Dating of Greenland ice cores by microparticle concentration analyses. C. U. Hammer

Size: px
Start display at page:

Download "Dating of Greenland ice cores by microparticle concentration analyses. C. U. Hammer"

Transcription

1 Dating of Greenland ice cores by microparticle concentration analyses C. U. Hammer Abstract. Seasonal variations of microparticle concentration in 6000 samples were compared with S( 18 0) and gross ^-activity analyses and may be used for dating beyond the ranges of the latter techniques. Datation des carottes de glace en Groenland par analyses de la teneur en microparticules Résumé. Les variations saisonnières de la teneur en particules mesurées dans 6000 échantillons sont comparées avec les analyses en S( 18 0) et activité j8 totale; elles peuvent être utilisées pour dater au-delà des possibilités offertes par ces deux dernières techniques. INTRODUCTION A reliable time scale is the fundamental basis for all kinds of physical and chemical studies on ice cores. Radioactive dating is often too inaccurate, and counting seasonal stable isotope cycles from the surface down to great depths is possible only on polar glaciers with a high accumulation rate (250 mm water equivalent per year). In low accumulation areas diffusion in the firn results in gradual isotopic homogenization of the snow pack (Johnsen, 1977). Since dust particles do not diffuse, the seasonal dust concentration variations in the deposits, first demonstrated by Hamilton and Langway (1967), may be used for accurate dating where the isotopes fail. TECHNIQUE A check on the applied preparation technique was carried out as follows : Water filtered by a 0.45 fim millipore filter was frozen. The artificial ice core was stripped by a razor blade leaving only the central part for the sampling. This was done at - 10 C in a laminar air filter bench by a special quartz heating device. The meltwater was transferred into plastic beakers by a glass pipette and kept at 10 C until analysis within 5 h. No contamination was observed. The samples were analysed by the standard Coulter counter (model Z B I) and/or a light scattering technique that offered the following advantages : (1) Very small samples are needed (0.2 g, i.e. 25 to 50 times less than the Coulter technique). (2) No addition of chemicals is needed. (3) The analysis is faster and can be performed under normal laboratory air conditions. (4) The signal includes light from particles with radii less than 0.35 /xm, which is the effective Coulter counter limit. On the other hand, it is a disadvantage that no size distribution is obtained, at least when only one scattering angle (90 C) is used. Yet, some information is gained when combining with Coulter measurement in just one size interval (Hammer, in preparation). All Coulter counter measurements are given in terms of the number of particles with radii larger than 0.5 pm per gram (N 0.Jg). The light scattering results are 297

2 298 C. U. Hammer given in terms of millivolt amplifier output, 1 mv corresponding to N 0. s /g approx , somewhat dependent on the size distribution. OBJECT Most of the ice cores studied in this work were recovered under the USA- Denmark-Switzerland joint Greenland Ice Sheet Programme. Table 1 lists the sites of recovery, the time intervals studied, and sampling frequencies (sampling frequency applied; usually number of samples per annual layer as calculated from mean accumulation rate, density, vertical strain etc.). TABLE 1 North Century Dye 2 Dye 3 Milcent Crête Summit Site Camp Position 66 N46 W 65 N 44 W 70 N 45 W 71 N 37 W 72 N 38 W 75 N 42 W 77 N 61 W Period various Sampling frequency variable RESULTS In Fig. 1 Coulter counter and light scattering data from a pitwall at Crête are shown along with corresponding values of total j3-activity and S( 18 0). Evidently the two series of dust data exhibit the same seasonal pattern. The deposition of dust exhibits some common features at all stations such as a maximum in late winter/early spring and a minimum in autumn/early winter, to judge from corresponding S( 18 0) variations (Figs. 1-5). On the average, the dust peak is found approximately one third of the annual layer thickness above the S( 18 0) minimum. It appears from Fig. 4 and, particularly, Fig. 1 that the dust peak does not occur simultaneously with maximum fallout of total js-activity, which suggests that, unlike the fission products, the airborne dust has not been transported to the ice sheet via the stratosphere. (The measurements were performed on the same core.) The reason for the dust peak early in the year is probably because the westerlies are regularly blocked by a quasistationary anticyclone in spring, causing strong meridional wind components either at the same time as, or a little after, the dry season sets in over North America. The 398-m deep ice core from Dye 3, south Greenland, was initially dated by measuring seasonal S( ls O) variations (743 cycles). The interpretations of the isotope as well as the dust profile are ambiguous for some 15 per cent of the cycles. However, the ambiguities are randomly scattered in both of the profiles, which makes a cross dating beneficial, leaving doubt about only 2 per cent of the cycles. Consequently, the accuracy of the resulting time scale is estimated at ± 2-3 years at AD 1600 and ± 4 years in the thirteenth century. Figure 2 shows a few seasonal 8( 18 0) and dust-cycles close to the surface. The dating is a result of a cross check on ^-activity, S( 18 0) and dust profiles. At North Site, where the accumulation rate is only 140 mm water equivalent per year the 8( 18 0)-profile is smoothed by diffusion, and to a higher degree than it appears in the figure, because the two annual layers indicated by arrows in the dust profile are more or less obliterated in the S( ls O)-profile. It is tempting to reconcile the highest dust peak with the Hekla eruption in spring At

