(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

Size: px
Start display at page:

Download "(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System"

Transcription

1 (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan)

2 Supersymmetry (SUSY) Symmetry related to interchanging of a boson and a fermion = b f b f 2

3 Supersymmetry (SUSY) Q: supercharge b f b f SUSY: [Q, H]=0 Supercharge operator: annihilate one fermion and create one boson (and its inverse process) 3

4 Spontaneous SUSY breaking V. V. Lebedev and A. V. Smilga, Nucl. Phys. B 318, 669 (1989) (medium effect) SUSY breaking nf nb E E 4

5 NG fermion which is related to SUSY breaking Generally, spontaneous symmetry breaking generates zero energy excitation (Nambu-Goldstone (NG) mode). symmetry breaking NG mode We expect that SUSY breaking order parameter also generates NG mode. 5

6 NG fermion which is related to SUSY breaking Nambu-Goldstone theorem: ik µ (fermion ver.) Broken symmetry d 4 xe ik (x y) TJ µ (x)o(y) = {Q, O} J µ : supercurrent Q=J 0 : supercharge NG mode Order parameter When the order parameter is finite, the propagator in the left-hand side has a pole at k 0. 6

7 NG fermion which is related to SUSY breaking ik µ Broken symmetry d 4 xe ik (x y) TJ µ (x)o(y) = {Q, O} NG mode If we set O=Q, NG mode appears in <QQ>. Order parameter is energy-momentum tensor (T µν γν) in the present case. SUSY is always broken when ρ is finite. { } Order parameter (µ=0) T µν =diag(ρ,p,p,p), ε, SUSY is fermionic symmetry, so the NG mode is fermion (Goldstino). Rare fermionic zero mode 7

8 Quasi-goldstino in hot QED/QCD V. V. Lebedev and A. V. Smilga, Annals Phys. 202, 229 (1990) = q g Both of the quark and the gluon are regarded as massless at high T, so there is SUSY approximately if we neglect the interaction. 8

9 Quasi-goldstino in hot QED/QCD Actually, in weak coupling regime, we established the existence of the (quasi) goldstino in QED/QCD. Y. Hidaka, D. S., and T. Kunihiro, Nucl. Phys. A 876, 93 (2012) D. S., PRD 87, (2013). dispersion relation Reω p/3 Damping rate Imω=ζq+ζg=O(g 2 T) Residue g 2 144π 2 QED g 2 (4 + N f ) 2 48π 2 QCD The dispersion relation is linear (Type-I NG mode). 9

10 Why Cold Atom System? Lattice Structure (optical lattice) Hubbard model Tunableness of interaction strength (laser intensity, magnetic field strength: Feshbach resonance) Cold atom system can be used as experiment station of many-body system whose experiment is difficult. Wess-Zumino model: Y. Yu, and K. Yang, PRL 105, (2010) Dense QCD: K. Maeda, G. Baym and T. Hatsuda, PRL 103, (2009) Relativistic QED: Kapit and Mueller, PRA 83, (2011) 10

11 Motivation of this research If we simulate the SUSY with the cold atom system, we can observe the goldstino experimentally!! 11

12 T. Shi, Y. Yu, and C. P. Sun, PRA 81, (R) (2010) SUSY in Cold Atom System Trap two kinds of fermion (f, F) and their bound state (boson: b) on optical lattice. b f F 12

13 T. Shi, Y. Yu, and C. P. Sun, PRA 81, (R) (2010) SUSY in Cold Atom System H α = t α a α i aj α µ α a α i ai α ij i ( ) f b = (tf =tb) (µf =µb) How to tune t: M. Snoek, S. Vandoren, and H. T. C. Stoof, PRA 74, (2006) 13

14 SUSY in Cold Atom System T. Shi, Y. Yu, and C. P. Sun, PRA 81, (R) (2010) U bb 2 i n b i ( n b i 1 ) + U bf i n b i nf i, = (Ubb =Ubf) When tf =tb, Ubb =Ubf, µf =µb, Q =bf commutes with the Hamiltonian. F decouples. 14

15 NG fermion which is related to SUSY breaking ik µ Broken symmetry d 4 xe ik (x y) TJ µ (x)o(y) = {Q, O} Q =bf Q =b f NG mode Order parameter If we set O=Q, NG mode appears in <QQ >. Order parameter is density (<{Q, Q }>=ρ) in this case. SUSY is always broken when ρ is finite. 15

