Telluride, July / 44

128 Polariton spectrum coupled oscillators 1 Photon Exciton-nΩ UP Energy Coupling, g Jonathan Keeling Polariton and photon condensates Telluride, July / 44

Polariton and photon condensates in organic materials. Jonathan Keeling. Sheffield, October 2014

Polariton and photon condensates in organic materials. Jonathan Keeling. Sheffield, October 2014 Polariton and photon condensates in organic materials Jonathan Keeling SUPA University of St Andrews 1413-213 Sheffield, October 214 Jonathan Keeling Polariton and photon condensates Sheffield, October

More information

Collective Dynamics of a Generalized Dicke Model

Collective Dynamics of a Generalized Dicke Model Collective Dynamics of a Generalized Dicke Model J. Keeling, J. A. Mayoh, M. J. Bhaseen, B. D. Simons Harvard, January 212 Funding: Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25 Coupling

More information

Pairing Phases of Polaritons, and photon condensates

Pairing Phases of Polaritons, and photon condensates Pairing Phases of Polaritons, and photon condensates Jonathan Keeling University of St Andrews 6 YEARS ICSCE7, Hakone, April 14 Jonathan Keeling Pairing phases & photons ICSCE7, April 14 1 / 1 Outline

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

Polaritons in some interacting exciton systems

Polaritons in some interacting exciton systems Polaritons in some interacting exciton systems Peter Littlewood, Argonne and U Chicago Richard Brierley (Yale) Cele Creatore (Cambridge) Paul Eastham (Trinity College, Dublin) Francesca Marchetti (Madrid)

More information

Pairing Phases of Polaritons

Pairing Phases of Polaritons Pairing Phases of Polaritons Jonathan Keeling 1 University of St Andrews 6 YEARS Pisa, January 14 Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 1 / 34 Bose-Einstein condensation: macroscopic

More information

Hydrodynamic solitons in polariton superfluids

Hydrodynamic solitons in polariton superfluids Hydrodynamic solitons in polariton superfluids Laboratoire Kastler Brossel (Paris) A. Amo * V.G. Sala,, R. Hivet, C. Adrados,, F. Pisanello, G. Lemenager,, J. Lefrère re, E. Giacobino, A. Bramati Laboratoire

More information

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati Quantum fluid phenomena with Microcavity Polaritons Alberto Bramati Quantum Optics Team: topics Quantum fluid phenomena in polariton gases An ideal system to study out of equilibrium quantum fluids Obstacle

More information

Driven-dissipative polariton quantum fluids in and out of equilibrium

Driven-dissipative polariton quantum fluids in and out of equilibrium Driven-dissipative polariton quantum fluids in and out of equilibrium Marzena Szymańska Designer Quantum Systems Out of Equilibrium KITP, November 2016 Acknowledgements Group: A. Zamora G. Dagvadorj In

More information

SUPA. Quantum Many-Body Physics with Multimode Cavity QED. Jonathan Keeling FOUNDED. University of St Andrews

SUPA. Quantum Many-Body Physics with Multimode Cavity QED. Jonathan Keeling FOUNDED. University of St Andrews Quantum Many-Body Physics with Multimode Cavity QED Jonathan Keeling University of St Andrews FOUNDED 113 SUPA CONDMAT17, Copenhagen, May 17 Jonathan Keeling Multimode cavity QED CONDMAT17 1 What can quantum

More information

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices Marzena Szymanska Collaborators Theory F. M. Marchetti E. Cancellieri C. Tejedor D. Whittaker Experiment D. Sanvitto,

More information

Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate. Frank Vewinger Universität Bonn

Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate. Frank Vewinger Universität Bonn Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate Frank Vewinger Universität Bonn What are we dealing with? System: 0 4 0 5 Photons ultracold : 300K Box: Curved mirror cavity A few

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Pairing Phases of Polaritons

Pairing Phases of Polaritons Pairing Phases of Polaritons Jonathan Keeling University of St Andrews 6 YEARS St Petersburg, March 14 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 1 / 11 Outline 1 Introduction

More information

Some theory of polariton condensation and dynamics

Some theory of polariton condensation and dynamics Some theory of polariton condensation and dynamics Peter Littlewood, Argonne and U Chicago Richard Brierley, Yale, Cele Creatore, Cambridge Sahinur Reja, Dresden Paul Eastham, Trinity College, Dublin Francesca

More information

David Snoke Department of Physics and Astronomy, University of Pittsburgh

David Snoke Department of Physics and Astronomy, University of Pittsburgh The 6 th International Conference on Spontaneous Coherence in Excitonic Systems Closing Remarks David Snoke Department of Physics and Astronomy, University of Pittsburgh ICSCE6, Stanford University, USA

