Generalized Least-Squares Regressions I: Efcient Derivations

Size: px
Start display at page:

Download "Generalized Least-Squares Regressions I: Efcient Derivations"

Transcription

1 Generlzed Lest-Squres Regressons I: Efcent Dervtons NATANIEL GREENE Deprtment of Mthemtcs nd Computer Scence Kngsough Communt College, CUNY 00 Orentl Boulevrd, Brookln, NY 35 UNITED STATES Astrct: Ordnr lest-squres regresson suffers from fundmentl lck of smmetr: the regresson lne of gven nd the regresson lne of gven re not nverses of ech other. Alterntve smmetrc regresson methods hve een developed to ddress ths concern, notl: thogonl regresson nd geometrc men regresson. Ths pper presents n detl vret of lest-squres regresson methods whch m not hve een known full eplcted. The dervton of ech method s mde efcent through the use of Ehrenerg's fmul f the dnr lest-squres err nd through the etrcton of weght functon g() whch chrcterzes the regresson. F ever cse of generlzed lest-squres, the err etween the lne nd the dt s shown to e product of the weght functon g() nd Ehrenerg's err fmul. Ke Wds: Lest-squres, smmetrc lest-squres, weghted dnr lest-squres, thogonl regresson, geometrc men regresson. Ordnr nd Alterntve Lest- Squres Regresson. Overvew Ordnr lest-squres regresson dtes ck to the wk of Legendre nd Guss nd t s stll the most commonl used method f ndng lne of est t through gven set of dt ponts. The method mnmzes the verge vertcl dstnce etween the dt nd the lne. Its eclusve menton n elementr sttstcs tets ensures tht t s the onl method tht mn users of regresson know. Despte ts wdespred use, dnr lest-squres regresson suffers from some fundmentl lmttons. One mj lmtton s the lck of smmetr. Ordnr lest-squres egns wth decson of the prt of the user tht one of the vrles s the ndependent vrle (cll t ) nd the other vrle s the dependent vrle (cll t ). The ndependent vrle s ssumed to e perfectl known, wheres the dependent vrle hs err. In ths cse, one computes the dnr lest-squres regresson lne f gven (OLS j). The equton s = + where = nd =. Whle t s vld to use ths regresson lne to predct the -vlue whch cresponds to gven -vlue, t s not vld to use ths lne to predct the -vlue whch cresponds to gven -vlue. When s known ectl nd s suject to err one must compute the dnr lestsqures regresson lne of gven (OLS j). Onl from ths regresson lne s t vld to predct the - vlue crespondng to gven -vlue: Ths prolem of there eng two regresson lnes f gven set of dt cn e restted s follows: the OLS j lne nd the OLS j lne re not nverses of ech other. Indeed, the nverse fm of the OLS j lne s gven = where 0 = 0 nd 0 =. A me generl nd roust ssumpton, s to ssume tht oth nd vrles hve err, nd to llow f the posslt of functonl nterdependence etween the vrles. In ths cse one cn construct smmetrc lest-squres regressons n whch the errs n oth the nd vrles nd the lne re mnmzed. Two known emples of smmetrc regressons re thogonl regresson nd geometrc men regresson (GMR). Orthogonl regresson mnmzes the verge perpendculr dgonl err etween the dt ponts nd the lne nd GMR mnmzes the verge re of the trngles fmed the dt ponts nd the lne. In contrst, OLS j mnmzes the verge vertcl err etween the dt nd the lne nd OLS j mnmzes the verge hzontl err etween the dt nd the lne. Another lmtton of stndrd dnr lestsqures s the lck of trnstvt: the OLS regresson lne f zj s not the composton of the OLS regresson lne f zj wth the OLS lne f j. Orthog- ISBN:

2 onl regresson, whle smmetrc, s not trnstve. GMR s oth smmetrc nd trnstve whch mkes t n del choce f roust modelng. GMR regresson s lso scle nvrnt, whch mens tht multplng the vlues of the dt constnt fct nd regressng s equvlent to multplng vrle of the gnl regresson lne tht sme constnt. The fmul f the GMR regresson lne s lso prtculrl smple: = + where = nd = sgn : All these ssues re dscussed n greter detl n Tgeper [8]. Despte the gret dvntges of GMR f roust modellng, the gol of ths pper nd the ppers whch follow s to consder other possle generlzed lestsqures regressons s well, nd to develop the f dervng nd clssfng these methods. Ths pper hs severl specc gols: to re-derve the known cses of generlzed lest-squres n mnner tht s s ref nd efcent s possle; to eple the dervton of severl new cses of smmetrc regresson; to see n the process tht ever smmetrc regresson s ctull weghted dnr lestsqures regresson; nd to eple the dervton of severl weghted dnr lest-squres regressons. The choce of specc cses wked out here s necesst dosncrtc nd cnnot e comprehensve. Ths prolem s rected n the pper to follow [3], where ths wk s generlzed.. Ordnr Lest-Squres Gven : Vertcl Regresson Ordnr lest-squres regresson seeks coefcents nd whch mnmze the nverge squre o vertcl devton etween the dt ( ; ) N = nd the lne = +. The vertcl devton etween dt pont ( ; ) nd the lne = + s gven n solute vlue j ( + )j. F convenence ths s wrtten s j + j. The verge squre vertcl devton s therefe gven E = N ( + ) : () = F nottonl smplct the err s represented usng E nd t s cler tht one cn lso wrte E = ". To mnmze ths err functon, the usul procedure s to set prtl dervtves E = 0 nd E = 0 nd solve f nd : The result s nd = () = (3) where nd re the men vlues of nd gven = (4) N nd = N = (5) = nd nd re stndrd devtons gven nd v u = t N v u = t N ( ) (6) = = : (7) Fnll, s the coefcent of crelton gven = N ( ) = ( ) : (8) = Note tht populton prmeter notton,,,, nd N s used throughout ths wk, ut the sme results hold when the re replced wth smple sttstcs,, s, s, r nd n. One must verf tht these vlues f nd mnmze the err functon E (; ). The test s to check tht the Hessn mtr of second der prtl dervtves E E H = (9) E E s postve dente. Ths occurs when ts rst entr nd ts determnnt re oth postve. Snce H = + (0) nd det H = 4, these vlues f nd mnmze the err..3 Alterntve Dervton: Ehrenerg's Fmul There s n lterntve dervton of dnr lestsqures regresson descred n Ehrenerg [] whch does not requre clculus. One rst epresses E n terms of, ;, nd. Then one nds the vlues of nd whch mnmzes the err usng elementr lger. Ths smple pproch hs pprentl een overlooked eposts of lest-squres. ISBN:

3 Theem (Ehrenerg's fmul) E = + ( ) + + Proof. E = N = N ( + ) = = ( ) + + () = = + ( ) + + The mnmzng vlues f nd cuse the lst two terms to equl zero. The err s then governed. Recll tht quntt mesures the sctter of the dt cloud w from the lne of est t. The quntt s clled the coefcent of determnton nd t mesures the strength of the lner reltonshp. When =, = 0 nd there s no sctter ecuse ll the dt fll long the lne = +. When = 0, =, the dt re uncrelted nd there s mmum sctter. In ths cse = 0 nd the regresson lne s gven =. In the (; ) plne the level curves of E re concentrc ellpses wth es rotted nd trnslted w from the gn nd the err functon tself s n ellptcl prolod n (; ; E) spce. Ehrenerg's fmul wll pl ke role throughout ths pper, gretl smplfng the dervtons of ll susequent regresson fmuls..4 Ordnr Lest-Squres Gven : Hzontl Regresson In hzontl regresson coefcents nd re sought whch mnmze the verge n squre ohzontl devton etween the dt ( ; ) N = nd the lne = +, whch cn e wrtten equvlentl s =. The hzontl devton etween dt pont ( ; ) nd the lne s gven n solute vlue +. The verge hzontl devton s therefe gven E = N = + () One could mnmze ths err functon drectl. However, t s me frutful to utlze the relton + = ( + ) (3) whch s lgercll strghtfwrd. Geometrcll, t mens tht the vertcl devton etween dt vlue nd lne nd the hzontl devton etween dt vlue nd the lne re constrned the slope of the lne ccdng to the relton = Vertcl devton Hzontl devton : (4) Ths oservton s used n Woolle's dervton of geometrc men regresson [0]. The relton s used repetedl n ths pper to smplf ever dervton ecuse t lws llows f the etrcton of weght functon from the err epresson. The result s n equvlent lest-squres err functon E = N ( + ) (5) = E = g () + ( ) + + (6) g () = : (7) Settng E = 0 nd E = 0 nd solvng f nd elds the desred epressons. The smplest w to do ths n prctce s to rst susttute = (8) nd elmnte from the err functon. Then solve f n d d + ( ) = 0: (9) The result s = : (0) The Hessn mtr H = s postve dente snce det H = () () ISBN:

4 nd hs the sme sgn s. In fct, susttute f nd otn det H = (3) Therefe these vlues f nd mnmze the err..5 Orthogonl Lest-Squres: Dgonl Regresson An lterntve known regresson method whch tkes nto ccount oth nd devtons mplctl s clled thogonl regresson. Other nmes nclude perpendculr regresson Demng regresson [4,5]. In ths method one nds nd whch mnmze the verge squre dgonl devton etween the dt nd the lne. Recll tht the dstnce d etween pont ( ; ) nd the lne = + s gven 4 d = j + j p : (4) + Thus the verge squre dgonl devton s gven E = + N ( + ) (5) = E = g () + ( ) + + (6) g () = + : (7) Set E = 0 nd E = 0 nd solve f nd to otn the desred vlues of nd : The smplest w to do ths s to gn susttute = nto the err functon nd then solve d d + + ( ) = 0 (8) f. The result s qudrtc equton n : + = 0. (9) Solvng f elds two eplct solutons when 6= 0: = q + 4 : (30) Snce + =, one vlue of the slope s lws postve nd one vlue s lws negtve. The Hessn mtr H = + s postve dente when det H = + (3) 4 ( + ) > 0 (3) whch occurs when hs the sme sgn s. Therefe n der to mnmze the err functon, lws choose the soluton wth the sme sgn s. When = 0 t s nturl to dene = 0, snce lm 0 = 0. Ths s lso consstent wth settng = 0 n the qudrtc equton. F n rght trngle wth sdes A; B nd C, there s the Recprocl Pthgen Theem [,6] whch s not well-known. It sttes tht A + B = L (33) where L s the lttude to the hpotenuse C. Ths s equvlent to the sttement tht the lttude squred s hlf the hrmonc men of the squres of the two shtest sdes. Smolcll, L = H A ; B (34) where H (; ) = + s the hrmonc men of nd. The ove fmul f the dstnce etween pont nd lne s now derved usng ths result. Oserve tht d = H ( + ) ; + = ( + ) + ( + ) + + : (35) Replcng + wth ( + ) elds the stndrd epresson d = (+ ) : In ths w, + thogonl lest-squres cn e understood s mnmzng the verge hrmonc men of the squre devtons n nd. Although the termnolog s not used, thogonl regresson could e rghtfull clled hrmonc men regresson (HMR) n prllel to the method of geometrc men regresson (GMR), whch s dscussed net. ISBN:

5 .6 Geometrc Men Regresson: Lest Asolute Ares The method of geometrc men regresson (GMR) [4,7,8,0], s rgul the most roust of ll smmetrc lest-squres regressons n tht t hs the smplest fmuls f the coefcents nd, the regresson remns vld f chnges n unts n the nd vrles, one cn compose two me regresson lnes nd otn vld result. The method mnmzes the verge solute product of the devtons n nd : Ths s the sme s the geometrc men of the squre devtons n nd. Oserve tht d = G ( + ) ; + s = ( + ) + = ( + ) + (36) where G (; ) = p s the geometrc men of nd. Wrte E = N ( + ) + : = (37) Replce + wth ( + ) nd otn lest-squres err functon E = jj N ( + ) (38) = E = g () + ( ) + + Susttute = (39) g () = jj : (40) nd solve d + ( ) = 0 d jj f. The result s = (4) The Hessn mtr H = jj s postve dente ecuse det H = 4 + = 44 (4) (43) s lws postve. Choose the sgn of to gree wth the sgn of nd wrte = sgn : (44) It s nturl to dene = 0 when = 0. Ths s lso consstent wth the use of the sgn functon n the fmul, snce sgn 0 = 0. Alterntve Smmetrc Lest- Squres Regressons In ths secton lterntve methods of lest-squres regresson re epled whch m not hve een known full eplcted. The dervton f ech method uses the sme stremlned steps tht were emploed to derve the known methods. Ths s done wth n ee towrd the net pper n ths seres, where the dervton s generlzed nd ll possle smmetrc lest-squres regressons re nlzed nd clssed.. Pthgen Regresson An lterntve method to thogonl regresson nd GMR clled Pthgen lest-squres s now nvestgted. The method s smmetrc n tht t mnmzes the verge squre devton n oth nd smultneousl. The err functon s gven ( + ) + + : E = N = (45) The term Pthgen s pproprte ecuse the method mnmzes the verge squre hpotenuse of the trngles fmed the dt ponts nd the lne. One cn crr the usul mnmzton procedure on ths epresson gn replce + ( + ) nd wrte E = + N wth ( + ) (46) = ISBN:

6 E = g () + ( ) + + (47) g () = + : (48) As efe, susttute = nto the err functon nd then solve d + d + ( ) = 0 (49) f. The result s qurtc equton n : = 0: (50) F prctcl purposes, ths qurtc polnoml must e solved numercll. It s now proved tht there s lws unque rel soluton to ths equton wth the sme sgn s whch mnmzes the err functon. The dscrmnnt f monc qurtc polnoml 4 +B 3 +C +D+E s gven [9] = B C D 4B C 3 E 4B 3 D 3 +8B 3 CDE 7B 4 E 4C 3 D +6C 4 E + 8BCD 3 80BC DE 6B D E + 44B CE 7D 4 +44CD E 8C E 9BDE +56E 3 : (5) When < 0 there re lws two rel solutons nd two comple conjugte solutons. In our cse = (5) whch s less thn zero f jj, the nturl rnge of. Ths mples tht there re ectl two rel solutons. Descrtes' Rule of Sgns cn e used to further deduce the nture of the solutons. Descrtes' Rule of Sgns sttes tht f polnoml f () n stndrd fm, the numer of postve roots equls the numer of chnges n sgn etween consecutve nonzero coefcents, t s less thn ths numer multple of two. The numer of negtve roots of f equls the numer of chnges n sgn etween consecutve nonzero coefcents of f ( ), t s less thn ths numer multple of two. F > 0, there re three chnges n sgn n f (), ut snce there re onl two rel solutons, the numer of postve solutons must dffer two, nd so there s one nd onl one postve rel soluton. The other rel soluton s negtve. Smlrl f < 0, there s one chnge n sgn n f ( ), nd so there s ectl one negtve rel soluton. The other rel soluton s postve. It s shown now tht the rel soluton to the qurtc equton s lws greter thn f > 0 nd less thn f < 0. Re-epnd the polnoml n the vrle q = nd cll the resultng polnoml h (q). The vrle q mesures the dscrepnc etween the Pthgen slope nd the dnr lestsqures slope. The result s the equvlent equton 0 = q q q q : (53) Accdng to Descrtes' Rule of Sgns, when > 0 there s one chnge n sgn n h (q)nd therefe one postve soluton. When < 0 there s one chnge n sgn n h ( q) nd therefe one negtve soluton. Therefe there s one postve soluton f tht s greter thn when s postve nd one negtve soluton f tht s less thn when s negtve. The Hessn mtr H = det H + 5 (54) 4 + s postve dente snce det H = = + ; (55) s lws postve f these vlues of. Therefe to perfm Pthgen regresson, the user solves the qurtc polnoml ove numercll nd chooses the one nd onl rel soluton f wth the sme sgn s. Ths vlue f s lws greter n mgntude thn OLS nd t mnmzes the err functon long wth the crespondng vlue f. ISBN:

7 . Lest Permeter Squred Regresson Consder mnmzng the verge squred permeter of the trngles fmed the dt vlues nd the regresson lne. The err functon s E = j + j + N + = (56) nd the resultng method s clled lest permeter squred regresson. Replce gn + wth ( + ) nd otn E = + jj N ( + ) (57) = E = g () + ( ) + + g () = (58) + : (59) jj Susttute = nto the err functon nd then solve ( d + d jj + ( ) ) = 0 (60) f. The result s cuc equton n 3 + sgn sgn = 0: (6) Denote ths polnoml f (). It s now proved tht there s lws unque rel soluton to ths equton wth the sme sgn s. Accdng to Descrtes' Rule of Sgns there re three chnges n sgn n f () when > 0 mplng ether three postve solutons one postve soluton. There re lso three chnges n sgn n f ( ) when < 0 mplng ether three negtve solutons one negtve soluton. However, the dscrmnnt f monc cuc polnoml 3 + B + C + D s gven [9] = B C 4C 3 4B 3 D + 8BCD D : (6) When s negtve the cuc hs one rel soluton nd two comple conjugte solutons. When s postve there re three rel solutons. In our cse = (sgn ) (sgn ) (63) nd t s s gurnteed to e negtve when sgn = sgn. Therefe there s lws unque rel soluton to the polnoml equton wth the sme sgn s. The Hessn mtr H = + jj " s postve dente snce det H = 4 + jj 3 sgn + det H 4(+=jj) jj + # (64) 9 = > 0: (65) ; The polnoml equton cn e wrtten unmguousl susttutng sgn = sgn nd (sgn ) = jj nto the coefcent epressons, otnng 3 + jj sgn = 0: (66) In ths fm, the user solves the cuc polnoml f the one nd onl rel soluton. Ths soluton s gurnteed to hve the sme sgn s, to e greter n mgntude thn OLS nd to mnmze the err functon. It s nturl to dene = 0 when = 0 whch s consstent wth the sgn functon whch ppers n the polnoml..3 Squred Hrmonc Men Regresson It ws seen tht thogonl lest-squres cn e thought of s mnmzng the verge hrmonc men of the squre devtons n nd. Consder nsted mnmzng the verge squre of the hrmonc mens of the solute devtons n nd. Tht s mnmze E = N = Replce + E = j + j + j + j + + wth ( + ( + jj) N : (67) ) nd otn ( + ) (68) = ISBN:

8 E = g () + ( ) + + g () = (69) ( + jj) : (70) Susttute = nto the err functon nd then solve ( d ) + ( ) d ( + jj) = 0 (7) f. The result s the followng fmul f : = sgn + jj : (7) jj + The Hessn mtr H = ( + jj) s postve dente snce det H = " 4 4 det H (+jj) jj # (73) ( + jj) 5 (74) s lws greter thn zero. Therefe these fmuls f nd mnmze the err. 3 Weghted Ordnr Lest-Squres Regressons It s pprent from the prevous cses tht smmetrc lest-squres prolem cn e wrtten s weghted dnr lest-squres prolem where weght functon multples the dnr lest-squres err. Ths secton eples some weghted dnr lest-squres regresson prolems chosen from relted smmetrc lest solute devton regresson prolem. These prolems re lso referred to here s hrd smmetrc lest-squres prolems. 3. Hrd Lest Permeter Regresson An lterntve to lest permeter squred regresson s to smpl mnmze the verge permeter of the trngles fmed the dt vlues nd the regresson lne The err functon s then D = N j + j + + = Replce gn + otn D = + jj N wth ( + : (75) ) nd j + j : (76) = Ths err functon cn certnl e mnmzed, however t s not prolem n lest-squres ut n lest solute devton. Consder nsted hrd smmetrc lest-squres prolem wth n err functon tht comnes the weght functon from the lest solute devton prolem nd the dnr lest-squres err. The functon s E = + jj N ( + ) = E = g () + ( ) + + (77) g () = + jj : (78) Cll the mnmzton of ths err hrd lestpermeter regresson. Ths s generlzed lestsqures prolem whch cn e solved usng the purel nltc methods used so fr. Elmnte s usul nd solve d + d jj + ( ) = 0: Ths results n cuc equton (fter choosng sgn = sgn ) 3 + sgn ( jj ) sgn = 0: (79) It s now proved usng Descrtes' Rule of Sgns tht there s lws one postve rel soluton to ths equton when s postve nd one negtve rel soluton to ths equton when s negtve. Let f () denote the polnoml. When s postve nd ( jj ) s postve, there s one chnge n sgn nd therefe one postve soluton. When ISBN:

9 s postve nd ( jj ) s negtve, there s gn one chnge n sgn nd therefe one postve soluton. When s negtve nd ( jj ) s postve, there s one chnge n sgn n f ( ) nd therefe one negtve soluton. When s negtve nd ( jj ) s negtve, there s one chnge n sgn n f ( ) nd therefe one negtve soluton. The Hessn mtr H = + " # det H jj + (80) 4(+=jj) s postve dente snce 8 det H = 4 + < jj : + sgn jj + (8) s lws greter thn zero. Therefe these fmuls f nd mnmze the err. 3. Hrd Pthgen Regresson Ths method reconsders Pthgen regresson ut nsted of mnmzng the verge squre hpotenuse of the trngles from the dt pont nd lne, t mnmzes the verge hpotenuse. The crespondng err functon s D = N s ( + ) + = Replce + D = r wth ( + + N + 9 = ; (8) ) nd otn j + j : (83) = Ths s nother generlzed lest solute devton prolem whch cn e solved usng lgthms f lest solute devton. The nterest here however, s n generlzed lest-squres prolems snce the re menle to nltc solutons. Consder nsted hrd smmetrc lest-squres prolem wth err functon r E = + ( + ) : (84) N = Replce wth Ehrenerg's fmul nd wrte E = g () + ( ) + + (85) r g () = + : (86) Cll the mnmzton of ths err functon hrd Pthgen regresson. Elmnte s usul nd solve "r d + d + ( ) # = 0: (87) The result s qurtc polnoml = 0: (88) Denote ths polnoml f (). Accdng to Descrtes' Rule of Sgns there re three chnges n sgn n f () when > 0 mplng ether three postve solutons one postve soluton. There re lso three chnges n sgn n f ( ) when < 0 mplng ether three negtve solutons one negtve soluton. However, re-epnd ths polnoml n the vrle q = nd cll the resultng polnoml h (q). The vrle q mesures the dscrepnc etween the hrd Pthgen slope nd the dnr lest-squres slope. The result s the equvlent equton 0 = q q q q : (89) Accdng to Descrtes' Rule of Sgns, when > 0 there s one chnge n sgn n h (q) nd therefe one postve soluton. When < 0 there s one chnge n sgn n h ( q) nd therefe one negtve soluton. Therefe there s one postve soluton f tht s greter thn when s postve nd one negtve soluton f tht s less thn when s negtve. The Hessn mtr " # H = q + det H + (90) 4 + s gurnteed to e postve dente snce 8 < det H = : = ; > 0 (9) ISBN:

10 f these vlues of. Therefe to perfm hrd Pthgen regresson, the user solves the qurtc polnoml ove numercll nd chooses the unque rel soluton wth the sme sgn s tht s greter n mgntude thn OLS. Ths vlue f nd the crespondng vlue f mnmze the err. 3.3 Hrd Orthogonl Regresson Consder gn thogonl regresson ut nsted of mnmzng the verge squre dgonl dstnce etween the dt ponts nd lne, mnmze the verge dgonl dstnce. Snce the dstnce d etween pont ( ; ) nd the lne = + s gven d = j + j p : + Thus the verge solute dgonl devton s gven D = p + N j + j : (9) = Ths s nother generlzed lest solute devton prolem whch cn e solved usng lgthms f lest solute devton. Consder here nsted hrd err functon E = p + N ( + ) (93) = E = g () + ( ) + + g () = (94) p + : (95) Cll the mnmzton of ths err functon hrd thogonl regresson. Elmnte s usul nd solve d p d + + ( ) = 0: (96) The result s cuc polnoml equton 3 + = 0: (97) Let f () denote the polnoml. Accdng to Descrtes' Rule of Sgns, when > 0 nd > 0, f () hs one chnge n sgn nd there s one postve soluton. When > 0 nd < 0, f () hs one chnge of sgn nd there s one postve soluton. When < 0 nd > 0, f ( ) hs one chnge of sgn nd there s one negtve soluton. Fnll when < 0 nd < 0, f ( ) hs one chnge of sgn nd there s one negtve soluton. The Hessn mtr " # H = p (98) + s postve dente snce det H = 8 < 4 ( + ) : det H 4(+ ) = ; > 0: 3.4 Hrd Hrmonc Men Regresson The smplest regresson nvolvng hrmonc mens of solute devtons n nd s to mnmze D = N = N = = j + j + j + j + + H j + j ; + (00) (99) Therefe these fmuls f nd mnmze the err. where H denotes the hrmonc men s efe. Replcng + wth ( + ) elds D = ( + jj) N j + j : (0) = Now consder here nsted the hrd err functon E = ( + jj) N ( + ) (0) = E = g () + ( ) + + (03) g () = ( + jj) : (04) ISBN:

11 Cll the mnmzton of ths err functon hrd hrmonc men regresson. Elmnte s usul nd solve d d ( + jj) + ( ) = 0: (05) The result s (fter lettng sgn = sgn ) 0 s = + + jj + ( ) A : The Hessn mtr H = ( + jj) s postve dente snce det H = + (06) (07) 4 > 0: (08) ( + jj) Therefe these fmuls f nd mnmze the err. 3.5 Eponentll-Weghted Ordnr Lest-Squres Regresson An nterestng cse of weghted dnr lest-squres s to consder n eponentl weght functon nd mnmze the err functon g () = e pjj (09) where sgn = sgn s usul. Ths equton cn rewrtten s s p = ( ) p : (4) Snce the epresson nsde the rdcl cnnot e negtve, ths fces restrcton on the dmssle vlues f p, nmel: 0 p p 0 (5) where The Hessn mtr H = e pjj " p 0 = p : (6) p s postve dente snce det H = 4 e pjj p = 4 e pjj s ( ) # + (7) p (8) whch s dened nd postve f 0 p < p 0 : When p = 0 the regresson degenertes nto dnr lest-squres. When p = p 0 the coefcent fmuls produce the etreml lne = where 0 = 0 nd E = e pjj N ( + ) (0) = E = e pjj + ( ) + + : () 0 = + sgn p : (9) However, det H = 0 when p = p 0 so tht the etreml lne's coefcents do not mnmze the err functon. Nevertheless, t s useful lne to compute snce ll eponentl regresson lnes re ounded etween the OLS j lne nd the etreml lne. f sutle vlues of p. solve n e pjj d d The result s = + sgn p Elmnte s usul nd + ( ) o = 0: s ( ) () p A (3) 4 Numercl Emples In the emples whch follow, ll the dfferent regresson lnes re plotted smultneousl f the sme set of dt. All generlzed lest-squres lnes = + pss through the men pont ; snce f ll the lnes =. The outermost regresson lnes re the dnr lest-squres j nd j lnes. In ll cses the smmetrc nd hrd smmetrc lnes fn out from the men pont nd occup the spce etween the dnr lest-squres lnes. ISBN:

12 Emple S equspced dt vlues re consdered: (0; 6), (; 4), (; 3), (3; 4), (4; ), (5; ). The dt n ths emple re tken from Mrtn's stud of thogonl regresson [4] where thogonl regresson ws compred wth OLS j regresson. Here ll regresson lnes re compred smultneousl Generlzed Regressons Compred Regresson Tpe OLS Pthgen Lest Permeter Squred GMR Squred Hrmonc Men Orthogonl Hrd Pthgen Hrd Lest Permeter Hrd Hrmonc Men Hrd Orthogonl OLS Equton = + = = = = = = = = = = = The second grph s the sme s the rst wth the regon round the -ntercepts mgned Generlzed Regressons Compred From the grphs nd the equtons t s evdent tht the smmetrc regressons nd the hrd smmetrc regressons re nded n seprte groups. The smmetrc regressons re closer to the OLS j lne nd the hrd smmetrc regressons re closer to the OLS j lne. The eponentll-weghted regressons re treted here seprtel. In ths emple the dmssle vlues f p re: 0 p p 0 where p 0 = :6584. Recll tht p = 0 reduces to OLS j regresson nd p = p 0 s the etreml cse. When p = p 0 the equton s = 5:78 0:95793 nd when p = p 0 the etreml lne s = 6:466 :333: All the regresson lnes re ounded etween the OLS j lne nd the etreml lne The regresson lnes re lsted n der of decresng -ntercept whch s how the pper n the grphs. Emple Ten dt vlues re consdered: (0; 0:5), (; 0), (:5; :5), (3; ), (5; 4), (6:5; 4), (6:5; ), (7; 3), (9; 5), (0; 4:5). Lke efe the re plotted n sctter plot nd ll the smmetrc nd hrd smmetrc regresson lnes re supermposed. ISBN:

13 5 Generlzed Regressons Compred Regresson Tpe OLS Hrd Orthogonl Hrd Hrmonc Men Equton = + = = = Orthogonl Hrd Lest Permeter Squred Hrmonc Men Hrd Pthgen GMR Lest Permeter Squred Pthgen OLS = = = = = = = = The net grph s mgncton of the prevous grph round the -ntercepts Generlzed Regressons Compred In ths emple, the grphs nd the tle lso suggest tendenc f smmetrc nd hrd smmetrc regresson lnes to remn seprte, however n ths cse there s some overlp. Here the dmssle prmeter vlues f eponentll-weghted regressons re: 0 p p 0, where p 0 = 3:393. Agn p = 0 cresponds to OLS j. When p = p 0 the regresson lne s = 0: :503. When p = p 0 the regresson lne s etreml nd ts equton s = : :749. All the lnes re ounded etween the OLS j lne nd the etreml lne. In these emples the crelton coefcent s close n solute vlue to nd so s lso close n solute vlue to. As result the OLS j nd j lnes re vsull ner ech other nd oth lnes re seen to pss through the dt. However, whenever the crelton coefcent s smll, the OLS j lne wll dverge notcel from the other lnes nd from the dt s well. Ths s not shown here The equtons f the lnes re gn lsted n der of decresng -ntercept, s the pper on the grphs. 5 Summr The dervton of lest-squres regressons nvolves constructng the summton epresson f the men squred err etween the dt nd the lne, denoted here E. In the stndrd dervton, E nd E re set equl to zero, nd the equtons re solved f mnmzng soluton (; ) : To check tht the soluton s ctull mnmum, the Hessn determnnt must e computed nd found to e postve. The pproch of ths pper hs severl notle fetures whch mde the dervtons of generlzed ISBN:

14 lest-squres regressons s efcent nd uncomplcted s possle. Frst, ths pper utlzes hgh-level fmul f the dnr lest-squres err E due to Ehrenerg whch s lred epressed n terms of,,, nd. Ths fmul s not wdel-known ut t deserves to e. The fmul llows f n elementr dervton of dnr lest-squres nd t llows ll the generlzed lest-squres methods descred here to e derved wthout complcted summton mnpultons. In ll cses, the computtons f E nd E ecome clculus-level prolems. The clculton of the Hessn mtr nd determnnt ecomes trctle now n ll cses s well. A second notle feture n ll the dervtons s the use of relton epressng the devton etween dt pont nd the lne wth respect to n terms of the devton of the dt pont wth respect to. It s used here n ever dervton to etrct weght functon g () from the err epresson E. In ths w, the generlzed lest-squres err s lws product of the weght functon nd Ehrenerg's fmul f dnr lest-squres err. Wth the pttern of dervton now smpled nd stremlned n the known cses, we were le to eple vret of new generlzed lest-squres methods n the sme efcent mnner. Whenever possle, eplct fmuls f the new regresson coefcents nd were determned. In those cses where the slope ws soluton to cuc qurtc equton, Descrtes' Rule of Sgns nd sometmes the polnoml dscrmnnt were nvoked to prove the estence of unque soluton hvng the sme sgn s. Numercl emples show the smmetrc nd hrd smmetrc regresson lnes fnnng out from the men pont nd occupng the spce etween the dnr lest-squres lnes. The emples lso revel tendenc f the smmetrc regresson lnes to remn seprte from the hrd regresson lnes. In future wk, the ccurc of these regresson lnes wll e nlzed. The wk of ths pper s generlzed nto the f dervng nd clssfng generlzed lest-squres regressons n the pper to follow. of the st Interntonl Conference on Computtonl Scence nd Engneerng (CSE '3), Vlenc, Spn, August 6-8, 03. [4] L. Leng, T. Zhng, L. Klenmn, nd W. Zhu, Ordnr Lest Squre Regresson, Orthogonl Regresson, Geometrc Men Regresson nd ther Applctons n Aerosol Scence, Journl of Phscs: Conference Seres, 78, (007), pp.- 5. [5] S. B. Mrtn, Less thn the Lest: An Alterntve Method of Lest-Squres Lner Regresson, Undergrdute Hons Thess, Deprtment of Mthemtcs, McMurr Unverst, Alene, Tes, 998. [6] R. B. Nelson, Proof Wthout Wds: A Recprocl Pthgen Theem, Mthemtcs Mgzne, Vol. 8, No. 5, Dec. 009, p.370. [7] P. A. Smuelson, A Note on Alterntve Regressons, Econometrc, Vol. 0, No. (Jn. 94) pp [8] R. Tgeper, Mkng Socl Scences Me Scentc: The Need f Predctve Models, Ofd Unverst Press, New Yk, 008. [9] E.W. Wessten, Dscrmnnt (Polnoml) n: CRC Concse Enccloped of Mthemtcs, nd. Edton, Chpmn & Hll/CRC Boc Rton, 003, p [0] E. B. Woolle, The Method of Mnmzed Ares s Bss f Crelton Anlss, Econometrc, Vol. 9, No., (Jn 94), pp References [] A. S. C. Ehrenerg, Dervng the Lest-Squres Regresson Equton, The Amercn Sttstcn, Vol. 37, No. 3 (Aug. 983), p.3. [] V. Ferln, Mthemtcs wthout (mn) wds, College Mth Journl, No. 33, (00), p. 70. [3] N. Greene, Generlzed Lest-Squres Regressons II: The nd Clsscton, Proceedngs ISBN:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