16 Setup d=2 No BEC. Continuum limit a << (kf) -1, (T) -1 (a=1 unit, for simplicity.) Δµ=µf -µb 0 Explicit SUSY breaking 16

17 Analysis with Resummed Perturbation Calculate the propagator (spectrum) of the Goldstino. Since Q =bf, the propagator at the one-loop order is <Q (x)q(0)>= b f The Hamiltonian has SUSY, so the bare dispersion relations of the fermion and the boson are the same, and thus the loop integral diverges at ω-δµ, p 0. (pinch singularity) (Δµ=µf -µb) (fermion term)= d 2 k n F (ɛ f k ) (2π) 2 ω µ t(2k p + p 2 ), 2 17

18 Analysis with Resummed Perturbation T. Shi, Y. Yu, and C. P. Sun, PRA 81, (R) (2010) (1) the density correction to the dispersion relations. fermion: Uρb Uρf + 2Uρb boson: the pinch singularity is regularized. d 2 k n F (ɛ f k ) (2π) 2 ω ( µ + t(2k p + p 2 )+Uρ), (fermion term)= U -1 18

19 Analysis with Resummed Perturbation T. Shi, Y. Yu, and C. P. Sun, PRA 81, (R) (2010) All ring diagrams contributes at the same order. U -1 U -1 U U -1 =U -1 We need to sum up infinite ring diagrams. 19

20 Analysis with Resummed Perturbation T. Shi, Y. Yu, and C. P. Sun, PRA 81, (R) (2010) (2) Random Phase Approximation U The self-consistent equation can be rewritten in explicit form. 20

21 Expansion in terms of energy, momentum Calculate the propagator of the Goldstino by using (1), (2). We are interested in low energy-momentum region. Expand in terms of energy, momentum p <<kf, Uρ/(kf t) 21

22 Spectral properties of Goldstino Dispersion Relation ω Δµ -αp 2 Strength 1 (maximum value allowed by sum rule) Type-II NG mode (while it is Type-I in relativistic system). α 1 ρ ( 4πt 2 ρ 2 f Uρ (T=0 case) ) t(ρ f ρ b ) The damping rate is expected to be zero at p=0 because of NG theorem. Damping rate when p is finite can not be evaluated since we neglected collision effect. 22

23 Results at T 0 17 U/t=0.1, f =0.5, b = /t T/t The coefficient increases when T increases. 23

24 Analogy with Magnon in Ferromagnet Goldstino Conserved Charge: Q, Q, ρ Magnon in ferromagnet Conserved Charge: m +, m -, m z Broken order parameter Broken order parameter Q m + Q m - b Q 2 =Q 2 =0 f up m +2 =m -2 =0 down m ± =m x ± im y 24

25 Analogy with Magnon in Ferromagnet Derivation of spectrum of magnon P. M. Chaikin, T. C. Lubensky, Principles of condensed matter physics. Expand the free energy density in terms of spatial inhomogeneity. f = ρ s 2M 2 0 ρ (( m x ) 2 +( m y ) 2 ) ρs: spin wave stiffness constant M0:spontaneous magnetization 25

26 Analogy with Magnon in Ferromagnet df =-hidmi h effective magnetic field external magnetic field (x, y) h a = ρ s (z) hz =h M m a, Equation of Motion of m i t m i = ih j [m i,m j ] = (h m) i, (H-himi) [mi, mj]=iεijkmk Linearization (mi: small) t m x = ρ s M 0 2 m y + hm y, t m y = ρ s M 0 2 m x hm x, 26

27 Analogy with Magnon in Ferromagnet rewrite using m ± instead of m x, m y. t m ± = i ( ) ρs 2 + h M 0 m ±. ( ) Dispersion relation: ω = ± ( ) ρs p 2 + h M 0 27

28 Analogy with Magnon in Ferromagnet Generally, expectation values of commutators among conserved charges are essentially important to predict whether the NG mode is type-i or II. NII=rank<[Qa, Qb]>/2 NI=NBS -2NII H. Watanabe and H. Murayama, PRL 108, (2012) Y. Hidaka, PRL 110, (2013) ( <[m ±, m z ]>=0 ) <[m +, m - ]>=2m0 rank<[qa, Qb]>/2=1 NII =1 NI =0 NBS =2 28