3 Dating of Greenland ice cores 299 Dye 2 the S( 18 0)-profile is shortly disturbed by percolation, according to js-measurements (not shown in the figure), but it is interesting that the dust profile seems less disturbed, possibly because the summer layers that melt are low in dust. Finally, preliminary analyses have been performed on the Camp Century deep ice core. Figure 5 shows the dust profile along a 30-cm increment from 1159 m NORTH SITE %«6(o 18 ) Crête MILCENT %o 6(o 18 ) mV DYE 2 %o &(o 18 : dph/kg "102 Total 8 activity 90 light scattering Bxsptti FIGURE 1. Total j8-activity, particle counts, 90 light scattering and 8( ls O) at station Crête in the period AD. FIGURE 2. Seasonal S( l s O) and dust concentration variations at North Site, AD, Milcent, AD, and Dye 2, AD. depth, corresponding to an estimated age of years according to flow model calculations by Dansgaard and Johnsen (1969). Counting peaks leads to an estimated annual layer thickness (A) of mm, in essential agreement with the theoretical value 21 mm. Results on other increments are shown in Table 2. So far, they are much too sparse to justify any conclusion as to the Camp Century time scale.

4 300 C.U. Hammer SUMMIT TOTAL-B DUST Sto 18 ) ACTIVITY " J dph/kg FIGURE 3. Seasonal 3( 18 0) and dust concentration variations at Dye 3 in the period AD. FIGURE 4. Total ^-activity, seasonal S( w O) and dust concentration variations (90 light scattering) at Summit, AD.

5 Dating of Greenland ice cores 301 FIGURE 5. Seasonal dust concentration variations at Camp Century, BP. TABLE 2 Depth [m] Age [years] mm ice measured calculated Number of years measured CONCLUSION Seasonal variation of the deposition of microparticles makes it feasible to accurately date firn and ice cores from most of the Greenland ice sheet, > particularly when the analyses are combined with p and S( 18 0)-measurements. The range of dating exceeds that of the stable isotope method, particularly in low accumulation areas. Acknowledgements. This study was funded by the US Advanced Research Projects Agency (contract DA-ENG G42) and by The Danish Natural Science Research Council. REFERENCES Dansgaard, W. and Johnsen, S. J. (1969) A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glacial. 8, Hamilton, W. L. and Langway, C. C. (1967) A correlation of microparticle concentrations with oxygen isotope ratios in 700 year old Greenland ice. Earth Planet. Sci. Lett. 3, Johnsen, S. J. (1977) Stable isotope homogenization of polar firn and ice. In Isotopes and Impurities in Snow and Ice (Proceedings of the Grenoble Symposium, August-September 1975), pp : IAHS Publ. no. 118.

Paleoceanography Spring 2008

Paleoceanography Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.740 Paleoceanography Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. PALEOCEANOGRAPHY 12.740 SPRING

More information

AS REVEALED IN GREENLAND ICE CORES FROM 11 LOCATIONS

AS REVEALED IN GREENLAND ICE CORES FROM 11 LOCATIONS Annals of Glaciology 1988 International Glaciological Society THE LAKI AND TAMBORA ERUPTIONS AS REVEALED IN GREENLAND ICE CORES FROM 11 LOCATIONS by H.B. Clausen and C.U. Hammer (Department of Glaciology,

More information

Isotope measurements on firn and ice cores from alpine glaciers

Isotope measurements on firn and ice cores from alpine glaciers Isotope measurements on firn and ice cores from alpine glaciers U. Schotterer, R. Finkel, H. Oeschger, U. Siegenthaler, M. Wahlen, G. Bart, H. Gaggeler and H. R. von Gunten Abstract. An investigation was

More information

L. G. Thompson INTRODUCTION

L. G. Thompson INTRODUCTION Variations in microparticle concentration, size distribution and elemental composition found in Camp Century, Greenland, and Byrd station, Antarctica, deep ice cores L. G. Thompson Abstract. Two initial

More information

Flow velocity profiles and accumulation rates from mechanical tests on ice core samples

Flow velocity profiles and accumulation rates from mechanical tests on ice core samples The Physical Basis of Ice Sheet Modelling (Proceedings of the Vancouver Symposium, August 198). IAHS Publ. no. 10. Flow velocity profiles and accumulation rates from mechanical tests on ice core samples

More information

Supplemental Information for. Thompson, L.G., et al. Ice Core Records of Climate Variability on the Third Pole

Supplemental Information for. Thompson, L.G., et al. Ice Core Records of Climate Variability on the Third Pole 1 1 2 3 4 5 6 7 8 Supplemental Information for Thompson, L.G., et al. Ice Core Records of Climate Variability on the Third Pole with Emphasis on the Guliya ice cap, western Kunlun Mountains 9 10 11 12

More information

L, G, THOMPSONJ E. MOSLEY-THOMPSON

L, G, THOMPSONJ E. MOSLEY-THOMPSON Sea Level, Jee, and C/imacic Change (Proceedings of the Canberra Symposium, December 1979). IAHS Publ. no. 131. Glaciological interpretation of microparticle concentrations from the French 95-m Dome C,

More information

Annals of Glaciology

Annals of Glaciology Annals of Glaciology 1 1988 @ International Glaciological Society 1\ GLACIOLOGICAL INVESTIGATIONS IN THE CRETE AREA. CENTRAL GREENLAND: A SEARCH FOR A NEW DEEP-DRILLING SITE by H.B. Clausen N.S. Gundestrup

More information

Ice Ages and Changes in Earth s Orbit. Topic Outline

Ice Ages and Changes in Earth s Orbit. Topic Outline Ice Ages and Changes in Earth s Orbit Topic Outline Introduction to the Quaternary Oxygen isotopes as an indicator of ice volume Temporal variations in ice volume Periodic changes in Earth s orbit Relationship

