Fingerprinting suspended sediment sources in a large urban river system

Size: px
Start display at page:

Download "Fingerprinting suspended sediment sources in a large urban river system"

Transcription

1 The Science of the Total Environment (2003) Fingerprinting suspended sediment sources in a large urban river system Julie Carter, Philip N. Owens *, Desmond E. Walling, Graham J.L. Leeks a,1 a, a b a Department of Geography, University of Exeter, Exeter, Devon EX4 4RJ, UK b Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK Accepted 1 January 2003 Abstract Very few studies have attempted to quantify the sources of suspended sediment transported in urban river systems. In this study, statistically verified composite fingerprints and a multivariate mixing model have been used to identify the main sources of the suspended sediment transported by the River Aire and its main tributary, the River Calder. Because of the polluted nature of the AireyCalder catchment and its effect on fingerprint property concentrations, source tracing was undertaken separately for the upper and lower reaches. The mean contributions from individual source types (i.e. surface materials from woodland, uncultivated and cultivated areas, channel bank material, road dust and solids from sewage treatment works) varied between the upper and lower reaches of the rivers, reflecting the change in land use from primarily pasture and moorland in the upper reaches to mainly urban areas (with some cultivated land) in the lower reaches. The suspended sediment in the upper reaches of the River Aire originates largely from channel bank sources (43 84%) and from uncultivated topsoil (16 57%). In the lower reaches of the AireyCalder system, local sources of cultivated topsoil contribute 20 45% of the suspended sediment load and there is a significant contribution from urban sources, such as road dust (19 22%) and solids from sewage treatment works (14 18%). In the upper reaches, the proportion of sediment derived from each of the two main geological areas corresponds broadly to the proportion of the catchment occupied by each geological area. The relative contribution from the Rivers Aire and Calder to the suspended sediment load transported below the confluence demonstrates that most of the sediment is derived from the River Calder Elsevier Science B.V. All rights reserved. Keywords: Suspended sediment; Sediment sources; Fingerprinting; Urban sources; Mixing model 1. Introduction *Corresponding author. National Soil Resources Institute, Cranfield University, North Wyke, Okehampton, Devon EX20 2SB, UK. Tel.: q ; fax: q address: philip.owens@bbsrc.ac.uk (P.N. Owens). 1 Present address: Institute of Water and Environment, Cranfield University, Silsoe, Bedfordshire MK45 4DT, UK. The suspended sediment load transported by a river commonly represents a mixture of sediment derived from different locations and different sediment source types within the contributing catchment. Information on suspended sediment provenance is an important requirement in the /03/$ - see front matter 2003 Elsevier Science B.V. All rights reserved. doi: /s (03)

2 514 J. Carter et al. / The Science of the Total Environment (2003) examination of sediment routing and delivery, and in the construction of catchment sediment budgets (Dietrich and Dunne, 1978; Walling and Webb, 1983). From a management perspective, there is also a need to identify sediment sources in order to implement appropriate strategies to control sediment mobilisation and subsequent siltation of river channels and reservoirs. There is also increasing awareness of the role of suspended sediment as a vector for the transport of sediment-associated nutrients and contaminants (e.g. heavy metals, phosphorus, PCBs) in fluvial systems (Horowitz, 1991; Owens et al., 2001). The source of the sediment influences its chemical and physical properties and its contaminant loading, and as such is an important consideration in the management of polluted river systems. The precise type of information required on sediment source depends on the purpose in hand and the nature of any sediment-related problem. However, information on both the source type (e.g. sheet erosion on different land use types, erosion of channel banks or solids from urban runoff) and spatial location (e.g. which tributary or part of the basin) is frequently required (Walling et al., 1999). Information on sediment provenance has traditionally been collected using direct monitoring techniques (cf. Loughran and Campbell, 1995). However, studies employing erosion pins and troughs to estimate soil erosion rates, or sediment load measurements to quantify the relative contribution of suspended sediment from different source areas within a catchment, face a number of problems (Peart and Walling, 1986) and fingerprinting techniques are increasingly being used as an alternative (e.g. Walling and Woodward, 1995; Collins et al., 1998; Bottrill et al., 1999). Advantages include the limited field data collection involved (i.e. collection of source material and suspended sediment samples as opposed to extensive longterm monitoring at a number of sites). The basic principle underlying the fingerprinting approach is that different potential sediment sources can be characterised, or fingerprinted, using a number of diagnostic physical and chemical (and possibly biological) properties, and that comparison of these fingerprints with equivalent information for suspended sediment samples permits the relative importance of the different potential sources to be determined (Oldfield et al., 1979; Walling and Woodward, 1995). Many different physical and chemical properties have been successfully used to discriminate potential sediment sources in drainage basins, including mineralogy (Klages and Hsieh, 1975; Johnson and Kelley, 1984), sediment chemistry (Wall and Wilding, 1976; Peart and Walling, 1986), mineral magnetism (Oldfield et al., 1979; Slattery et al., 2000) and environmental radionuclides (Walling and Woodward, 1992; He and Owens, 1995). The use of a single diagnostic property is now recognised as being inadequate to discriminate between the wide range of sediment sources found in river catchments, and composite fingerprinting procedures, based on a number of different properties, have been developed (Collins et al., 1998; Walling et al., 1999; Collins and Walling, 2002). This approach involves the use of a number of different diagnostic properties to establish statistically verified composite fingerprints, and the subsequent application of a multivariate mixing model to establish the relative importance of the different potential sources (He and Owens, 1995; Walling and Woodward, 1995; Collins et al., 1998; Walling et al., 1999). This has the advantage of permitting the discrimination of a greater range of sediment sources and is likely to prove more effective in establishing source sediment linkages by reducing the possibility of spurious matches that may occur with the use of individual tracers. Although the fingerprinting approach is being increasingly used to establish sediment sources in agricultural drainage basins in contrasting environments (e.g. Collins et al., 1998, 2001; Bottrill et al., 1999; Walling et al., 1999; Owens et al., 2000; Slattery et al., 2000; Russell et al., 2001), very few studies have attempted to determine suspended sediment sources in urbanised and industrialised catchments. Notable exceptions include the work of Charlesworth et al. (2000) and Charlesworth and Lees (2001), although their studies have tended to focus on small (i.e. usually -10 km 2 ) catchments. As far as we are aware, there have been no previous attempts to determine suspended sediment sources in a large (i.e. )1000 km 2 ) highly urbanised catchment using composite fin-