LINEAR ALGEBRA APPLIED

LINEAR ALGEBRA APPLIED 5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nth-order

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. Clculus Module C Ares Integrtion Copright This puliction The Northern Alert Institute of Technolog 7. All Rights Reserved. LAST REVISED Mrch, 9 Introduction to Ares Integrtion Sttement of Prerequisite

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

Introduction to Algebra - Part 2

Introduction to Algebra - Part 2 Alger Module A Introduction to Alger - Prt Copright This puliction The Northern Alert Institute of Technolog 00. All Rights Reserved. LAST REVISED Oct., 008 Introduction to Alger - Prt Sttement of Prerequisite

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Phscs for Scentsts nd Engneers I PHY 48, Secton 4 Dr. Betr Roldán Cuen Unverst of Centrl Flord, Phscs Deprtment, Orlndo, FL Chpter - Introducton I. Generl II. Interntonl Sstem of Unts III. Converson of

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

The Trapezoidal Rule

The Trapezoidal Rule _.qd // : PM Pge 9 SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Linear Regression & Least Squares!

Linear Regression & Least Squares! Lner Regresson & Lest Squres Al Borj UWM CS 790 Slde credt: Aykut Erdem Ths&week Lner&regresson&prolem&& ' con0nuous&outputs& ' smple&model Introduce&key&concepts:&& ' loss&func0ons& ' generlz0on& ' op0mz0on&

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

CONIC SECTIONS. Chapter 11

CONIC SECTIONS. Chapter 11 CONIC SECTIONS Chpter. Overview.. Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig..). Fig.. Suppose we rotte the line m round

More information

PROPERTIES OF AREAS In general, and for an irregular shape, the definition of the centroid at position ( x, y) is given by

PROPERTIES OF AREAS In general, and for an irregular shape, the definition of the centroid at position ( x, y) is given by PROPERTES OF RES Centroid The concept of the centroid is prol lred fmilir to ou For plne shpe with n ovious geometric centre, (rectngle, circle) the centroid is t the centre f n re hs n is of smmetr, the

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

Work and Energy (Work Done by a Varying Force)

Work and Energy (Work Done by a Varying Force) Lecture 1 Chpter 7 Physcs I 3.5.14 ork nd Energy (ork Done y Vryng Force) Course weste: http://fculty.uml.edu/andry_dnylov/techng/physcsi Lecture Cpture: http://echo36.uml.edu/dnylov13/physcs1fll.html

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

List all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1.

List all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1. Mth Anlysis CP WS 4.X- Section 4.-4.4 Review Complete ech question without the use of grphing clcultor.. Compre the mening of the words: roots, zeros nd fctors.. Determine whether - is root of 0. Show

More information

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert Demnd Demnd nd Comrtve Sttcs ECON 370: Mcroeconomc Theory Summer 004 Rce Unversty Stnley Glbert Usng the tools we hve develoed u to ths ont, we cn now determne demnd for n ndvdul consumer We seek demnd

More information

An Ising model on 2-D image

An Ising model on 2-D image School o Coputer Scence Approte Inerence: Loopy Bele Propgton nd vrnts Prolstc Grphcl Models 0-708 Lecture 4, ov 7, 007 Receptor A Knse C Gene G Receptor B Knse D Knse E 3 4 5 TF F 6 Gene H 7 8 Hetunndn

More information

8.6 The Hyperbola. and F 2. is a constant. P F 2. P =k The two fixed points, F 1. , are called the foci of the hyperbola. The line segments F 1

8.6 The Hyperbola. and F 2. is a constant. P F 2. P =k The two fixed points, F 1. , are called the foci of the hyperbola. The line segments F 1 8. The Hperol Some ships nvigte using rdio nvigtion sstem clled LORAN, which is n cronm for LOng RAnge Nvigtion. A ship receives rdio signls from pirs of trnsmitting sttions tht send signls t the sme time.