More information

Prospects for a superradiant laser

Prospects for a superradiant laser Prospects for a superradiant laser M. Holland murray.holland@colorado.edu Dominic Meiser Jun Ye Kioloa Workshop D. Meiser, Jun Ye, D. Carlson, and MH, PRL 102, 163601 (2009). D. Meiser and MH, PRA 81,

More information

Quantum Many-Body Phenomena in Arrays of Coupled Cavities

Quantum Many-Body Phenomena in Arrays of Coupled Cavities Quantum Many-Body Phenomena in Arrays of Coupled Cavities Michael J. Hartmann Physik Department, Technische Universität München Cambridge-ITAP Workshop, Marmaris, September 2009 A Paradigm Many-Body Hamiltonian:

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems. Davide Rossini. Scuola Normale Superiore, Pisa (Italy)

Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems. Davide Rossini. Scuola Normale Superiore, Pisa (Italy) Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems Davide Rossini Scuola Normale Superiore, Pisa (Italy) Quantum simulations and many-body physics with light Orthodox

More information

Microcavity Exciton-Polariton

Microcavity Exciton-Polariton Microcavity Exciton-Polariton Neil Na ( 那允中 ) Institute of Photonics Technologies National Tsing-Hua University 5/3/2012 Outline Microcavity Exciton-polariton QW excitons Microcavity photons Strong coupling

More information

Polariton condensation: A Green s Function approach

Polariton condensation: A Green s Function approach Polariton condensation: A Green s Function approach Peter B. Littlewood & Jonathan Keeling Cambridge ITAP workshop on electronic/optical coherence in low dimensional semiconductors and atomic gases Contents

More information

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics, ETH Zürich, Switzerland

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Single-mode Polariton Laser in a Designable Microcavity

Single-mode Polariton Laser in a Designable Microcavity Single-mode Polariton Laser in a Designable Microcavity Hui Deng Physics, University of Michigan, Ann Arbor Michigan Team: Bo Zhang Zhaorong Wang Seonghoon Kim Collaborators: S Brodbeck, C Schneider, M

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information

Simulating Quantum Simulators. Rosario Fazio

Simulating Quantum Simulators. Rosario Fazio Simulating Quantum Simulators Rosario Fazio Critical Phenomena in Open Many-Body systems Rosario Fazio In collaboration with J. Jin A. Biella D. Rossini J. Keeling Dalian Univ. SNS - Pisa St. Andrews J.

More information

Self organization of a Bose Einstein Condensate in an optical cavity

Self organization of a Bose Einstein Condensate in an optical cavity Self organization of a Bose Einstein Condensate in an optical cavity Mayukh Nilay Khan December 14, 2011 Abstract Here, we discuss the spatial self organization of a BEC in a single mode optical cavity

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF Natal 2016 1 1 OUTLINE Classical SASE and spiking Semi-classical FEL theory: quantum purification Fully quantum

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

WAVE INTERFERENCES IN RANDOM LASERS

WAVE INTERFERENCES IN RANDOM LASERS WAVE INTERFERENCES IN RANDOM LASERS Philippe Jacquod U of Arizona P. Stano and Ph. Jacquod, Nature Photonics (2013) What is a laser? Light Amplification by Stimulated Emission of Radiation Three main components

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

arxiv: v1 [physics.atom-ph] 9 Nov 2013

arxiv: v1 [physics.atom-ph] 9 Nov 2013 Beyond the Dicke Quantum Phase Transition with a Bose-Einstein Condensate in an Optical Ring Resonator D. Schmidt, H. Tomczyk, S. Slama, C. Zimmermann Physikalisches Institut, Eberhard-Karls-Universität

More information

Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model

Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model Laser operation Simplified energy conversion processes in a laser medium:

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Chapter 2 Optical Transitions

Chapter 2 Optical Transitions Chapter 2 Optical Transitions 2.1 Introduction Among energy states, the state with the lowest energy is most stable. Therefore, the electrons in semiconductors tend to stay in low energy states. If they

More information

Polariton condensation: A Green s Function approach

Polariton condensation: A Green s Function approach Polariton condensation: A Green s Function approach Jonathan Keeling MathNanoSci Intensive Programme, L Aquila 2010. Contents Contents List of Figures Introduction Books and Review articles......................