3 J. Carter et al. / The Science of the Total Environment (2003) gerprints. This paper reports the use of the fingerprinting approach to establish the relative importance of different potential suspended sediment sources, defined in terms of both source type (i.e. agricultural and urban sources) and spatial location (i.e. different geological zones and individual sub-basins), within the heavily polluted drainage basin of the River Aire in Yorkshire, UK. To the best of our knowledge, this study represents the first attempt to include urban sources of road dust and solids from sewage treatment works (STWs) within the composite fingerprinting approach. 2. Study basin and methods 2.1. Study basin The River Aire is a tributary of the River Ouse, which drains into the North Sea via the Humber Estuary (Fig. 1). It has a total catchment area of km above the tidal limit, and a long-term ( ) mean annual discharge of 35.4 m 3 s at the Environment Agency (EA) gauging station at Beal (NERC, 2001). The River Calder is the main tributary of the River Aire and has a 2 catchment area of 930 km and a long-term ( ) mean annual discharge of 19.0 m s at the EA gauging station at Methley, thus contributing over half of the discharge of the lower Aire (NERC, 2001). Both rivers rise on land dominated by pasture and rough grazing, where water quality is generally good, except for small discharges of agricultural effluent and some limited diffusesource pollution. However, in the middle and lower reaches, the AireyCalder system drains a heavily urbanised and industrialised catchment with a population of approximately people. The main industries in the catchment include wool, textiles, chemicals, engineering, and food and drink production. Most of the industrial effluent is treated by sewage treatment works (STWs), although some industries have consent for trade effluent to be discharged directly to the river. Consequently, the middle and lower reaches of both rivers are heavily polluted and receive discharges of sewage effluent from STWs, combined sewer overflows and sewer dykes (CSOSD), and industrial discharges (direct and indirect), in addition to inputs from road drainage. This transition from a non-polluted upstream river to a heavily polluted system in downstream reaches provides an ideal opportunity to investigate contrasts in sediment source between rural and urban areas. The underlying geology of the upper reaches of the AireyCalder system is Carboniferous limestone and millstone grit (Fig. 1). The middle and lower reaches are underlain by Carboniferous coal measures, while below the confluence of the two rivers this gives way to Permian magnesian limestone. The soils in the upper reaches are dominated by raw oligo-fibrous peats, and stagnohumic and stagnogley soils. These give way to typical brown earths and pelo-stagnogley soils in the middle and lower reaches. The narrow band of Permian magnesian limestone at the catchment outlet is overlain by typical brown calcareous earths, which are frequently cultivated Field sampling Bulk suspended sediment samples were collected from a number of locations throughout the AireyCalder catchment (Fig. 1). Over 70 bulk suspended sediment samples were collected between November 1997 and January Because most of the suspended sediment load of the River Aire is transported during a few high flow events (cf. Wass and Leeks, 1999), sediment samples were collected primarily during these events. As an example, Fig. 2 shows the time of sample collection at Beal in relation to river flow at this site. It is clear from Fig. 2 that sediment samples were collected during most of the high flow events that occurred during the sampling period. Furthermore, the samples collected throughout the Aire catchment encompassed a range of suspended sediment concentrations (range ; mg l, which is typical for this river; cf. Wass and Leeks, 1999) and likely seasonal, inter- and intra-storm variations in sediment properties. The sediment samples collected are, therefore, considered to be reasonably representative of the suspended sediment load transported past each site. The sediment samples were collected from the centre of the channel, using a submersible

4 516 J. Carter et al. / The Science of the Total Environment (2003) Fig. 1. Location map showing the study area, the suspended sediment and floodplain sampling sites and the main geological subdivisions. pump powered by a portable generator, to fill several 25-l acid-washed polyethylene containers. The suspended sediment was recovered from the bulk samples by continuous flow centrifugation and freeze-dried prior to analysis. At one site (Allerton), where no suspended sediment samples were collected, overbank floodplain deposits were used as a surrogate (cf. Bottrill et al., 1999). Such

5 J. Carter et al. / The Science of the Total Environment (2003) Fig. 2. Variation in flow of the River Aire at Beal during the study period, and the timing of the collection of suspended sediment samples. deposits were collected using Astroturf mats (cf. Lambert and Walling, 1987), which were deployed prior to overbank flooding and collected soon after the floodwaters had receded. In order to characterise potential source materials, ca. 150 source material samples ()500 g) were collected throughout the study area using a stainless steel trowel. These were collected over a period of 12 months in order to take account of seasonal fluctuations in tracer properties. Source material sampling was stratified to incorporate geological and land-use variations. Within each of the main geological zones (cf. Fig. 1), representative samples were collected from the surface (top ;2 cm) of woodland, uncultivated (i.e. pasture, rough grazing and moorland) and cultivated areas, and also from the faces of eroding channel banks. Previous fingerprinting studies have not included urban areas as a potential sediment source. This was clearly an important consideration in an urban catchment (Stone and Marsalek, 1996), and therefore samples of road dust and of solids from a STW were also collected. Samples of road dust in the most built-up areas were swept into labelled polythene bags. Care was taken to sample areas located close to drains to ensure that the sediment was representative of sediment likely to enter the river. Due to logistical and safety problems associated with collecting samples of STW effluent discharged to the River Aire during high-flow conditions, and the fact that the river level is usually above the level of the STW discharge pipes, samples (ns3) of the influent to Esholt STW (a large STW that serves the city of Bradford; see Fig. 1) were collected. Such samples are likely to be representative of the material discharged into rivers, particularly during storm events, when storm bypass channels mean that sewage influent is discharged directly to the river (Owens and Walling, 2002). All source material samples were dried at 40 8C, gently disaggregated and then dry-sieved to -63 mm to facilitate direct comparison with fluvial (suspended and overbank) sediment samples (Collins et al., 1998; Walling et al., 1999) Laboratory analysis Laboratory analysis of both source material and suspended sediment samples was undertaken for a range of potential fingerprint properties. Phosphorus (P) concentrations (total, organic and inorganic) were determined using a Pye Unicam SP6 UVy visible spectrophotometer after chemical extraction (Mehta et al., 1954). Metal concentrations were determined using a Unicam 939 atomic absorption spectrophotometer after acid (concentrated HCl and HNO 3) digestion (Allen, 1989). Carbon (C) and nitrogen (N) concentrations were measured using a Carlo Erba ANA 1400 analyser. Radionuclide concentrations wcaesium-137 ( Cs), 137 radium ( Ra) and unsupported lead-210 ( Pb)x were determined using an EG&G Ortec hyper-pure germanium well-type detector. In order to correct for further contrasts in grain size composition between source materials and suspended sediment, the specific surface area of the samples was estimated from their particle size distributions. The latter were determined using a Coulter LS130 laser diffraction granulometer, after removal of organic matter (by H O ) and chemical w(napo ) x and ultrasonic dispersion The fingerprinting approach In order to exploit fully the potential of particular properties to differentiate potential source

6 518 J. Carter et al. / The Science of the Total Environment (2003) types, firm verification is needed that a property is capable of discriminating between the source groups identified. A two-stage statistical verification procedure was used to produce multicomponent signatures for the discrimination of different source types and areas (Collins et al., 1998; Walling et al., 1999). First, either the Mann Whitney U-test (to distinguish between two potential sources) or the Kruskal Wallis H-test (to distinguish between three or more potential sources) was used to establish which properties 137 (i.e. P, Cr, Cs) exhibited significant differences between the sources (i.e. cultivated topsoil, channel bank material, street dust). Properties failing this test were removed from the subsequent analysis. Secondly, multivariate discriminant function analysis was applied to the properties selected in the first stage, in order to identify the set of properties or composite fingerprint that afforded the best discrimination between source groups. A stepwise selection algorithm, based on the minimisation of Wilks lambda, was used in this analysis. A multivariate mixing model was subsequently used to estimate the relative contribution of the potential sediment sources to a particular suspended sediment sample. This mixing model is similar in principle to those used in other investigations that have successfully quantified the provenance of suspended sediment in predominantly agricultural catchments (Collins et al., 1998, 2001; Bottrill et al., 1999; Walling et al., 1999; Owens et al., 2000; Russell et al., 2001). Suspended sediment samples are generally enriched in fines compared to source materials (Walling et al., 2000), resulting in sediment samples exhibiting higher concentrations of many constituents than the source material (Horowitz, 1991). The effect of contrasts in grain size composition between source materials and suspended sediment was partly addressed by restricting analysis to the -63-mm fraction, but further correction was required to make the sediment samples directly comparable with the source materials. The values for the fingerprint properties of samples from each source were therefore corrected for differences in particle size composition compared with the suspended sediment being traced, using the ratio of the specific surface area of each suspended sediment sample to the mean value for each source (e.g. cultivated topsoil or limestone geology or Calder sub-basin). This provides a simple and convenient means of correcting all of the fingerprint property values for each source (Walling et al., 1999). Peart and Walling (1986) noted that suspended sediment is also likely to be enriched in organic matter, which may then act as a scavenger for many elements (Horowitz, 1991). Consequently, Collins et al. (1998) suggested that it was necessary to include correction for organic matter content in the model. However, the relationship between organic matter content and heavy metal content is complex and difficult to generalise (Walling et al., 1999), and such correction was not included in this study, since it may also result in the over-correction of tracer properties. Mean values of the particle size-corrected tracer properties for each source were used in the mixing model. Due to the wide range of discharges and suspended sediment concentrations when samples were collected (cf. Fig. 2), the relative contributions from each source for the individual sediment samples were weighted according to the values of discharge and suspended sediment concentration at the time of sampling (cf. Walling et al., 1999; Owens et al., 2000). This sediment load-weighting approach ensures that the importance of source contributions associated with periods of high sediment load is emphasised, and therefore provides a more realistic estimate of the proportion of the total suspended sediment load at a sampling site contributed by individual sources than a simple average of the percentage contribution values associated with individual suspended sediment samples. However, for the purposes of this study, continuous discharge and turbidity data were only available at the most downstream sites on each river, and consequently mean values for the individual samples were used at other sites. The goodness-of-fit provided by the mixing model was assessed by comparing the actual fingerprint property concentrations found in the suspended sediment samples with the corresponding values predicted by the mixing model, using the procedures described in Collins et al. (1998). The mean (average for all properties within each composite fingerprint) relative errors for the mixing