More information

Ice on Earth: An overview and examples on physical properties

Ice on Earth: An overview and examples on physical properties Ice on Earth: An overview and examples on physical properties - Ice on Earth during the Pleistocene - Present-day polar and temperate ice masses - Transformation of snow to ice - Mass balance, ice deformation,

More information

Ice Cores: Modeling Ice Sheets

Ice Cores: Modeling Ice Sheets Details Completion Time: About 1 period Permission: Download, Share, and Remix Ice Cores: Modeling Ice Sheets Overview Working in groups students will use common materials to create layers of snow and

More information

OF A 700 m ICE CORE FROM MIZUHO STATION, ANTARCTICA

OF A 700 m ICE CORE FROM MIZUHO STATION, ANTARCTICA 38 Annals o[ Glaciology 10 1988 @ International Glaciological Society MICROPARTICL CONCNTRATION AND LCTRICAL CONDUCTIVITY OF A 700 m IC COR FROM MIZUHO STATION, ANTARCTICA by Yoshiyuki Fujii and Okitsugu

More information

Climate Change 2007: The Physical Science Basis

Climate Change 2007: The Physical Science Basis Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report Presented by R.K. Pachauri, IPCC Chair and Bubu Jallow, WG 1 Vice Chair Nairobi, 6 February

More information

Vanadium and other elements in Greenland ice cores. M. M. Herron, C. C. Langway Jr, H. V. Weiss, P. Hurley, R. Kerr and J. H.

Vanadium and other elements in Greenland ice cores. M. M. Herron, C. C. Langway Jr, H. V. Weiss, P. Hurley, R. Kerr and J. H. Vanadium and other elements in Greenland ice cores M. M. Herron, C. C. Langway Jr, H. V. Weiss, P. Hurley, R. Kerr and J. H. Cragin Abstract. Chemical analysis for Na, Cl, AI, Mn and V of surface snows

More information

- Low CO2 concentrations in the first fractions (200ppm) of certain samples are a strong

- Low CO2 concentrations in the first fractions (200ppm) of certain samples are a strong [RADIOCARBON, VOL 22, No. 2, 1980, P 227-235] INFORMATION ON THE CO2 CYCLE FROM ICE CORE STUDIES WERNER BERNER, HANS OESCHGER, and BERNHARD STAUFFER Physics Institute, University of Bern, Sidlerstrasse

More information

Ice core-based climate research in Denmark

Ice core-based climate research in Denmark June 16, 2009 Ice core-based climate research in Denmark Sune Olander Rasmussen Center coordinator and postdoc Centre for Ice and Climate Niels Bohr Institute University of Copenhagen Temperature and CO

More information

DATING POLAR ICE BY 14C ACCELERATOR MASS SPECTROMETRY MICHAEL ANDREE, JUERG BEER, H P LOETSCHER, ERNST MOOR, H.ANS OESCHGER

DATING POLAR ICE BY 14C ACCELERATOR MASS SPECTROMETRY MICHAEL ANDREE, JUERG BEER, H P LOETSCHER, ERNST MOOR, H.ANS OESCHGER [RADIOCARBON, VOL 28, No. 2A, 1986, P 417-423] DATING POLAR ICE BY 14C ACCELERATOR MASS SPECTROMETRY MICHAEL ANDREE, JUERG BEER, H P LOETSCHER, ERNST MOOR, H.ANS OESCHGER Physics Institute, University

More information

Ice core drilling and subglacial lake studies on the temperate ice caps in Iceland

Ice core drilling and subglacial lake studies on the temperate ice caps in Iceland Ice core drilling and subglacial lake studies on the temperate ice caps in Iceland Iceland astride the Mid-Atlantic ridge Astrobiology Winter School University of Hawaii, Jan. 25 Lecture # 36 Ice drilling

More information

GLACIOLOGY LAB SNOW Introduction Equipment

GLACIOLOGY LAB SNOW Introduction Equipment GLACIOLOGY LAB SNOW Introduction The objective of this lab is to achieve a working knowledge of the snowpack. This includes descriptions and genetic analysis of features that can be observed on the surface

More information

/ Past and Present Climate

/ Past and Present Climate MIT OpenCourseWare http://ocw.mit.edu 12.842 / 12.301 Past and Present Climate Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Ice Sheet Paleoclimatology

More information

Thomas P. Phillips CIRES Prof K. Steffen, L. Colgan PhD ABD, D. McGrath MA

Thomas P. Phillips CIRES Prof K. Steffen, L. Colgan PhD ABD, D. McGrath MA Thomas P. Phillips CIRES Prof K. Steffen, L. Colgan PhD ABD, D. McGrath MA Problem: we know very little about the processes happening within the Greenland Ice Sheet. What is the velocity at the base? What

More information

Energy balance and melting of a glacier surface

Energy balance and melting of a glacier surface Energy balance and melting of a glacier surface Vatnajökull 1997 and 1998 Sverrir Gudmundsson May 1999 Department of Electromagnetic Systems Technical University of Denmark Science Institute University

More information

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow cover, permafrost, river and lake ice, ; [3]Glaciers and

More information

NSF: Natural and Anthropogenic Climate Impacts as Evidenced in Ice Cores

NSF: Natural and Anthropogenic Climate Impacts as Evidenced in Ice Cores LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NSF: Natural and Anthropogenic Climate Impacts as Evidenced in Ice Cores Presented by: Dr. Joseph McConnell and Linda Morris May 2, 2012 Natural and Anthropogenic