29 Analogy with Magnon in Ferromagnet The Case of Goldstino Expectation values of (anti-) commutators have the same structure as those in ferromagnet. <[Q, ρ]>=0 <{Q, Q }>=ρ Q, Q m+, m- ρ mz Therefore we understand the reason why the both spectrums have the same form. 29

30 Analogy with Magnon in Ferromagnet ( β ) ( ) Δµ h ω = ± ρ p2 + µ β = αρ = 4πt2 ρ 2 f Uρ t(ρ f ρ b ) It corresponds to the spin wave stiffness constant in ferromagnet. As that of magnon, the damping rate has the form of Dp 4. (D can be calculated by using Kubo formula) The momentum dependence of the energy and the damping rate is model-independent! 30

31 Summary We obtained the expression of dispersion relation and the strength of the goldstino (at weak coupling, continuum limit). We understand the similarity between the goldstino and the magnon in ferromagnet, by using the fact that the (anti-)commutation relations have the same structure. We obtained the momentum dependence of the excitation energy and the damping rate in modelindependent way. 31

Nambu-Goldstone Fermion Mode in Quark-Gluon Plasma and Bose-Fermi Cold Atom System

Nambu-Goldstone Fermion Mode in Quark-Gluon Plasma and Bose-Fermi Cold Atom System Nambu-Goldstone Fermion Mode in Quark-Gluon Plasma and Bose-Fermi Cold Atom System Daisuke Satow (ECT*,!)! Collaborators: Jean-Paul Blaizot (Saclay CEA, ") Yoshimasa Hidaka (RIKEN, #) Supersymmetry (SUSY)

More information

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models YKIS2016@YITP (2016/6/15) Supersymmetry breaking and Nambu-Goldstone fermions in lattice models Hosho Katsura (Department of Physics, UTokyo) Collaborators: Yu Nakayama (IPMU Rikkyo) Noriaki Sannomiya

More information

arxiv: v1 [cond-mat.quant-gas] 22 Oct 2015

arxiv: v1 [cond-mat.quant-gas] 22 Oct 2015 arxiv:151.6525v1 [cond-mat.quant-gas] 22 Oct 215 Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures Jean-Paul Blaizot a, Yoshimasa Hidaka b, Daisuke Satow c a Institut de Physique

More information

Spontaneous breaking of supersymmetry

Spontaneous breaking of supersymmetry Spontaneous breaking of supersymmetry Hiroshi Suzuki Theoretical Physics Laboratory Nov. 18, 2009 @ Theoretical science colloquium in RIKEN Hiroshi Suzuki (TPL) Spontaneous breaking of supersymmetry Nov.

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe) Deconfined quark-gluon plasmas made in ultrarelativistic heavy ion collisions T ~ 10 2 MeV ~ 10 12 K (temperature of early universe at ~1µ sec) Bose-condensed and BCS fermion superfluid states T ~ nano

More information

Supersymmetry and how it helps us understand our world

Supersymmetry and how it helps us understand our world Supersymmetry and how it helps us understand our world Spitalfields Day Gauge Theory, String Theory and Unification, 8 October 2007 Theoretical Physics Institute, University of Minnesota What is supersymmetry?

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Sound modes and the two-stream instability in relativistic superfluids

Sound modes and the two-stream instability in relativistic superfluids Madrid, January 17, 21 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1 Vienna, Austria Sound modes and the two-stream instability in relativistic superfluids M.G. Alford,

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Nambu-Goldstone Bosons in Nonrelativistic Systems

Nambu-Goldstone Bosons in Nonrelativistic Systems Nov. 17, 2015 Nambu and Science Frontier @Osaka (room H701) 15:20-17:30: Session on topics from Nambu to various scales Nambu-Goldstone Bosons in Nonrelativistic Systems Haruki Watanabe MIT Pappalardo

More information

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July, BEC of magnons and spin wave interactions in QAF Andreas Kreisel Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main July, 18 2007 collaborators: N. Hasselmann, P. Kopietz

More information

February 15, Kalani Hettiarachchi. Collaborators: Valy Rousseau Ka-Ming Tam Juana Moreno Mark Jarrell

February 15, Kalani Hettiarachchi. Collaborators: Valy Rousseau Ka-Ming Tam Juana Moreno Mark Jarrell February 15, 2015 Kalani Hettiarachchi Collaborators: Valy Rousseau Ka-Ming Tam Juana Moreno Mark Jarrell Cold Atoms Ø On Surface of Sun: Miss many aspects of nature Ø Surface of Earth: Different states