7 J. Carter et al. / The Science of the Total Environment (2003) Table 1 The results of using the Mann Whitney test to assess the ability of each tracer property to discriminate between source materials from areas underlain by limestone and millstone grit in the AireyCalder catchment Tracer property N C As * Pb * Zn * Cr K * Ca * Mn * Mg Na * Cu * Al * Fe Total P * Inorganic P * Organic P * 137Cs Ra * 210 Unsupported Pb * * Significant at Ps0.05. model calculations typically ranged between 8 and 20%. This indicates that the mixing model provides reasonably accurate predictions of the concentrations of fingerprint properties associated with individual suspended sediment samples in the Rivers Aire and Calder. It is estimated that the errors associated with the source tracing results are of the order of approximately "15%, and this should be borne in mind when interpreting the results presented below. The validity of the composite fingerprinting technique depends heavily on the assumption that the concentrations of properties measured in suspended sediment can be directly compared with those of the same properties in a variety of source materials. However, many substances, such as organic constituents and a number of heavy metals, may be introduced into a river from point sources as it flows downstream. Several studies (Neal et al., 1999; Carton et al., 2000; Owens et al., 2001; Owens and Walling, 2002) have shown that the Rivers Aire and Calder are enriched in a number P of sediment-associated nutrients (P) and contaminants (certain heavy metals) relative to most other rivers in the UK. This affects the effective use of the composite fingerprint, as some properties may no longer directly reflect the original source of the sediment. For this reason, different composite fingerprints have been employed in the upstream and downstream reaches of the study rivers. 3. Results and discussion 3.1. Sediment source ascription in the upstream reaches Source area (geology) The Mann Whitney test was used to assess the ability of tracer properties to discriminate between the two geological areas that occur in the upper reaches of the Aire catchment (cf. Fig. 1), namely Carboniferous limestone and millstone grit (Table 1). The majority of tracer parameters exhibit P- values well below the significance value of 0.05, indicating that they can strongly discriminate between the two geological areas. Six parameters 137 (N, C, Cr, Mg, Fe and Cs) were found to be not significant in making the discrimination, and were therefore removed at this stage. Multivariate discriminant function analysis was subsequently used to identify the best composite fingerprint incorporating a number of these properties, and the results are shown in Table 2. The optimum multicomponent fingerprint, comprising K, Cu, As, Mn, Na and total P, was able to distinguish Table 2 Results of using stepwise discriminant function analysis to identify which combination of tracer properties provides the best composite fingerprint for discriminating source materials on the basis of geology (i.e. limestone or millstone grit) Tracer property K 69.8 Cu 74.6 As 87.3 Mn 92.1 Na 88.9 Total P 96.1 Cumulative geology samples classified correctly (%)

8 520 J. Carter et al. / The Science of the Total Environment (2003) Table 3 Mean contributions of each geological area to the suspended sediment samples collected from the upper reaches of the River Aire during the period November 1997 January 1999 River Site Number of Geological area contribution (%) sediment samples Limestone Millstone grit Otterburn Beck Bell Busk (100) 0 (0) Aire Bell Busk (100) 0 (0) Eller Beck Skipton (100) 0 (0) Aire Kildwick (59) 44 (41) Aire Apperley (38) 87 (62) The approximate surface areas underlain by each geological area are listed in parentheses. correctly 96% of the source area samples. The addition of further tracer properties to the composite fingerprint does not increase the success of the classification. The numerical mixing model was used to establish the relative contribution of each source to the individual suspended sediment samples collected from the upstream sites on the River Aire. The mean results for each site are presented in Table 3. In the catchment of the River Aire above Bell Busk and the Eller Beck at Skipton, there are no millstone grit outcrops, and consequently the area underlain by limestone is the only source of the suspended sediment loads at these sites. At Kildwick, 56% of the sediment originates from the limestone area. This is in close agreement with the area occupied by this geology (approx. 59%). At Apperley there is a decrease in the proportion of sediment derived from the limestone area. This reflects the increase in the proportion of land underlain by millstone grit above this sampling site. The fact that the millstone grit at Apperley supplies 87% of the suspended sediment load while only occupying approximately 62% of the area may reflect higher rates of erosion and sediment supply associated with the millstone grit. However, the apparent importance of the millstone grit rocks may simply reflect the timing of suspended sediment sampling in relation to the storm hydrograph. The considerable variation in the relative contributions from the different geological areas associated with the individual suspended sediment samples collected at Kildwick and Apperley is shown in Fig. 3. The proportion of sediment supplied by the limestone area reached 80% at Kildwick and 40% at Apperley. The results highlight the importance of the timing of suspended sediment sampling, since the routing of sediment contributions from different parts of the catchment causes these contributions to pass the sampling Fig. 3. Inter-storm variability in the relative contribution of areas underlain by limestone and millstone grit to suspended sediment samples collected from Kildwick and Apperley.

9 J. Carter et al. / The Science of the Total Environment (2003) Fig. 4. Storm-period variation in the relative contribution of areas underlain by limestone and millstone grit to suspended sediment samples collected from Kildwick. site at different times. Fig. 4 shows the intra-storm variations in sediment source areas for samples collected from Kildwick during two storm events. During these events, the proportion of sediment derived from the limestone area peaks on the rising limb or at the peak, and then decreases during the falling limb. This reflects the close proximity of the site to the area underlain by limestone. Fig. 5 shows selected intra-storm variation in sediment source at Apperley. During these events, it appears that the proportion of sediment derived from the limestone area increases during the latter stages of an event, as sediment from more distant parts of the catchment underlain by limestone takes longer to reach the site Source type (land use) The source materials collected from the upstream areas were also classified according to source type. Previous authors (Collins et al., 1998; Walling et al., 1999; Owens et al., 2000) have divided sources into four categories (i.e. surface material from woodland, uncultivated and cultivated areas, and material from channel banks). There is very little cultivated land in the upper reaches of the AireyCalder catchment, and because it is unlikely that it would have an influence on the supply of sediment to the river, this source type was removed from the analysis at this stage. The results of the Kruskal Wallis H-test are shown in Table 4. A total of 14 out of 20 tracer properties provided clear discrimination between surface material from woodland and uncultivated (moorlandypasture) areas and channel bank material. A multicomponent signature containing organic P, 137 Cs, Mg, K, Mn and Fe was selected as the optimum fingerprint capable of classifying 87% of the source material samples correctly (Table 5). Summary results for the use of the mixing model are presented in Table 6. For the suspended sediment samples collected from the Otterburn Beck at Bell Busk and the River Aire at Kildwick and Apperley, the contribution from surface material from woodland areas is zero. This finding is consistent with that obtained for other Yorkshire rivers (e.g. Walling et al., 1999) and reflects the Fig. 5. Storm-period variation in the relative contribution of areas underlain by limestone and millstone grit to suspended sediment samples collected from Apperley.