More information

Climate and Environment

Climate and Environment Climate and Environment Oxygen Isotope Fractionation and Measuring Ancient Temperatures Oxygen Isotope Ratio Cycles Oxygen isotope ratio cycles are cyclical variations in the ratio of the mass of oxygen

More information

Variations in valley glacier activity in the Transantarctic Mountains as indicated by associated flow bands in the Ross Ice Shelf*

Variations in valley glacier activity in the Transantarctic Mountains as indicated by associated flow bands in the Ross Ice Shelf* Sea Level, Ice, and Climatic Change (Proceedings of the Canberra Symposium, December 1979). IAHS Publ. no. 131. Variations in valley glacier activity in the Transantarctic Mountains as indicated by associated

More information

Brita Horlings

Brita Horlings Knut Christianson Brita Horlings brita2@uw.edu https://courses.washington.edu/ess431/ Natural Occurrences of Ice: Distribution and environmental factors of seasonal snow, sea ice, glaciers and permafrost

More information

Scholarship 2015 Earth and Space Science

Scholarship 2015 Earth and Space Science S 93104R Scholarship 2015 Earth and Space Science 2.00 p.m. Tuesday 1 December 2015 RESOURCE BOOKLET Refer to this booklet to answer the questions for Scholarship Earth and Space Science 93104. Check that

More information

Chapter 9 Notes: Ice and Glaciers, Wind and Deserts

Chapter 9 Notes: Ice and Glaciers, Wind and Deserts Chapter 9 Notes: Ice and Glaciers, Wind and Deserts *Glaciers and Glacial Features glacier is a mass of ice that moves over land under its own weight through the action of gravity Glacier Formation must

More information

SEASONAL VARIATIONS IN THE TRITIUM ACTIVITY OF RUN-OFF FROM AN ALPINE GLACIER (KESSELWANDFERNER, OETZTAL ALPS, AUSTRIA)

SEASONAL VARIATIONS IN THE TRITIUM ACTIVITY OF RUN-OFF FROM AN ALPINE GLACIER (KESSELWANDFERNER, OETZTAL ALPS, AUSTRIA) SEASONAL VARIATIONS IN THE TRITIUM ACTIVITY OF RUN-OFF FROM AN ALPINE GLACIER (KESSELWANDFERNER, OETZTAL ALPS, AUSTRIA) By W. AMBACH, H. EISNER and M. URL (Physikalisches Institut, Universitat Innsbruck,

More information

Ice-core Dating and Chemistry by Direct-current Electrical Conductivity

Ice-core Dating and Chemistry by Direct-current Electrical Conductivity The University of Maine DigitalCommons@UMaine Earth Science Faculty Scholarship Earth Sciences 1992 Ice-core Dating and Chemistry by Direct-current Electrical Conductivity Kenorick Taylor Richard Alley

More information

Abstract. Introduction. Lonnie G. Thompson 1 and Ellen Mosley-Thompson 1

Abstract. Introduction. Lonnie G. Thompson 1 and Ellen Mosley-Thompson 1 Evidence for Changes in Climate and Environment in 1816 as Recorded in Ice Cores from the Quelccaya Ice Cap, Peru, the Dunde Ice Cap, China and Siple Station, Antarctica Lonnie G. Thompson 1 and Ellen

More information

Outline 23: The Ice Ages-Cenozoic Climatic History

Outline 23: The Ice Ages-Cenozoic Climatic History Outline 23: The Ice Ages-Cenozoic Climatic History Continental Glacier in Antarctica Valley Glaciers in Alaska, note the moraines Valley Glaciers in Alaska, note the moraines Mendenhall Glacier, Juneau,

More information

Ice core studies from Mt Kenya, Africa, and their relationship to other tropical ice core studies

Ice core studies from Mt Kenya, Africa, and their relationship to other tropical ice core studies Sea Level, Ice, and Climatic Change (Proceedings of the Canberra Symposium, December 1979). IAHS Publ. no. 131. INTRODUCTION Ice core studies from Mt Kenya, Africa, and their relationship to other tropical

More information

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface 1. Base your answer to the following question on the diagram below which shows two identical houses, A and B, in a city in North Carolina. One house was built on the east side of a factory, and the other

More information

The geologic record of dust DANIEL R. MUHS

The geologic record of dust DANIEL R. MUHS The geologic record of dust DANIEL R. MUHS GEOLOGY AND ENVIRONMENTAL CHANGE TEAM U.S. GEOLOGICAL SURVEY DENVER, COLORADO Thanks to Art Bettis for organizing this session and with whom I've studied North

More information

3. GLACIAL MASS BALANCE I

3. GLACIAL MASS BALANCE I Glacial Geology 3. Glacial Mass Balance I 3. GLACIAL MASS BALANCE I 40 Points Objective: to learn basic concepts related to glacier mass balance. You should be able to: Describe where, how and when accumulation

More information

Climate Change. Unit 3

Climate Change. Unit 3 Climate Change Unit 3 Aims Is global warming a recent short term phenomenon or should it be seen as part of long term climate change? What evidence is there of long-, medium-, and short- term climate change?

More information

Polar Portal Season Report 2013

Polar Portal Season Report 2013 Polar Portal Season Report 2013 All in all, 2013 has been a year with large melting from both the Greenland Ice Sheet and the Arctic sea ice but not nearly as large as the record-setting year of 2012.