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

The interaction of light and matter

The interaction of light and matter Outline The interaction of light and matter Denise Krol (Atom Optics) Photon physics 014 Lecture February 14, 014 1 / 3 Elementary processes Elementary processes 1 Elementary processes Einstein relations

More information

Bose-Einstein condensation of photons in a 'whitewall'

Bose-Einstein condensation of photons in a 'whitewall' Journal of Physics: Conference Series Bose-Einstein condensation of photons in a 'whitewall' photon box To cite this article: Jan Klärs et al 2011 J. Phys.: Conf. Ser. 264 012005 View the article online

More information

Atoms and photons. Chapter 1. J.M. Raimond. September 6, J.M. Raimond Atoms and photons September 6, / 36

Atoms and photons. Chapter 1. J.M. Raimond. September 6, J.M. Raimond Atoms and photons September 6, / 36 Atoms and photons Chapter 1 J.M. Raimond September 6, 2016 J.M. Raimond Atoms and photons September 6, 2016 1 / 36 Introduction Introduction The fundamental importance of the atom-field interaction problem

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Summary We describe the signatures of exciton-polariton condensation without a periodically modulated potential, focusing on the spatial coherence properties and condensation in momentum space. The characteristics

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Optomechanically induced transparency of x-rays via optical control: Supplementary Information

Optomechanically induced transparency of x-rays via optical control: Supplementary Information Optomechanically induced transparency of x-rays via optical control: Supplementary Information Wen-Te Liao 1, and Adriana Pálffy 1 1 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg,

More information

The Connection of Polaritons and Vacuum Rabi Splitting

The Connection of Polaritons and Vacuum Rabi Splitting The Connection of Polaritons and Vacuum Rabi Splitting David Snoe Department of Physics and Astronomy, University of Pittsburgh 3941 O Hara St., Pittsburgh, PA 1560 Abstract Polaritons, in particular microcavity

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors Nonadiabatic dynamics and coherent control of nonequilibrium superconductors Andreas Schnyder Workshop on strongly correlated electron systems Schloss Ringberg, November 13 k F 1 t (ps 3 4 in collaboration

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Non-equilibrium quantum phase transition with ultracold atoms in optical cavity

Non-equilibrium quantum phase transition with ultracold atoms in optical cavity Non-equilibrium quantum phase transition with ultracold atoms in optical cavity P. Domokos, D. Nagy, G. Kónya, G. Szirmai J. Asbóth, A. Vukics H. Ritsch (Innsbruck) MTA Szilárdtestfizikai és Optikai Kutatóintézete

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Dynamical Condensation of ExcitonPolaritons

Dynamical Condensation of ExcitonPolaritons ICSCE 2008 Dynamical Condensation of ExcitonPolaritons Y. Yamamoto, H. Deng, G. Weihs, C.W. Lai, G. Roumpos and S. Utsunomiya Stanford University and National Institute of Informatics Loeffler, S. Hoefling,

More information

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Chemistry Instrumental Analysis Lecture 5. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 5 Light Amplification by Stimulated Emission of Radiation High Intensities Narrow Bandwidths Coherent Outputs Applications CD/DVD Readers Fiber Optics Spectroscopy

More information

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Michiel Wouters BEC CNR-INFM and Università di Trento,

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

PART 2 : BALANCED HOMODYNE DETECTION

PART 2 : BALANCED HOMODYNE DETECTION PART 2 : BALANCED HOMODYNE DETECTION Michael G. Raymer Oregon Center for Optics, University of Oregon raymer@uoregon.edu 1 of 31 OUTLINE PART 1 1. Noise Properties of Photodetectors 2. Quantization of

More information

Bogoliubov theory of the weakly interacting Bose gas

Bogoliubov theory of the weakly interacting Bose gas Chapter 4 Bogoliubov theory of the wealy interacting Bose gas In the presence of BEC, the ideal Bose gas has a constant pressure against variation of volume, so that the system features infinite compressibility.

More information

arxiv: v3 [cond-mat.mtrl-sci] 3 Dec 2007

arxiv: v3 [cond-mat.mtrl-sci] 3 Dec 2007 using single micropillar GaAs-GaAlAs semiconductor cavities Daniele Bajoni, 1 Pascale Senellart, 1 Esther Wertz, 1 Isabelle Sagnes, 1 Audrey Miard, 1 Aristide Lemaître, 1 and Jacqueline Bloch 1, 1 CNRS-Laboratoire

More information

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmon Amplification by Stimulated Emission of Radiation By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmons (SPs) Quanta of electron oscillations in a plasma. o Electron gas in

More information

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Koji Usami (Dated: January 6, 015) In this final lecture we study the Jaynes-Cummings model in which an atom (a two level system) is coupled

More information

Light-Matter Correlations in Polariton Condensates

Light-Matter Correlations in Polariton Condensates Light-Matter Correlations in Polariton Condensates 1) Alexey Kavokin University of Southampton, UK SPIN, CNR, Rome, Italy Alexandra Sheremet Russian Quantum Center, Moscow, Russia Yuriy Rubo Universidad