10 522 J. Carter et al. / The Science of the Total Environment (2003) Table 4 Results of applying the Kruskal Wallis test to assess the ability of each tracer property to discriminate between surface material from uncultivated and woodland areas, and channel bank material collected from the AireyCalder catchment Tracer property H P N * C * As Pb * Zn * Cr K * Ca Mn Mg * Na Cu Al * Fe * Total P * Inorganic P * Organic P * Cs * Ra * Unsupported Pb * * Significant at Hs5.99. limited spatial extent of woodland in the catchment and the lack of surface erosion from such areas. For the River Aire at Bell Busk and the Eller Beck at Skipton, small contributions from woodland sources are identified, and this is probably due to the existence of areas of woodland in close proximity to the sampling sites. The predominant sediment source at Bell Busk, for both the Otterburn Beck and the River Aire, and at Kildwick is Table 5 Results of using stepwise discriminant function analysis to identify which combination of tracer properties provides the best composite fingerprint for discriminating between surface materials from woodland and uncultivated areas, and channel bank material Tracer property Organic P Cs 7350 Mg 7960 K 8250 Mn 8510 Fe 8720 Cumulative source type samples classified correctly (%) material from eroding channel banks. The contribution from channel banks is higher than that reported previously for studies in the UK (Collins et al., 1998; Walling et al., 1999; Owens et al., 2000), for which values have typically ranged between ;10 and 40%. The high contribution of sediment from channel banks in the upper reaches of the River Aire can be partly explained by the absence of cultivated land. This means that the actual amount of sediment supplied by channel banks may not be substantially greater than in other catchments, but because there is a lack of cultivated land as a sediment source, the proportion contributed by eroding channel banks is increased. However, there is some evidence of severe bank erosion in the upper reaches of the catchment. In addition, the greater than average rainfall during the study period may have contributed to an above average incidence of bank col- Table 6 Mean contributions of each source type to the suspended sediment samples collected from the upper reaches of the River Aire during the period November 1997 January 1999 River Site Number of Source type contribution (%) sediment samples Channel Uncultivated Woodland bank topsoil a topsoil Otterburn Beck Bell Busk Aire Bell Busk Eller Beck Skipton Aire Kildwick Aire Apperley a Mainly moorland and pasture.

11 J. Carter et al. / The Science of the Total Environment (2003) Fig. 6. Inter-storm variability in the relative contribution of surface material from uncultivated and woodland areas, and channel bank material to suspended sediment collected from the upper reaches of the River Aire (at Bell Busk, Kildwick and Apperley) and two upstream tributaries (Otterburn Beck and Eller Beck). lapse and channel scour by increasing the erosive potential of the river during periods of high discharge. The contribution of surface material from uncultivated areas to the suspended sediment load is substantial and reflects the large amount of pasture and moorland in the upper catchment. The contribution from channel banks to the suspended sediment samples collected at Apperley is lower than at the other sites, as many channels below Kildwick are protected and bank erosion is not as common. The eroded bank material from upstream reaches is, therefore, diluted by substantial inputs of surface materials from uncultivated areas in the vicinity of Apperley. The mean values reported in Table 6 conceal significant inter- and intra-storm variations in source type, which are highlighted in Fig. 6. Appreciable temporal variation in the relative importance of sediment sources was also noted by He and Owens (1995), Walling and Woodward (1995) and Walling et al. (1999). Such variations reflect antecedent conditions and changes in landuse and land-cover between events, exhaustion of sources as an event proceeds, and the timing of sampling in relation to the hydrograph peak. For the River Aire at Bell Busk, Kildwick and Apperley, there is evidence to suggest that events during the summer months contribute smaller proportions

12 524 J. Carter et al. / The Science of the Total Environment (2003) Fig. 7. Storm-period variation in the relative contribution of surface material from woodland and uncultivated areas, and channel bank material to suspended sediment samples collected from Kildwick. of bank material. This may relate to the absence of freeze thaw processes, which prepare sediment for entrainment during the winter months. Alternatively, it may reflect the fact that discharges are lower in the summer months, and thus have less potential for entraining sediment from large areas of riverbank. However, insufficient samples were collected during the summer to statistically verify Fig. 8. Storm-period variation in the relative contribution of surface material from woodland and uncultivated areas, and channel bank material to suspended sediment samples collected from Apperley.

13 J. Carter et al. / The Science of the Total Environment (2003) this trend. The intra-storm variability in source type contributions at Kildwick and Apperley is shown in Figs. 7 and 8, respectively. At Kildwick, for the events shown, there is a slight increase in the proportion of bank material supplied during the latter stages of the event. This is consistent with the findings of Walling et al. (1999) and Owens et al. (2000), who suggested that bank material is entrained at high discharges and that higher amounts of bank material can thus be expected at the discharge peak or shortly afterwards, depending on the distance from the source of the material to the sampling site. The delayed bank input could also reflect bank collapse as the water levels recede. At Apperley on the 10 December 1997, there was also an increase in the proportion of bank material supplied during the falling limb. This also coincided with an increase in the proportion of sediment derived from limestone areas (cf. Fig. 5) and again reflects the importance of upstream sources within the limestone area in the supply of channel bank material. On the 3 January 1998, the proportion of bank material was low and this also corresponds with a low proportion of sediment derived from the limestone area (cf. Fig. 3). The event occurring on the 16 October 1998 exhibited the highest proportions of bank material and also the highest proportion of sediment from limestone areas, thus highlighting the consistency between the two sets of sediment source investigations Sediment source ascription in the lower reaches Fingerprinting of sediment sources at the catchment outlet is complicated by the well-documented fact that the fluvial sediment in the AireyCalder catchment is contaminated by a variety of sediment-associated nutrients and heavy metals (Neal et al., 1999; Carton et al., 2000; Owens et al., 2001; Owens and Walling, 2002). Consequently, it is not appropriate to use the composite fingerprints that were used for the upstream reaches, which were derived using source materials collected from agricultural areas only. Instead, it is necessary to also incorporate likely urban sources, such as road dust and solids from STWs. Furthermore, because there is the potential problem that some tracer properties may be discharged from point sources to rivers in solution and subsequently sorb onto existing suspended sediment in the river (Owens and Walling, 2002), thereby elevating the property concentration of the suspended sediment, it is necessary to exclude properties that show an elevated concentration in suspended sediment relative to those for the various potential sources before the fingerprinting exercise is carried out Source area (geology) In order to ascribe sources to the suspended sediment collected in the lower reaches of the river, all source materials were classified according to whether they were sampled from limestone, millstone grit, coal measures or magnesian limestone. The concentrations of tracer properties in the source materials were then corrected for particle size effects by multiplying the concentration by the ratio of the mean specific surface area of the suspended sediment to that for the source material. When the mean property concentrations for the suspended sediment load were compared to the particle size-corrected concentrations in the source materials, the concentrations of eight of the 20 properties fell outside the range of values represented by the source materials. Consequently, these properties were deemed unsuitable for fingerprinting and they were excluded at this stage. The ability of the remaining properties to discriminate between the four geological areas was tested using the Kruskal Wallis H-test. Six properties were shown to discriminate between the four geological areas. However, multivariate discriminant function analysis showed that -70% of the samples could be correctly classified using these properties. For this reason it was decided that it was not viable to attempt to use these fingerprint properties to establish source area contributions in the downstream reaches of the study catchment. These problems highlight the difficulties of source ascription in a contaminated catchment Source type (land use) In order to establish the source type contributions to the suspended sediment collected at the catchment outlet, source materials were classified