More information

Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki

Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki 19.9.2012 Outline Some basic questions and answers about climate change How are projections of climate

More information

Temperature and precipitation fluctuations since 1600 A.D. provided by the Dunde Ice Cap, China

Temperature and precipitation fluctuations since 1600 A.D. provided by the Dunde Ice Cap, China Gladers-Ocean-Atmosphen! lnl6aaions (Proceedings of the International Symposium held at St Petersburg, September 199). IAHS Publ. no. 28, 1991. Temperature and precipitation fluctuations since 16 A.D.

More information

What is the IPCC? Intergovernmental Panel on Climate Change

What is the IPCC? Intergovernmental Panel on Climate Change IPCC WG1 FAQ What is the IPCC? Intergovernmental Panel on Climate Change The IPCC is a scientific intergovernmental body set up by the World Meteorological Organization (WMO) and by the United Nations

More information

MS 20 Introduction To Oceanography. Lab 3: Density, Specific Gravity, Archimedes and Isostasy

MS 20 Introduction To Oceanography. Lab 3: Density, Specific Gravity, Archimedes and Isostasy Grade 10/10 MS 20 Introduction To Oceanography Lab 3: Density, Specific Gravity, Archimedes and Isostasy Team Number: 1 Team Leader: Team Members MS 20 Laboratory Density, Specific Gravity, Archimedes

More information

Chapter 15 Millennial Oscillations in Climate

Chapter 15 Millennial Oscillations in Climate Chapter 15 Millennial Oscillations in Climate This chapter includes millennial oscillations during glaciations, millennial oscillations during the last 8000 years, causes of millennial-scale oscillations,

More information

SMOW. δd = 8 δ 18 O δ 18 O. Craig 1961

SMOW. δd = 8 δ 18 O δ 18 O. Craig 1961 SMOW δd δd = 8 δ 18 O + 10 δ 18 O Craig 1961 " # 18 O "T $ 0.695 / deg " #D "T $ 5.6 / deg "# 18 O "T $ 0.695 / deg "#D "T $ 5.6 / deg Dansgaard 1964 -9-27 Little Am. 43 m -24.2 C Wilkes 1168 m -18.6 C

More information

Any Questions? Glacier

Any Questions? Glacier Geology of the Hawaiian Islands Class 25 13 April 2004 Any Questions? Earth Systems Today CD Click on Weather and Climate Look at the sections on El Niño Ozone Hole Glaciers Why do we care? They help control

More information

Glaciers. Geology of the Hawaiian Islands. Any Questions? Earth Systems Today CD. Class April Why do we care?

Glaciers. Geology of the Hawaiian Islands. Any Questions? Earth Systems Today CD. Class April Why do we care? Geology of the Hawaiian Islands Class 25 13 April 2004 Any Questions? Earth Systems Today CD Click on Weather and Climate Look at the sections on El Niño Ozone Hole Glaciers Why do we care? They help control

More information

The Distribution of Cold Environments

The Distribution of Cold Environments The Distribution of Cold Environments Over 25% of the surface of our planet can be said to have a cold environment, but defining what we actually mean by that can be very challenging. This is because cold

More information

How do glaciers form?

How do glaciers form? Glaciers What is a Glacier? A large mass of moving ice that exists year round is called a glacier. Glaciers are formed when snowfall exceeds snow melt year after year Snow and ice remain on the ground

More information

Evidence of Climate Change in Glacier Ice and Sea Ice

Evidence of Climate Change in Glacier Ice and Sea Ice Evidence of Climate Change in Glacier Ice and Sea Ice John J. Kelley Institute of Marine Science School of Fisheries and Ocean Sciences University of Alaska Fairbanks Evidence for warming of the Arctic

More information

Orbital- Scale Climate Changes. GEOG 401: Climatology Dr. John Abatzoglou

Orbital- Scale Climate Changes. GEOG 401: Climatology Dr. John Abatzoglou Orbital- Scale Climate Changes GEOG 401: Climatology Dr. John Abatzoglou Ice Core Sampling Typically performed at top of ice dome where less lateral spreading occurs Diffusion issue can make high- resoluion

More information

The Artificial Radioactivity in Rain Water Observed in Japan from May to August, 1954.

The Artificial Radioactivity in Rain Water Observed in Japan from May to August, 1954. The Artificial Radioactivity in Rain Water Observed in Japan from May to August, 1954. 551.578.8 by Y. Miyake Meteorological Research.Institute (Received September 1, 1954) Since a series of experiments

More information

CORRELATION OF CLIMATIC AND SOLAR VARIATIONS OVER THE PAST 500 YEARS AND PREDICTING GLOBAL CLIMATE CHANGES FROM RECURRING CLIMATE CYCLES

CORRELATION OF CLIMATIC AND SOLAR VARIATIONS OVER THE PAST 500 YEARS AND PREDICTING GLOBAL CLIMATE CHANGES FROM RECURRING CLIMATE CYCLES Easterbrook, D.J., 2008, Correlation of climatic and solar variations over the past 500 years and predicting global climate changes from recurring climate cycles: International Geological Congress, Oslo,

More information

Impacts of snowpack accumulation and summer weather on alpine glacier hydrology

Impacts of snowpack accumulation and summer weather on alpine glacier hydrology Impacts of snowpack accumulation and summer weather on alpine glacier hydrology Caroline Aubry-Wake, Dhiraj Pradhananga, John W. Pomeroy GEWEX 8 th Open Science Meeting, Canmore AB, May 3-11 2018 Canadian