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

The chiral anomaly and the eta-prime in vacuum and at low temperatures

The chiral anomaly and the eta-prime in vacuum and at low temperatures The chiral anomaly and the eta-prime in vacuum and at low temperatures Stefan Leupold, Carl Niblaeus, Bruno Strandberg Department of Physics and Astronomy Uppsala University St. Goar, March 2013 1 Table

More information

arxiv:hep-ph/ v1 1 Feb 2005

arxiv:hep-ph/ v1 1 Feb 2005 Vector Goldstone Boson and Lorentz Invariance arxiv:hep-ph/050011v1 1 Feb 005 Ling-Fong Li Department of Physics, Carnegie Mellon University, Pittsburgh, PA 1513 January 5, 018 Abstract Spontanous symmetry

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio Spontaneous symmetry breaking in particle physics: a case of cross fertilization Giovanni Jona-Lasinio QUARK MATTER ITALIA, 22-24 aprile 2009 1 / 38 Spontaneous (dynamical) symmetry breaking Figure: Elastic

More information

Transport theory and low energy properties of colour superconductors

Transport theory and low energy properties of colour superconductors 1 Transport theory and low energy properties of colour superconductors Daniel F. Litim Theory Group, CERN, CH 1211 Geneva 23, Switzerland. CERN-TH-2001-315 The one-loop polarisation tensor and the propagation

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Thermalization of axion dark matter

Thermalization of axion dark matter Thermalization of axion dark matter Ken ichi Saikawa ICRR, The University of Tokyo Collaborate with M. Yamaguchi (Tokyo Institute of Technology) Reference: KS and M. Yamaguchi, arxiv:1210.7080 [hep-ph]

More information

SUSY Breaking in Gauge Theories

SUSY Breaking in Gauge Theories SUSY Breaking in Gauge Theories Joshua Berger With the Witten index constraint on SUSY breaking having been introduced in last week s Journal club, we proceed to explicitly determine the constraints on

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

Towards a quantitative FRG approach for the BCS-BEC crossover

Towards a quantitative FRG approach for the BCS-BEC crossover Towards a quantitative FRG approach for the BCS-BEC crossover Michael M. Scherer Theoretisch Physikalisches Institut, Jena University in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies,

More information

Non Fermi liquid effects in dense matter. Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle,

Non Fermi liquid effects in dense matter. Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle, Non Fermi liquid effects in dense matter Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle, 27.5.2004 1 Introduction Possible phases at high density...... all involve condensed

More information

arxiv:hep-ph/ v1 19 Feb 1999

arxiv:hep-ph/ v1 19 Feb 1999 ELECTRICAL CONDUCTION IN THE EARLY UNIVERSE arxiv:hep-ph/9902398v1 19 Feb 1999 H. HEISELBERG Nordita, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark E-mail: hh@nordita.dk The electrical conductivity has been

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

QCD Phase Transitions and Quark Quasi-particle Picture

QCD Phase Transitions and Quark Quasi-particle Picture QCD Phase Transitions and Quark Quasi-particle Picture Teiji Kunihiro (YITP, Kyoto) YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories May 30 June 1, 2005 YITP, Kyoto 1.Introduction

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model Chengfu Mu, Peking University Collaborated with Lianyi He, J.W.Goethe University Prof. Yu-xin Liu, Peking University

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 MAR 5, 2014 Part 1 March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 ! Examples of relativistic matter Electrons, protons, quarks inside compact stars (white dwarfs, neutron, hybrid

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

QCD at finite Temperature

QCD at finite Temperature QCD at finite Temperature II in the QGP François Gelis and CEA/Saclay General outline Lecture I : Quantum field theory at finite T Lecture II : in the QGP Lecture III : Out of equilibrium systems François

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

QGP, Hydrodynamics and the AdS/CFT correspondence

QGP, Hydrodynamics and the AdS/CFT correspondence QGP, Hydrodynamics and the AdS/CFT correspondence Adrián Soto Stony Brook University October 25th 2010 Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT October 25th 2010 1 / 18 Outline

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

The Higgs particle in condensed matter

The Higgs particle in condensed matter The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky,

More information

Are there plasminos in superconductors?