14 526 J. Carter et al. / The Science of the Total Environment (2003) Table 7 Comparisons between the concentration of tracer properties in source materials (corrected for particle size differences) and suspended sediment Property Source type Suspended sediment Channel Topsoil STW Road Beal Methley bank solids dust Cultivated Uncultivated Woodland N (%) C (%) As (mg g ) Pb (mg g ) Zn (mg g ) Cr (mg g ) K (mg g ) Ca (mg g ) Mn (mg g ) Mg (mg g ) Na (mg g ) Cu (mg g ) Al (mg g ) Fe (mg g ) Total P (mg g ) Inorganic P (mg g ) Organic P (mg g ) Cs (mbq g ) Ra (mbq g ) Unsupported Pb (mbq g ) Values in bold italics represent concentrations in suspended sediment that lie outside the range associated with source materials. according to whether they were surface materials from woodland, uncultivated (pastureymoorland) or cultivated areas, channel bank material (i.e. agricultural sources), solids from STWs or road dust (i.e. urban sources). The source material properties were then corrected for particle size differences (Table 7). Average concentrations for suspended sediment for 16 out of 20 properties fell within the range for the source materials and were consequently subjected to the Kruskal Wallis H-test (Table 8). All of the 16 properties were able to distinguish between the six source types, and subsequent analysis produced a multicomponent signature containing Zn, C, N, unsupported Pb, Cs and total P. This fingerprint classified 76% of the source type samples correctly (Table 9). The mean load-weighted results provided by the mixing model for the River Aire at Beal and the River Calder at Methley are presented in Table 10. For the River Aire at Beal, the dominant sediment source is from channel banks (approx. 33%). This reflects the importance of the erosion of channel banks in the downstream reaches of the river, where banks are often )2 m in height. It also reflects the downstream location of the sampling sites, and thus the distal location of many topsoil sources, particularly pastureymoorland and woodland areas, which are mainly located in upstream areas. Due to their distal location, the opportunity for conveyance losses is greater. These findings are consistent with those documented by Walling et al. (1999) and Owens et al. (2000) for downstream reaches of the Rivers Ouse and Tweed, UK, for which the contributions from channel bank sources were approximately 37 and 39%, respectively. The increased importance of cultivated (approx. 20%) over uncultivated (pastureymoorland) topsoil sources (ca. 7%) reflects the existence of large areas of intensively cultivated land in close proximity to the sampling sites and the high rates of soil loss commonly associated with cultivated soils (cf. Morgan, 1986). The location

15 J. Carter et al. / The Science of the Total Environment (2003) Table 8 Results of using the Kruskal Wallis test to assess the ability of each tracer property to discriminate between surface material from uncultivated, cultivated and woodland areas, channel bank material, solids from STWs and road dust collected from the AireyCalder catchment Tracer property H P N C Pb Zn K Ca Mg Na Cu Al Total P Inorganic P Organic P Cs Ra Unsupported Pb H significant at of the main area of cultivated land in the lower reaches of the catchment minimises conveyance losses, such as those associated with floodplain deposition. There was insufficient sediment supplied by woodland sources for its contribution to be detected by the mixing model. This reflects both the limited extent of woodland in the catchment and the lack of erosion from such sources. Perhaps the most significant finding listed in Table 10 is the relative importance of urban sources to the suspended sediment samples collected at Beal. It is estimated that approximately 40% of the suspended sediment that is transported in the River Aire at Beal is derived from roads and STWs within the urbanised part of the catchment. The Table 9 Results of using stepwise discriminant function analysis to identify which combination of tracer properties provides the best composite fingerprint for discriminating source materials on the basis of source type (i.e. surface material from cultivated, uncultivated and woodland areas, channel bank material, solids from STWs and road dust) Tracer property Zn 36.1 C 47.6 N Unsupported Pb Cs 69.2 Total P 75.9 Cumulative source type samples classified correctly (%) results for the River Calder at Methley are broadly similar to those for the River Aire at Beal, with the main difference being an increase in contributions of surface material from cultivated areas (45%) and a decrease in contributions from channel banks (18%) compared to Beal. As with Beal, a significant amount (approx. 33%) of the sediment load transported in the downstream reaches of the River Calder is derived from urban sources. The mean values shown in Table 10 again conceal many inter- and intra-storm variations in sediment source. Fig. 9 shows the source contributions for all the sediment samples collected. Insufficient samples were collected during the summer months to permit investigation of seasonal variations in sediment source. However, it is clear that considerable variation exists between different samples. Such variations are most likely to reflect the timing of sampling, as sediment is delivered from different parts of the catchment at different stages of the storm hydrograph. This is further Table 10 Load-weighted mean contributions of each source type to the suspended sediment samples collected from Beal and Methley during the period November 1997 January 1999 Site Number Source type contribution (%) of samples Channel Topsoil STW Road bank Uncultivated Cultivated Woodland solids dust Beal Methley

16 528 J. Carter et al. / The Science of the Total Environment (2003) Fig. 9. Inter-storm variability in the relative contribution of surface material from uncultivated and cultivated areas, channel bank material, road dust, and solids from STWs to suspended sediment collected from the lower reaches of the Rivers Aire and Calder. Fig. 10. Variation in the relative contribution of surface material from uncultivated and cultivated areas, channel bank material, road dust, and solids from STWs to suspended sediment samples collected from Beal during a storm event during 3 4 March 1998.

17 J. Carter et al. / The Science of the Total Environment (2003) illustrated in Fig. 10, which shows the variation in sediment sources during a storm event at Beal. During the rising limb of the hydrograph, the relative contribution of channel bank material dominates, reflecting the entrainment of exposed bank material. As the discharge increases, the relative contribution of bank sources decreases, probably due to dilution with other sources, and the contribution of topsoil from cultivated areas and road dust increases. The increase in contributions from cultivated topsoil reflects the high erosion rates and sediment delivery associated with this land use and its close proximity to the sampling site (relative to pastureymoorland areas). The increase in the relative contribution of road dust reflects the increase in the connectivity of the road network to the channel system as the storm progresses. The decrease in the relative contributions of solids from STWs during the hydrograph may reflect the dilution of sediment derived from such sources by that from more distal parts of the catchment, including pasture topsoil, the contribution of which only becomes significant during the falling limb of the hydrograph. Fig. 10 demonstrates that variations in the relative contributions of the main sources are controlled primarily by the location of the sources within the catchment relative to the sampling site, with channel banks and STWs contributing most sediment at the start of the event, and road dust and the surface material from pastureymoorland areas contributing more towards the middle and end of the event. Table 11 Results of using the Mann Whitney test to assess the ability of each tracer property to discriminate between sediment collected from Methley and Allerton Tracer property N * C * As Pb Zn Cr * K Ca * Mn Mg Na Cu Al Fe * Total P Inorganic P Organic P * 137Cs * 226Ra * 210 Unsupported Pb * Significant at Ps Spatial location (sub-basins) It is possible to compare suspended sediment samples collected from the River Aire at Beal with those collected from sites upstream of the Aire Calder confluence in order to obtain information on the relative contribution of the Rivers Aire and Calder to the suspended sediment load transported downstream of the confluence. The main advantage of such an approach (i.e. comparing suspended sediment properties from different sites) is that the complications introduced by differences in particle size composition and organic matter content between source materials and sediments are reduced (cf. Walling et al., 1999). However, because no suspended sediment samples were collected from the River Aire immediately upstream of the confluence, floodplain deposits were used in place of suspended sediment for the River Aire at Allerton. Because such deposits in essence represent suspended sediment deposited during overbank events, the property concentrations associated with overbank deposits should be representative of those of suspended sediment at the same location, once particle size effects have been taken into account. The floodplain deposits from Allerton were characterised by a similar particle size to the suspended sediment from Methley, but were, nonetheless, corrected for particle size differences in the same way as for the source materials. The Mann Whitney U-test was used to assess the ability of tracer properties to discriminate between the two rivers (Table 11). Eight tracer parameters exhibit P-values below the significance value of 0.05, indicating that they afford strong discrimination between the two rivers. A multicomponent signature containing Ca, C, Cr, Fe and organic P was subsequently identified as a fingerprint capable of classifying 100% of the samples correctly P

Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK

Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK HYDROLOGICAL PROCESSES Hydrol. Process. 13, 955±975 (1999) Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK Desmond E. Walling 1 *, Philip N. Owens 1 and Graham

More information

The role of flood plain sedimentation in catchment sediment and contaminant budgets

The role of flood plain sedimentation in catchment sediment and contaminant budgets The Structure, Function and Management Implications of Fluvial Sedimentary Systems (Proceedings of an international symposium held at Alice Springs, Australia, September 2002). IAHS Publ. no. 276, 2002.