More information

Storm and Runoff Calculation Standard Review Snowmelt and Climate Change

Storm and Runoff Calculation Standard Review Snowmelt and Climate Change Storm and Runoff Calculation Standard Review Snowmelt and Climate Change Presented by Don Moss, M.Eng., P.Eng. and Jim Hartman, P.Eng. Greenland International Consulting Ltd. Map from Google Maps TOBM

More information

Rapid climate change in ice cores

Rapid climate change in ice cores Rapid climate change in ice cores Liz Thomas British Antarctic Survey Overview Introduction to ice cores Evidence of rapid climate change in the Greenland ice cores DO events Younger Dryas 8.2 kyr cold

More information

STA4000 Final Report - Detailed Analysis Investigation on Iceland Population Growth and Climate Change

STA4000 Final Report - Detailed Analysis Investigation on Iceland Population Growth and Climate Change STA4000 Final Report - Detailed Analysis Investigation on Iceland Population Growth and Climate Change CHEN Jian Supervisor: Professor Jeffrey S. Rosenthal December 16, 2009 1 Introduction This paper is

More information

ESS Glaciers and Global Change

ESS Glaciers and Global Change ESS 203 - Glaciers and Global Change Wednesday February 14, 2018. Outline for today Volunteer for today s highlights on Friday Highlights of last Monday s class Gabe Greene Ice cores and climate history

More information

Chapter outline. Reference 12/13/2016

Chapter outline. Reference 12/13/2016 Chapter 2. observation CC EST 5103 Climate Change Science Rezaul Karim Environmental Science & Technology Jessore University of science & Technology Chapter outline Temperature in the instrumental record

More information

Lecture 10: Seasons and Ice Age. Earth s Orbit and Its Variations. Perihelion and Aphelion. Tilt Produces Seasons

Lecture 10: Seasons and Ice Age. Earth s Orbit and Its Variations. Perihelion and Aphelion. Tilt Produces Seasons Lecture 10: Seasons and Ice Age Earth s Orbit and Its Variations! Earth s Orbit and Its Variations! How Seasons Are produced! Milankovitch Theory on Glacial-Interglacial Cycle (from The Earth System)!

More information

For an interactive flavour of the trip please see this short video I made:

For an interactive flavour of the trip please see this short video I made: Weathering Crust hydrology of the SW Greenland Ice Sheet For an interactive flavour of the trip please see this short video I made: https://www.youtube.com/watch?v=aaarclbdjti Supraglacial streams, lakes,

More information

DATING OF AN ALPINE GLACIER

DATING OF AN ALPINE GLACIER ABSTRACT Si 3 DATING OF AN ALPINE GLACIER H.B. CLAUSEN and B. BUCHMANN (Physical Laboratory II, H.C. 0rsted Institute, University of Copenhagen, Copenhagen, Denmark.) W. AMBACH (Physikalisches fnstitut,

More information

Glaciers and Ice Ages

Glaciers and Ice Ages ES 106 Glaciers and Ice Ages I. Glacier thick mass of ice accumulated over years, decades, centuries A. Function of recrystallization of fallen snow B. Types 1. alpine valley: a. high elevations worldwide

More information

Relationship between runoff and meteorological factors and its simulation in a Tianshan glacierized basin

Relationship between runoff and meteorological factors and its simulation in a Tianshan glacierized basin Snow, Hydrology and Forests in High Alpine Areas (Proceedings of the Vienna Symposium, August 1991). IAHS Pubf. no. 205,1991. Relationship between runoff and meteorological factors and its simulation in

More information

Geochemistry of Ice Cores: Stable Isotopes, Gases, and Past Climate

Geochemistry of Ice Cores: Stable Isotopes, Gases, and Past Climate ESS 431 PRINCIPLES OF GLACIOLOGY ESS 505 THE CRYOSPHERE Geochemistry of Ice Cores: Stable Isotopes, Gases, and Past Climate NOVEMBER 23, 2016 Ed Waddington 715 ATG 543-4585 edw@uw.edu Sources Lecture notes

More information

Big Bend Regional Aerosol & Visibility Observational Study

Big Bend Regional Aerosol & Visibility Observational Study Big Bend Regional Aerosol & Visibility Observational Study BRAVO - Results Bret Schichtel National Park Service, Schichtel@cira.colostate.edu Presented at the BRAVO Public Meeting Alpine, Texas September

More information

Energy and Seasons A B1. 9. Which graph best represents the general relationship between latitude and average surface temperature?

Energy and Seasons A B1. 9. Which graph best represents the general relationship between latitude and average surface temperature? Energy and Seasons A B1 1. Which type of surface absorbs the greatest amount of electromagnetic energy from the Sun? (1) smooth, shiny, and light colored (2) smooth, shiny, and dark colored (3) rough,

More information

Bette Otto-Bliesner. Marcus Löfverström, Bill Lipscomb, Jeremy Fyke, Shawn Marshall, Ran Feng, Bill Sacks. Photo by Leo Kampenhout

Bette Otto-Bliesner. Marcus Löfverström, Bill Lipscomb, Jeremy Fyke, Shawn Marshall, Ran Feng, Bill Sacks. Photo by Leo Kampenhout Using CESM and CISM to simulate the long-term evolution of climate and the Greenland Ice Sheet during the Last Interglacial (~129,000 to 116,000 yrs ago) Bette Otto-Bliesner Marcus Löfverström, Bill Lipscomb,