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Laser Fundamentals The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Microcavity polaritons are composite bosons, which are partly

Microcavity polaritons are composite bosons, which are partly From polariton condensates to highly photonic quantum degenerate states of bosonic matter Marc Aßmann a,1, Jean-Sebastian Tempel a, Franziska Veit a, Manfred Bayer a, Arash Rahimi-Iman b, Andreas Löffler

More information

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Michiel Wouters EPFL, Lausanne, Switzerland Cristiano

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

Lecture 8 Interband Transitions. Excitons

Lecture 8 Interband Transitions. Excitons Lecture 8 Interband Transitions Excitons Read: FS 4 Purdue University Spring 2016 Prof. Yong P. Chen (yongchen@purdue.edu) Lecture 8 (2/4/2016) Slide 1 Textbook 1: M. Fox Optical Properties of Solids (2

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 1. (a) Suppose you want to use a lens focus a Gaussian laser beam of wavelength λ in order to obtain a beam waist radius w

More information

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions 1 PHYS3113, 3d year Statistical Mechanics Tutorial problems Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions Problem 1 The macrostate probability in an ensemble of N spins 1/2 is

More information

Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons.

Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons. Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons. Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons Jonathan Mark James Keeling Jesus College University

More information

The meaning of superfluidity for polariton condensates

The meaning of superfluidity for polariton condensates The meaning of superfluidity for polariton condensates Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Michiel Wouters EPFL, Lausanne, Switzerland Cristiano Ciuti and Simon Pigeon MPQ, Univ.

More information

Non-Equilibrium Criticality in Driven Open Quantum Systems

Non-Equilibrium Criticality in Driven Open Quantum Systems Cold Atoms meet Quantum Field Theory July 08 2015 Bad Honnef, Germany Non-Equilibrium Criticality in Driven Open Quantum Systems Sebastian Diehl Institute for Theoretical Physics, Technical University

More information

Quantised Vortices in an Exciton- Polariton Condensate

Quantised Vortices in an Exciton- Polariton Condensate 4 th International Conference on Spontaneous Coherence in Excitonic Systems Quantised Vortices in an Exciton- Polariton Condensate Konstantinos G. Lagoudakis 1, Michiel Wouters 2, Maxime Richard 1, Augustin

More information

In-class exercises. Day 1

In-class exercises. Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 8 Exercises due Mon March 19 Last correction at March 5, 2018, 8:48 am c 2017, James Sethna,

More information

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones OPTI 5, Spring 206 Problem Set 9 Prof. R. J. Jones Due Friday, April 29. Absorption and thermal distributions in a 2-level system Consider a collection of identical two-level atoms in thermal equilibrium.

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

Dynamics of Quantum Many Body Systems Far From Thermal Equilibrium

Dynamics of Quantum Many Body Systems Far From Thermal Equilibrium Dynamics of Quantum Many Body Systems Far From Thermal Equilibrium Marco Schiro CNRS-IPhT Saclay Schedule: Friday Jan 22, 29 - Feb 05,12,19. 10h-12h Contacts: marco.schiro@cea.fr Lecture Notes: ipht.cea.fr

More information

Towards new states of matter with atoms and photons

Towards new states of matter with atoms and photons Towards new states of matter with atoms and photons Jonas Larson Stockholm University and Universität zu Köln Aarhus Cold atoms and beyond 26/6-2014 Motivation Optical lattices + control quantum simulators.

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Quantum Feedback Stabilized Solid-State Emitters

Quantum Feedback Stabilized Solid-State Emitters FOPS 2015 Breckenridge, Colorado Quantum Feedback Stabilized Solid-State Emitters Alexander Carmele, Julia Kabuss, Sven Hein, Franz Schulze, and Andreas Knorr Technische Universität Berlin August 7, 2015

More information

Light-matter coupling: from the weak to the ultrastrong coupling and beyond. Simone De Liberato Quantum Light and Matter Group

Light-matter coupling: from the weak to the ultrastrong coupling and beyond. Simone De Liberato Quantum Light and Matter Group Light-matter coupling: from the weak to the ultrastrong coupling and beyond Simone De Liberato Quantum Light and Matter Group General theory Open quantum systems Material implementations Advanced topics

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Quantum structures of photons and atoms

Quantum structures of photons and atoms Quantum structures of photons and atoms Giovanna Morigi Universität des Saarlandes Why quantum structures The goal: creation of mesoscopic quantum structures robust against noise and dissipation Why quantum

More information

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by Supplementary Figure : Bandstructure of the spin-dependent hexagonal lattice. The lattice depth used here is V 0 = E rec, E rec the single photon recoil energy. In a and b, we choose the spin dependence

More information