More information

Determining the Ability of Acid Extractable Metals as a Fingerprint in Sediment Source Discrimination

Determining the Ability of Acid Extractable Metals as a Fingerprint in Sediment Source Discrimination International Journal of Natural Resources and Marine Sciences 2011, 1 (2), 93-99 Determining the Ability of Acid Extractable Metals as a Fingerprint in Sediment Source Discrimination Asghar Kouhpeima

More information

Downstream changes in the transport and storage of sediment-associated contaminants ž P, Cr and PCBs/ agricultural and industrialized drainage basins

Downstream changes in the transport and storage of sediment-associated contaminants ž P, Cr and PCBs/ agricultural and industrialized drainage basins Ž. The Science of the Total Environment 266 2001 17786 Downstream changes in the transport and storage of sediment-associated contaminants ž P, Cr and PCBs/ in agricultural and industrialized drainage

More information

Tracing suspended sediment sources in catchments and river systems

Tracing suspended sediment sources in catchments and river systems Science of the Total Environment 344 (2005) 159 184 www.elsevier.com/locate/scitotenv Tracing suspended sediment sources in catchments and river systems D.E. WallingT Department of Geography, University

More information

In-channel storage of fine sediment in rivers of southwest England

In-channel storage of fine sediment in rivers of southwest England Sediment Transfer through flic Fluvial System (Proceedings ofthc Moscow Symposium. August 2004). IAHS Publ. 288, 2004 291 In-channel storage of fine sediment in rivers of southwest England A. J. WILSON

More information

Determining Suitable Fingerprinting Properties for Discrimination of Sediment Sources (Case study: Amrovan and Atary Catchments)

Determining Suitable Fingerprinting Properties for Discrimination of Sediment Sources (Case study: Amrovan and Atary Catchments) DESERT DESERT Online at http://jdesert.ut.ac.ir DESERT 17 (2013) 255-264 Determining Suitable Fingerprinting Properties for Discrimination of Sediment Sources (Case study: Amrovan and Atary Catchments)

More information

Tracing and tracking sediment sources in river catchments

Tracing and tracking sediment sources in river catchments Insert image here Insert image here Tracing and tracking sediment sources in river catchments Adrian Collins and Yusheng Zhang www.adas.co.uk Delivering the WFD 1 The sediment problem information on sediment

More information

Appraisal of a simple sampling device for collecting time-integrated fluvial suspended sediment samples

Appraisal of a simple sampling device for collecting time-integrated fluvial suspended sediment samples The Role of Erosion and Sediment Transport in Nutrient and Contaminant Transfer (Proceedings of a symposium held at Waterloo, Canada, July 2000). IAHS Publ. no. 263, 2000. 119 Appraisal of a simple sampling

More information

ADAM ŁAJCZAK Jan Kochanowski University, Institute of Geography, ul. Świętokrzyska 15, Kielce, Poland

ADAM ŁAJCZAK Jan Kochanowski University, Institute of Geography, ul. Świętokrzyska 15, Kielce, Poland Erosion and Sediments Yields in the Changing Environment (Proceedings of a symposium held at the 49 Institute of Mountain Hazards and Environment, CAS-Chengdu, China, 11 15 October 2012) (IAHS Publ. 356,

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

The settling behaviour of fine sediment particles: some preliminary results from LISST instruments

The settling behaviour of fine sediment particles: some preliminary results from LISST instruments Sediment Transfer througlt the Fluvial System (Proceedings ol'a symposium held in Moscow. August 2004). I AI IS Publ. 288. 2004 283 The settling behaviour of fine sediment particles: some preliminary results

More information

Sediment Dynamics and the Hydromorphology of Fluvial Systems (Proceedings of a symposium held in Dundee, UK, July 2006). IAHS Publ. 306, 2006.

Sediment Dynamics and the Hydromorphology of Fluvial Systems (Proceedings of a symposium held in Dundee, UK, July 2006). IAHS Publ. 306, 2006. Sediment Dynamics and the Hydromorphology of Fluvial Systems (Proceedings of a symposium held in Dundee, UK, July 2006). IAHS Publ. 306, 2006. 223 The use of buffer features for sediment and phosphorus

More information

EXCHANGE OF HEAVY METALS BETWEEN SEDIMENT AND WATER IN THE WLOCLAWEK RESERVOIR ON THE VISTULA RIVER

EXCHANGE OF HEAVY METALS BETWEEN SEDIMENT AND WATER IN THE WLOCLAWEK RESERVOIR ON THE VISTULA RIVER Sediment and Stream Water Quality in a Changing Environment: Trends and Explanation (Proceedings of the Vienna Symposium, August 1991) IAHS Publ. no. 203, 1991. ECHANGE OF HEAVY METALS BETWEEN SEDIMENT

More information

Deposition and Resuspension of Sediments in Near Bank Water Zones of the River Elbe

Deposition and Resuspension of Sediments in Near Bank Water Zones of the River Elbe 9th International Congress on Environmental Modelling and Software Brigham Young University BYU ScholarsArchive 4th International Congress on Environmental Modelling and Software - Barcelona, Catalonia,

More information

Altered morphodynamics in tidallyinfluenced rivers: re-thinking catchment management, flood risk & material fluxes

Altered morphodynamics in tidallyinfluenced rivers: re-thinking catchment management, flood risk & material fluxes Altered morphodynamics in tidallyinfluenced rivers: re-thinking catchment management, flood risk & material fluxes Paul A. Brewer, Mark G. Macklin, Marc Huband and Sara Rassner Centre for Catchment and

More information

Calculating the suspended sediment load of the Dez River

Calculating the suspended sediment load of the Dez River Erosion and Sediment Transport Monitoring Programmes in River Basins (Proceedings of the Osio Symposium, August 1992). IAHS Publ. no. 210, 1992. 219 Calculating the suspended sediment load of the Dez River

More information

PENNSYLVANIA DEPARTMENT OF TRANSPORTATION ENGINEERING DISTRICT 3-0

PENNSYLVANIA DEPARTMENT OF TRANSPORTATION ENGINEERING DISTRICT 3-0 PENNSYLVANIA DEPARTMENT OF TRANSPORTATION ENGINEERING DISTRICT 3-0 LYCOMING COUNTY S.R.15, SECTION C41 FINAL HYDROLOGIC AND HYDRAULIC REPORT STEAM VALLEY RUN STREAM RELOCATION DATE: June, 2006 REVISED:

More information

Identification of geochemically distinct regions at river basin scale using topography, geology and land use in cluster analysis

Identification of geochemically distinct regions at river basin scale using topography, geology and land use in cluster analysis Identification of geochemically distinct regions at river basin scale using topography, geology and land use in cluster analysis Ramirez-Munoz P. and Korre, A. Mining and Environmental Engineering Research

More information

LI Yong (1,2), FRIELINGHAUS Monika (1), BORK Hans-Rudolf (1), WU Shuxia (2), ZHU Yongyi (2)

LI Yong (1,2), FRIELINGHAUS Monika (1), BORK Hans-Rudolf (1), WU Shuxia (2), ZHU Yongyi (2) Scientific registration n : Symposium n : 31 Presentation : poster Spatial patterns of soil redistribution and sediment delivery in hilly landscapes of the Loess Plateau Motifs spaciaux de zones d'érosion