More information

1. Deglacial climate changes

1. Deglacial climate changes Review 3 Major Topics Deglacial climate changes (last 21,000 years) Millennial oscillations (thousands of years) Historical Climate Change (last 1000 years) Climate Changes Since the 1800s Climate Change

More information

IDENTIFICATION OF SOME GLOBAL VOLCANIC HORIZONS BV MAJOR ELEMENT ANAL VSIS OF FINE ASH IN ANTARCTIC ICE. lulie M. Palais

IDENTIFICATION OF SOME GLOBAL VOLCANIC HORIZONS BV MAJOR ELEMENT ANAL VSIS OF FINE ASH IN ANTARCTIC ICE. lulie M. Palais Annals 0/ Glaciology 14 1990 @ International Glaciological Society IDENTIFICATION OF SOME GLOBAL VOLCANIC HORIZONS BV MAJOR ELEMENT ANAL VSIS OF FINE ASH IN ANTARCTIC ICE by lulie M. Palais (Glacier Research

More information

There is an ice sheet nearly two miles

There is an ice sheet nearly two miles Article The GISP2 Ice Core: Ultimate Proof that Noah s Flood Was Not Global Paul H. Seely Recently an ice core nearly two miles long has been extracted from the Greenland ice sheet. The first 110,000 annual

More information

HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE. V. Guryanov, A. Fahrutdinova, S. Yurtaeva

HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE. V. Guryanov, A. Fahrutdinova, S. Yurtaeva HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE INTRODUCTION V. Guryanov, A. Fahrutdinova, S. Yurtaeva Kazan State University, Kazan, Russia When constructing empirical

More information

Geology Rocks Minerals Earthquakes Natural Resources. Meteorology. Oceanography. Astronomy. Weather Storms Warm fronts Cold fronts

Geology Rocks Minerals Earthquakes Natural Resources. Meteorology. Oceanography. Astronomy. Weather Storms Warm fronts Cold fronts Geology Rocks Minerals Earthquakes Natural Resources Meteorology Weather Storms Warm fronts Cold fronts Oceanography Mid ocean ridges Tsunamis Astronomy Space Stars Planets Moon Prologue 1 Prologue I.

More information

Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program

Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program Snow and ice are critical parts of the hydrologic cycle, especially at

More information

Possible use of airborne radionuclide content in soil and biomonitors

Possible use of airborne radionuclide content in soil and biomonitors Possible use of airborne radionuclide content in soil and biomonitors M. Krmar, D. Radnović 2, J. Hansman, N. Todorović, M. Velojić 3 Department of Physics, Faculty of Science, University Novi Sad, Novi

More information

Chapter Causes of Climate Change Part I: Milankovitch Cycles

Chapter Causes of Climate Change Part I: Milankovitch Cycles Chapter 19.1-19.3 Causes of Climate Change Part I: Milankovitch Cycles Climate Cycles =400 Milankovitch Cycles Milankovitch Cycles are created by changes in the geometry of Earth s orbit around the sun

More information

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO)

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO) Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and

More information

SEA ICE AND GLOBAL WARMING

SEA ICE AND GLOBAL WARMING jkjk SEA ICE AND GLOBAL WARMING Lesson plan for grades K- 3 By: Laura Sanders, Environmental Science Institute, March 2011 Length of lesson: two 30- minute class periods SOURCES AND RESOURCES: Atmospheric

More information

Microstructure and permeability in the near-surface firn near a potential US deep-drilling site in West Antarctica

Microstructure and permeability in the near-surface firn near a potential US deep-drilling site in West Antarctica 62 Annals of Glaciology 39 2004 Microstructure and permeability in the near-surface firn near a potential US deep-drilling site in West Antarctica Ursula K. RICK, 1 Mary R. ALBERT 1,2 1 Thayer School of

More information

SPQ Module 20 Ice Flows

SPQ Module 20 Ice Flows SPQ Module 20 Ice Flows When Ray, Richard & Kevin received their sleds in Southern Chili they opened them with excitement, and Kevin remarked they look like little canoes. It is perhaps appropriate that

More information

CHARACTERISTICS OF SNOW AND ICE MORPHOLOGICAL FEATURES DERIVED FROM MULTI-POLARIZATION TERRASAR-X DATA

CHARACTERISTICS OF SNOW AND ICE MORPHOLOGICAL FEATURES DERIVED FROM MULTI-POLARIZATION TERRASAR-X DATA CHARACTERISTICS OF SNOW AND ICE MORPHOLOGICAL FEATURES DERIVED FROM MULTI-POLARIZATION TERRASAR-X DATA Dana Floricioiu 1, Helmut Rott 2, Thomas Nagler 2, Markus Heidinger 2 and Michael Eineder 1 1 DLR,

More information

The Ice Age sequence in the Quaternary

The Ice Age sequence in the Quaternary The Ice Age sequence in the Quaternary Subdivisions of the Quaternary Period System Series Stage Age (Ma) Holocene 0 0.0117 Tarantian (Upper) 0.0117 0.126 Quaternary Ionian (Middle) 0.126 0.781 Pleistocene

More information

Polar Portal Season Report 2016

Polar Portal Season Report 2016 Polar Portal Season Report 2016 Less ice both on land and at sea This year s report is the fourth since the Polar Portal was launched, and as an introduction, we have chosen to take a look at the trends

More information

Glaciology (as opposed to Glacial Geology) Why important? What are glaciers? How do they work?