Are there plasminos in superconductors? Are there plasminos in superconductors? Barbara Betz and Dirk-H. Rischke Institut für Theoretische Physik Johann Wolfgang Goethe-Universität Frankfurt am Main VI Workshop Rathen 2006 nucl-th/0609019 Are

More information

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity Debarati Chatterjee Recap: Hydrodynamics of nearly perfect fluids Hydrodynamics: correlation functions at low

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/20 What is common for strong coupled cold atoms and QGP? Cold atoms and AdS/CFT p.2/20

More information

Electric and magnetic screening in plasma with charged Bose condensate

Electric and magnetic screening in plasma with charged Bose condensate Electric and magnetic screening in plasma with charged Bose condensate A.D. Dolgov ITEP, 117218, Moscow, Russia INFN, Ferrara 40100, Italy University of Ferrara, Ferrara 40100, Italy Kazakov-60 International

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Department of Physics, Osaka University, Toyonaka , Japan

Department of Physics, Osaka University, Toyonaka , Japan Dilepton production spectrum above T c analyzed with a lattice quark propagator Department of Physics, Osaka University, Toyonaka 560-0043, Japan E-mail: kim@kern.phys.sci.osaka-u.ac.jp Masayuki Asakawa

More information

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length I. Vidanović, A. Balaž, H. Al-Jibbouri 2, A. Pelster 3 Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia 2

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Quantum Electrodynamics with Ultracold Atoms

Quantum Electrodynamics with Ultracold Atoms Quantum Electrodynamics with Ultracold Atoms Valentin Kasper Harvard University Collaborators: F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler, and J. Berges Motivation for QED (1+1) Theoretical Motivation

More information

Quark Structure of the Pion

Quark Structure of the Pion Quark Structure of the Pion Hyun-Chul Kim RCNP, Osaka University & Department of Physics, Inha University Collaborators: H.D. Son, S.i. Nam Progress of J-PARC Hadron Physics, Nov. 30-Dec. 01, 2014 Interpretation

More information

Aspects of SUSY Breaking

Aspects of SUSY Breaking Aspects of SUSY Breaking Zohar Komargodski Institute for Advanced Study, Princeton ZK and Nathan Seiberg : arxiv:0907.2441 Aspects of SUSY Breaking p. 1/? Motivations Supersymmetry is important for particle

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Thermal production of gravitinos

Thermal production of gravitinos Thermal production of gravitinos Slava Rychkov Scuola Normale Superiore & INFN, Pisa Università di Padova April 5 2007 hep-ph/0701104 with Alessandro Strumia (to appear in PhysRevD) Outline Gravitino in

More information

Transport in the Outer Core of Neutron Stars

Transport in the Outer Core of Neutron Stars Stephan Stetina Institute for Theoretical Physics Vienna UT Transport in the Outer Core of Neutron Stars SEWM 018, Barcelona Ermal Rrapaj (University of Guelph), Sanjay Reddy (INT Seattle) [S. Stetina,

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Phase transitions in strong QED3

Phase transitions in strong QED3 Phase transitions in strong QED3 Christian S. Fischer Justus Liebig Universität Gießen SFB 634 30. November 2012 Christian Fischer (University of Gießen) Phase transitions in strong QED3 1 / 32 Overview

More information

Nature of the sigma meson as revealed by its softening process

Nature of the sigma meson as revealed by its softening process Nature of the sigma meson as revealed by its softening process Tetsuo Hyodo a, Daisuke Jido b, and Teiji Kunihiro c Tokyo Institute of Technology a YITP, Kyoto b Kyoto Univ. c supported by Global Center

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Vortices and vortex states of Rashba spin-orbit coupled condensates

Vortices and vortex states of Rashba spin-orbit coupled condensates Vortices and vortex states of Rashba spin-orbit coupled condensates Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University March 5, 2014 P.N, T.Duric, Z.Tesanovic,

More information

From confinement to new states of dense QCD matter

From confinement to new states of dense QCD matter From confinement to new states of dense QCD matter From Quarks and Gluons to Hadrons and Nuclei, Erice, Sicily, 17 Sept2011 Kurt Langfeld School of Comp. and Mathematics and The HPCC, Univ. of Plymouth,

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry.