More information

Appendix O. Sediment Transport Modelling Technical Memorandum

Appendix O. Sediment Transport Modelling Technical Memorandum Appendix O Sediment Transport Modelling Technical Memorandum w w w. b a i r d. c o m Baird o c e a n s engineering l a k e s design r i v e r s science w a t e r s h e d s construction Final Report Don

More information

Influence of the timing of flood events on sediment yield in the north-western Algeria

Influence of the timing of flood events on sediment yield in the north-western Algeria Calabria, 5-7 Septembre 2 4th International Workshop on Hydrological Extremes Session A : Modelling and forecast of hydrological extreme event Influence of the timing of flood events on sediment yield

More information

WINFAP 4 QMED Linking equation

WINFAP 4 QMED Linking equation WINFAP 4 QMED Linking equation WINFAP 4 QMED Linking equation Wallingford HydroSolutions Ltd 2016. All rights reserved. This report has been produced in accordance with the WHS Quality & Environmental

More information

Stop 1: Marmot Dam Stop 1: Marmot Dam

Stop 1: Marmot Dam Stop 1: Marmot Dam Stop 1: Marmot Dam Stop 1: Marmot Dam Following the removal of Marmot Dam in 2007, the fate of the reservoir sediments has been monitored through a series of surveys and sediment transport measurements.

More information

Summary. Streams and Drainage Systems

Summary. Streams and Drainage Systems Streams and Drainage Systems Summary Streams are part of the hydrologic cycle and the chief means by which water returns from the land to the sea. They help shape the Earth s surface and transport sediment

More information

Flooding in Dolgellau

Flooding in Dolgellau Flooding in Dolgellau Graham Hall MMath, PhD University of Wales, Bangor Background Flooding has historically been a cause for concern in Dolgellau. Following a serious flood in December 1964 when shops

More information

Phase I System Characterization: Year 2 Study Plans

Phase I System Characterization: Year 2 Study Plans Phase I System Characterization: Year 2 Study Plans Year I Physical and Biological Data Sets Quarterly Storm Sampling Four storm events with 8 sample stations at bridges Monthly Baseline Characterization

More information

Suspended sediment yields of rivers in Turkey

Suspended sediment yields of rivers in Turkey Erosion and Sediment Yield: Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996). IAHS Publ. no. 236, 1996. 65 Suspended sediment yields of rivers in Turkey FAZLI OZTURK Department

More information

The contribution of subsoil to sediment yield in the Murrumbidgee River basin, New South Wales, Australia

The contribution of subsoil to sediment yield in the Murrumbidgee River basin, New South Wales, Australia Erosion and Sediment Yield: Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996). IAHS Publ. no. 236, 1996. 347 The contribution of subsoil to sediment yield in the Murrumbidgee

More information

Presented at WaPUG Spring Meeting 1 st May 2001

Presented at WaPUG Spring Meeting 1 st May 2001 Presented at WaPUG Spring Meeting 1 st May 21 Author: Richard Allitt Richard Allitt Associates Ltd 111 Beech Hill Haywards Heath West Sussex RH16 3TS Tel & Fax (1444) 451552 1. INTRODUCTION The Flood Estimation

More information

Technical Memorandum No

Technical Memorandum No Pajaro River Watershed Study in association with Technical Memorandum No. 1.2.10 Task: Evaluation of Four Watershed Conditions - Sediment To: PRWFPA Staff Working Group Prepared by: Gregory Morris and

More information

DEPOSITION AND STORAGE OF FINE-GRAINED SEDIMENT WITHIN THE MAIN CHANNEL SYSTEM OF THE RIVER TWEED, SCOTLAND

DEPOSITION AND STORAGE OF FINE-GRAINED SEDIMENT WITHIN THE MAIN CHANNEL SYSTEM OF THE RIVER TWEED, SCOTLAND Earth Surface Processes and Landforms Earth Surf. Process. Landforms 24, 1061±1076 (1999) DEPOSITION AND STORAGE OF FINE-GRAINED SEDIMENT WITHIN THE MAIN CHANNEL SYSTEM OF THE RIVER TWEED, SCOTLAND PHILIP

More information

Flood Map. National Dataset User Guide

Flood Map. National Dataset User Guide Flood Map National Dataset User Guide Version 1.1.5 20 th April 2006 Copyright Environment Agency 1 Contents 1.0 Record of amendment... 3 2.0 Introduction... 4 2.1 Description of the Flood Map datasets...4

More information

Use of Space-for-Time Substitution in River Restoration: examples from SE England

Use of Space-for-Time Substitution in River Restoration: examples from SE England Use of Space-for-Time Substitution in River Restoration: examples from SE England Drs Andrew Brookes and Niamh Burke (Jacobs) Lizzie Rhymes and Graham Scholey (Environment Agency, SE) What is Space-for-Time

More information

Chapter 11. Rivers: Shaping our landscape

Chapter 11. Rivers: Shaping our landscape Chapter 11 Rivers: Shaping our landscape Learning outcomes In this presentation you will learn: Common terms associated with rivers About the three stages of a river About the processes of river erosion

More information

Appendix K.2: Sediment Management Excerpt from South Orange County Hydromodification Management Plan

Appendix K.2: Sediment Management Excerpt from South Orange County Hydromodification Management Plan Appendix K.2: Sediment Management Excerpt from South Orange County Hydromodification Management Plan 4 Sediment Supply Management Requirements Permit Order R9-2013-0001 as amended by Order No. R9-2015-0001Section

More information

Tarbela Dam in Pakistan. Case study of reservoir sedimentation

Tarbela Dam in Pakistan. Case study of reservoir sedimentation Tarbela Dam in Pakistan. HR Wallingford, Wallingford, UK Published in the proceedings of River Flow 2012, 5-7 September 2012 Abstract Reservoir sedimentation is a main concern in the Tarbela reservoir

More information

Storm Sewer Design [2]

Storm Sewer Design [2] Class 5 [1] Storm Sewer Design 9. Check Q < Qf and Vmax > vf > Vmin. Vmin is normally specified to avoid sedimentation. This will normally be 1.0 m/s at pipe full condition. (BS EN 752 suggests that for

More information

Gully Erosion Part 1 GULLY EROSION AND ITS CAUSES. Introduction. The mechanics of gully erosion

Gully Erosion Part 1 GULLY EROSION AND ITS CAUSES. Introduction. The mechanics of gully erosion Gully Erosion Part 1 GULLY EROSION AND ITS CAUSES Gully erosion A complex of processes whereby the removal of soil is characterised by incised channels in the landscape. NSW Soil Conservation Service,

More information

Combining caesium-137 measurements and suspended sediment load data to investigate the sediment response of a small catchment in southern Italy

Combining caesium-137 measurements and suspended sediment load data to investigate the sediment response of a small catchment in southern Italy 220 Sediment Dynamics from the Summit to the Sea (Proceedings of a symposium held in New Orleans, Louisiana, USA, 11 14 December 2014) (IAHS Publ. 367, 2014). Combining caesium-137 measurements and suspended

More information

The use of 137 Cs and 210 Pb ex to investigate sediment sources and overbank sedimentation rates in the Teesta River basin, Sikkim Himalaya, India

The use of 137 Cs and 210 Pb ex to investigate sediment sources and overbank sedimentation rates in the Teesta River basin, Sikkim Himalaya, India 380 Sediment Dynamics and the Hydromorphology of Fluvial Systems (Proceedings of a symposium held in Dundee, UK, July 2006). IAHS Publ. 306, 2006. The use of 137 Cs and 210 Pb ex to investigate sediment

More information

Sediments in urban river basins: a review of sediment contaminant dynamics in an environmental system conditioned by human activities

Sediments in urban river basins: a review of sediment contaminant dynamics in an environmental system conditioned by human activities J Soils Sediments (2009) 9:281 303 DOI 10.1007/s11368-009-0103-z URBAN SEDIMENTS A GLOBAL PERSPECTIVE REVIEW ARTICLE Sediments in urban river basins: a review of sediment contaminant dynamics in an environmental

More information

Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA

Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA International Journal of Sediment Research 24 (2009) 108 125 Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA K. E. JURACEK and A. C. ZIEGLER 1 Abstract

More information

Technical Memorandum No Sediment Model

Technical Memorandum No Sediment Model Pajaro River Watershed Study in association with Technical Memorandum No. 1.2.9 Sediment Model Task: Development of Sediment Model To: PRWFPA Staff Working Group Prepared by: Gregory Morris and Elsie Parrilla

More information

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation.