Glaciology (as opposed to Glacial Geology) Why important? What are glaciers? How do they work? Glaciology (as opposed to Glacial Geology) Why important? What are glaciers? How do they work? Glaciers are important because of their role in creating glacial landscapes (erosional and depositional features).

More information

Ice core studies from Mt Kenya, Africa, and their relationship to other tropical ice core studies

Ice core studies from Mt Kenya, Africa, and their relationship to other tropical ice core studies Sea Level, Jee, and Climaric Change (Proceedings of the Canberra Symposium, December 1979). IAHS Publ. no. 131. INTRODUCTION Ice core studies from Mt Kenya, Africa, and their relationship to other tropical

More information

J8.4 TRENDS OF U.S. SNOWFALL AND SNOW COVER IN A WARMING WORLD,

J8.4 TRENDS OF U.S. SNOWFALL AND SNOW COVER IN A WARMING WORLD, J8.4 TRENDS OF U.S. SNOWFALL AND SNOW COVER IN A WARMING WORLD, 1948-2008 Richard R. Heim Jr. * NOAA National Climatic Data Center, Asheville, North Carolina 1. Introduction The Intergovernmental Panel

More information

Glaciological Models in Focus

Glaciological Models in Focus Department of Probability and Statistics, University of Sheffield British Antarctic Survey, Cambridge Quantifying Uncertainty on Chronologies for Palaeoclimate Reconstruction from Ice Cores Glaciological

More information

STUDY ON BRACKISH ICE IN THE GULF OF FINLAND

STUDY ON BRACKISH ICE IN THE GULF OF FINLAND Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research STUDY ON

More information

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate between weather and climate Global Climate Focus Question

More information

Benjamin P. Flower 1. Search and Discovery Article # (2009) Posted September 8, Abstract

Benjamin P. Flower 1. Search and Discovery Article # (2009) Posted September 8, Abstract AV Relationships between CO 2 and Temperature in Glacial-Interglacial Transitions of the Past 800,000 Years* Benjamin P. Flower 1 Search and Discovery Article #110116 (2009) Posted September 8, 2009 *Adapted

More information

Earth s Atmosphere About 10 km thick

Earth s Atmosphere About 10 km thick 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric properties vary with altitude? Earth s Atmosphere About 10 km thick

More information

Climate change: How do we know?

Climate change: How do we know? Climate change: How do we know? This graph, based on the comparison of atmospheric samples contained in ice cores and more recent direct measurements, provides evidence that atmospheric CO2 has increased

More information

Glacier (and ice sheet) Mass Balance

Glacier (and ice sheet) Mass Balance Glacier (and ice sheet) Mass Balance The long-term average position of the highest (late summer) firn line is termed the Equilibrium Line Altitude (ELA) Firn is old snow How an ice sheet works (roughly):

More information

Marche Region Climate Analysis by Danilo Tognetti 1

Marche Region Climate Analysis by Danilo Tognetti 1 Marche Region. 2016 Climate Analysis by Danilo Tognetti 1 With the contribution of eight consecutive high monthly temperature records set from January to August, and the remainder of the months ranking

More information

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind Multiple Choice. 1. Heinrich Events a. Show increased abundance of warm-water species of planktic foraminifera b. Show greater intensity since the last deglaciation c. Show increased accumulation of ice-rafted

More information

Loess and dust. Jonathan A. Holmes Environmental Change Research Centre

Loess and dust. Jonathan A. Holmes Environmental Change Research Centre Loess and dust Jonathan A. Holmes Environmental Change Research Centre Why is dust important? Mineral dust is an important constituent of the solid load in Earth's atmosphere, the total atmospheric aerosol

More information

An Arctic Perspective on Climate Change

An Arctic Perspective on Climate Change An Arctic Perspective on Climate Change 23 Oct 2012 Gifford Miller (and many others) University of Colorado Boulder The Earth is warming How do we know? Temperature Anomaly ( C) It s a fact Global Land

More information

The Meteorological Observatory from Neumayer Gert König-Langlo, Bernd Loose Alfred-Wegener-Institut, Bremerhaven, Germany

The Meteorological Observatory from Neumayer Gert König-Langlo, Bernd Loose Alfred-Wegener-Institut, Bremerhaven, Germany The Meteorological Observatory from Neumayer Gert König-Langlo, Bernd Loose Alfred-Wegener-Institut, Bremerhaven, Germany History of Neumayer In March 1981, the Georg von Neumayer Station (70 37 S, 8 22

More information

mentioned above. ICE-CORE DATING OF THE PLEISTOCENE/HOLOCENE BOUNDARY APPLIED TO A CALIBRATION OF THE 14C TIME SCALE

mentioned above. ICE-CORE DATING OF THE PLEISTOCENE/HOLOCENE BOUNDARY APPLIED TO A CALIBRATION OF THE 14C TIME SCALE [RADIOCARBON, VOL 28, No. 2A, 1986, P 284-291] ICE-CORE DATING OF THE PLEISTOCENE/HOLOCENE BOUNDARY APPLIED TO A CALIBRATION OF THE 14C TIME SCALE CLAUS U HAMMER, HENRIK B CLAUSEN Geophysical Isotope Laboratory,

More information

Section 4 Professor Donald McFarlane

Section 4 Professor Donald McFarlane Carbon cycle Present in atmosphere in low concentrations Autotrophs incorporate it into organic matter via photosynthesis Section 4 Professor Donald McFarlane Lecture 23 and Climate Carbon Cycle Respiration

More information