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry. Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry. Axion BEC: a model beyond CDM Based on: Bose-Einstein Condensation of Dark Matter

More information

Effective Field Theories for lattice QCD

Effective Field Theories for lattice QCD Effective Field Theories for lattice QCD Stephen R. Sharpe University of Washington S. Sharpe, EFT for LQCD: Lecture 1 3/21/12 @ New horizons in lattice field theory, Natal, Brazil 1 Outline of Lectures

More information

Quantum gases in the unitary limit and...

Quantum gases in the unitary limit and... Quantum gases in the unitary limit and... Andre LeClair Cornell university Benasque July 2 2010 Outline The unitary limit of quantum gases S-matrix based approach to thermodynamics Application to the unitary

More information

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Lianyi He ( 何联毅 ) Department of Physics, Tsinghua University 2016 Hangzhou Workshop on Quantum Degenerate Fermi Gases,

More information

chapter 3 Spontaneous Symmetry Breaking and

chapter 3 Spontaneous Symmetry Breaking and chapter 3 Spontaneous Symmetry Breaking and Nambu-Goldstone boson History 1961 Nambu: SSB of chiral symmetry and appearance of zero mass boson Goldstone s s theorem in general 1964 Higgs (+others): consider

More information

arxiv:cond-mat/ v1 2 Mar 1997

arxiv:cond-mat/ v1 2 Mar 1997 1/N Expansion for Critical Exponents of Magnetic Phase Transitions in CP N 1 Model at 2 < d < 4 V.Yu.Irkhin, A.A.Katanin and M.I.Katsnelson Institute of Metal Physics, 620219 Ekaterinburg, Russia Critical

More information

The Affleck Dine Seiberg superpotential

The Affleck Dine Seiberg superpotential The Affleck Dine Seiberg superpotential SUSY QCD Symmetry SUN) with F flavors where F < N SUN) SUF ) SUF ) U1) U1) R Φ, Q 1 1 F N F Φ, Q 1-1 F N F Recall that the auxiliary D a fields: D a = gφ jn T a

More information

1 Nucleon-Nucleon Scattering

1 Nucleon-Nucleon Scattering Lecture Notes: NN Scattering Keegan Sherman 1 Nucleon-Nucleon Scattering In the previous lecture, we were talking about nucleon-nucleon (NN) scattering events and describing them through phase shifts.

More information

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA with η condensation Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 66-85, Japan E-mail: saoki@yukawa.kyoto-u.ac.jp Michael CREUTZ Physics Department

More information

arxiv: v1 [hep-ph] 10 Jan 2019

arxiv: v1 [hep-ph] 10 Jan 2019 Nisho-1-2019 Nonvanishing pion masses for vanishing bare quark masses Aiichi Iwazaki Nishogakusha University, 6-16 Sanbancho Chiyoda-ku Tokyo 102-8336, Japan. (Dated: Jan. 10, 2019) arxiv:1901.03045v1

More information

B K decays in a finite volume

B K decays in a finite volume B K decays in a finite volume Akaki Rusetsky, University of Bonn In collaboration with A. Agadjanov, V. Bernard and U.-G. Meißner arxiv:1605.03386, Nucl. Phys. B (in print) 34th International Symposium

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Fractionized Skyrmions in Dense Compact-Star Matter

Fractionized Skyrmions in Dense Compact-Star Matter Fractionized Skyrmions in Dense Compact-Star Matter Yong-Liang Ma Jilin University Seminar @ USTC. Jan.07, 2016. Summary The hadronic matter described as a skyrmion matter embedded in an FCC crystal is

More information

Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3)

Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Akira Ohnishi in Collaboration with N. Kawamoto, K.Miura, T.Ohnuma Hokkaido University,

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Dynamic properties of interacting bosons and magnons

Dynamic properties of interacting bosons and magnons Ultracold Quantum Gases beyond Equilibrium Natal, Brasil, September 27 October 1, 2010 Dynamic properties of interacting bosons and magnons Peter Kopietz, Universität Frankfurt collaboration: A. Kreisel,

More information

Topological susceptibility in (2+1)-flavor lattice QCD with overlap fermion

Topological susceptibility in (2+1)-flavor lattice QCD with overlap fermion T.W. Chiu, Lattice 2008, July 15, 2008 p.1/30 Topological susceptibility in (2+1)-flavor lattice QCD with overlap fermion Ting-Wai Chiu Physics Department, National Taiwan University Collaborators: S.

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information