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus 7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

Chapter 9 Definite Integrals

Chapter 9 Definite Integrals Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

September 13 Homework Solutions

September 13 Homework Solutions College of Engineering nd Computer Science Mechnicl Engineering Deprtment Mechnicl Engineering 5A Seminr in Engineering Anlysis Fll Ticket: 5966 Instructor: Lrry Cretto Septemer Homework Solutions. Are

More information

Chapters Five Notes SN AA U1C5

Chapters Five Notes SN AA U1C5 Chpters Five Notes SN AA U1C5 Nme Period Section 5-: Fctoring Qudrtic Epressions When you took lger, you lerned tht the first thing involved in fctoring is to mke sure to fctor out ny numers or vriles

More information

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral. Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:

More information

Chapter 3 Single Random Variables and Probability Distributions (Part 2)

Chapter 3 Single Random Variables and Probability Distributions (Part 2) Chpter 3 Single Rndom Vriles nd Proilit Distriutions (Prt ) Contents Wht is Rndom Vrile? Proilit Distriution Functions Cumultive Distriution Function Proilit Densit Function Common Rndom Vriles nd their

More information

SVMs for regression Non-parametric/instance based classification method

SVMs for regression Non-parametric/instance based classification method S 75 Mchne ernng ecture Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre SVMs for regresson Non-prmetrc/nstnce sed cssfcton method S 75 Mchne ernng Soft-mrgn SVM Aos some fet on crossng the seprtng hperpne

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potentl nd the Grnd Prtton Functon ome Mth Fcts (see ppendx E for detls) If F() s n nlytc functon of stte vrles nd such tht df d pd then t follows: F F p lso snce F p F we cn conclude: p In other

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Partial List. January 27, 2017 Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

More information

Machine Learning Support Vector Machines SVM

Machine Learning Support Vector Machines SVM Mchne Lernng Support Vector Mchnes SVM Lesson 6 Dt Clssfcton problem rnng set:, D,,, : nput dt smple {,, K}: clss or lbel of nput rget: Construct functon f : X Y f, D Predcton of clss for n unknon nput

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

Chapter 1: Logarithmic functions and indices

Chapter 1: Logarithmic functions and indices Chpter : Logrithmic functions nd indices. You cn simplify epressions y using rules of indices m n m n m n m n ( m ) n mn m m m m n m m n Emple Simplify these epressions: 5 r r c 4 4 d 6 5 e ( ) f ( ) 4

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

A Family of Multivariate Abel Series Distributions. of Order k

A Family of Multivariate Abel Series Distributions. of Order k Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind

More information

INTERPOLATION(1) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

INTERPOLATION(1) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek ELM Numercl Anlss Dr Muhrrem Mercmek INTEPOLATION ELM Numercl Anlss Some of the contents re dopted from Lurene V. Fusett, Appled Numercl Anlss usng MATLAB. Prentce Hll Inc., 999 ELM Numercl Anlss Dr Muhrrem

More information

Topic 1 Notes Jeremy Orloff

Topic 1 Notes Jeremy Orloff Topic 1 Notes Jerem Orloff 1 Introduction to differentil equtions 1.1 Gols 1. Know the definition of differentil eqution. 2. Know our first nd second most importnt equtions nd their solutions. 3. Be ble

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

4.6 Numerical Integration

4.6 Numerical Integration .6 Numericl Integrtion 5.6 Numericl Integrtion Approimte definite integrl using the Trpezoidl Rule. Approimte definite integrl using Simpson s Rule. Anlze the pproimte errors in the Trpezoidl Rule nd Simpson

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS 6 ORDINARY DIFFERENTIAL EQUATIONS Introducton Runge-Kutt Metods Mult-step Metods Sstem o Equtons Boundr Vlue Problems Crcterstc Vlue Problems Cpter 6 Ordnr Derentl Equtons / 6. Introducton In mn engneerng

More information

ψ ij has the eigenvalue

ψ ij has the eigenvalue Moller Plesset Perturbton Theory In Moller-Plesset (MP) perturbton theory one tes the unperturbed Hmltonn for n tom or molecule s the sum of the one prtcle Foc opertors H F() where the egenfunctons of

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations Cter. Runge-Kutt nd Order Metod or Ordnr Derentl Eutons Ater redng ts cter ou sould be ble to:. understnd te Runge-Kutt nd order metod or ordnr derentl eutons nd ow to use t to solve roblems. Wt s te Runge-Kutt

More information

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1. 398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

Substitution Matrices and Alignment Statistics. Substitution Matrices

Substitution Matrices and Alignment Statistics. Substitution Matrices Susttuton Mtrces nd Algnment Sttstcs BMI/CS 776 www.ostt.wsc.edu/~crven/776.html Mrk Crven crven@ostt.wsc.edu Ferur 2002 Susttuton Mtrces two oulr sets of mtrces for roten seuences PAM mtrces [Dhoff et

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9 CS434/541: Pttern Recognton Prof. Olg Veksler Lecture 9 Announcements Fnl project proposl due Nov. 1 1-2 prgrph descrpton Lte Penlt: s 1 pont off for ech d lte Assgnment 3 due November 10 Dt for fnl project

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions: Physcs 121 Smple Common Exm 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7 Nme (Prnt): 4 Dgt ID: Secton: Instructons: Answer ll 27 multple choce questons. You my need to do some clculton. Answer ech queston on the

More information

The practical version

The practical version Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

P 1 (x 1, y 1 ) is given by,.

P 1 (x 1, y 1 ) is given by,. MA00 Clculus nd Bsic Liner Alger I Chpter Coordinte Geometr nd Conic Sections Review In the rectngulr/crtesin coordintes sstem, we descrie the loction of points using coordintes. P (, ) P(, ) O The distnce

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information