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation. River Response River Response Sediment Water Wood Confinement Valley slope Channel morphology Bank material Flow obstructions Riparian vegetation climate catchment vegetation hydrological regime channel

More information

Overview of fluvial and geotechnical processes for TMDL assessment

Overview of fluvial and geotechnical processes for TMDL assessment Overview of fluvial and geotechnical processes for TMDL assessment Christian F Lenhart, Assistant Prof, MSU Research Assoc., U of M Biosystems Engineering Fluvial processes in a glaciated landscape Martin

More information

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS Routing MODULE - ROUTING METHODS Routing is the process of find the distribution of flow rate and depth in space and time along a river or storm sewer. Routing is also called Flow routing or flood routing.

More information

Brief outline of the presentation

Brief outline of the presentation EGS AGU - EUG Joint Assembly, Nice, France, April 2003 Session HS9 - Sediment dynamics and channel change in rivers and estuaries Channel change and sediment movement after a major level drawdown at Kremasta

More information

Modeling Great Britain s Flood Defenses. Flood Defense in Great Britain. By Dr. Yizhong Qu

Modeling Great Britain s Flood Defenses. Flood Defense in Great Britain. By Dr. Yizhong Qu Modeling Great Britain s Flood Defenses AIRCurrents Editor s note: AIR launched its Inland Flood Model for Great Britain in December 2008. The hazard module captures the physical processes of rainfall-runoff

More information

Earth Science Chapter 6 Section 2 Review

Earth Science Chapter 6 Section 2 Review Name: Class: Date: Earth Science Chapter 6 Section Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Most streams carry the largest part of their

More information

Watershed concepts for community environmental planning

Watershed concepts for community environmental planning Purpose and Objectives Watershed concepts for community environmental planning Dale Bruns, Wilkes University USDA Rural GIS Consortium May 2007 Provide background on basic concepts in watershed, stream,

More information

Using 7Be to Trace Temporal Variation of Interrill and Rill Erosion on Slopes

Using 7Be to Trace Temporal Variation of Interrill and Rill Erosion on Slopes Available online at www.sciencedirect.com Procedia Environmental Sciences 11 (2011) 1220 1226 Using 7Be to Trace Temporal Variation of Interrill and Rill Erosion on Slopes Gang Liu 1, Qiong Zhang 3, Mingyi

More information

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling Attachment B-1 Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling 1 October 2012 Lower Susquehanna River Watershed Assessment Evaluation of AdH Model Simplifications

More information

A distributed runoff model for flood prediction in ungauged basins

A distributed runoff model for flood prediction in ungauged basins Predictions in Ungauged Basins: PUB Kick-off (Proceedings of the PUB Kick-off meeting held in Brasilia, 2 22 November 22). IAHS Publ. 39, 27. 267 A distributed runoff model for flood prediction in ungauged

More information

SPECIFIC DEGRADATION AND RESERVOIR SEDIMENTATION. By Renee Vandermause & Chun-Yao Yang

SPECIFIC DEGRADATION AND RESERVOIR SEDIMENTATION. By Renee Vandermause & Chun-Yao Yang SPECIFIC DEGRADATION AND RESERVOIR SEDIMENTATION By Renee Vandermause & Chun-Yao Yang Outline Sediment Degradation - Erosion vs Sediment Yield - Sediment Yield - Methods for estimation - Defining Sediment

More information

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation DRAINAGE BASINS A drainage basin or watershed is defined from a downstream point, working upstream, to include all of the hillslope & channel areas which drain to that point Each basin is surrounded &

More information

Determining the source of suspended particulate material

Determining the source of suspended particulate material Erosion, Debris Flows and Environment in Mountain Regions (Proceedings of the Chengdu Symposium, July 1992). IAHS Publ. no. 209, 1992. 177 Determining the source of suspended particulate material W. SYMADER

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level *1435749974* GEOGRAPHY 9696/13 Paper 1 Core Geography May/June 2013 Additional

More information

Opportunities to Improve Ecological Functions of Floodplains and Reduce Flood Risk along Major Rivers in the Puget Sound Basin

Opportunities to Improve Ecological Functions of Floodplains and Reduce Flood Risk along Major Rivers in the Puget Sound Basin Opportunities to Improve Ecological Functions of Floodplains and Reduce Flood Risk along Major Rivers in the Puget Sound Basin Christopher Konrad, US Geological Survey Tim Beechie, NOAA Fisheries Managing

More information

APPENDIX E. GEOMORPHOLOGICAL MONTORING REPORT Prepared by Steve Vrooman, Keystone Restoration Ecology September 2013

APPENDIX E. GEOMORPHOLOGICAL MONTORING REPORT Prepared by Steve Vrooman, Keystone Restoration Ecology September 2013 APPENDIX E GEOMORPHOLOGICAL MONTORING REPORT Prepared by Steve Vrooman, Keystone Restoration Ecology September 2 Introduction Keystone Restoration Ecology (KRE) conducted geomorphological monitoring in

More information

Land-Water Linkages in Rural Watersheds Electronic Workshop 18 September 27 October 2000

Land-Water Linkages in Rural Watersheds Electronic Workshop 18 September 27 October 2000 Land-Water Linkages in Rural Watersheds Electronic Workshop 18 September 27 October 2000 Case Study 28 Estimation of basin sediment flux in the Pang Khum Experimental Watershed in Northern Thailand: the

More information

Grant 0299-NEP: Water Resources Project Preparatory Facility

Grant 0299-NEP: Water Resources Project Preparatory Facility Document Produced under Grant Project Number: 45206 May 2016 Grant 0299-NEP: Water Resources Project Preparatory Facility Final Report Volume 3 East Rapti (1 of 9) Prepared by Pvt. Ltd. For Ministry of

More information

Statistical modelling of suspended sediment transport in the Cherf drainage basin, Algeria

Statistical modelling of suspended sediment transport in the Cherf drainage basin, Algeria 13 Statistical modelling of suspended sediment transport in the Cherf drainage basin, Algeria K. KHANCHOUL 1, Z-E BOUKHRISSA 1 & H. MAJOUR 2 (Reçu le 09/01/2012 ; Accepté le 15/03/2012) Abstract This work

More information

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle WATER ON AND UNDER GROUND Objectives Define and describe the hydrologic cycle. Identify the basic characteristics of streams. Define drainage basin. Describe how floods occur and what factors may make

More information

Protecting Moreton Bay: How can we reduce sediment and nutrients loads by 50%? Jon Olley, Scott Wilkinson, Gary Caitcheon and Arthur Read

Protecting Moreton Bay: How can we reduce sediment and nutrients loads by 50%? Jon Olley, Scott Wilkinson, Gary Caitcheon and Arthur Read Protecting Moreton Bay: How can we reduce sediment and nutrients loads by 50%? Jon Olley, Scott Wilkinson, Gary Caitcheon and Arthur Read Abstract: CSIRO Land and Water, GPO Box 1666, Canberra. Email:

More information

Chapter 6: Chronology

Chapter 6: Chronology 6.1 21 Pb Sources and Pathways...48 6.2 Principles of 21 Pb Dating...48 6.3 Sediment Core Radionuclide Chronology...51 6.5 Sediment Core Trace Metal Chronology...57 47 6. Chronology The results from Chapter

More information

SECTION G SEDIMENT BUDGET

SECTION G SEDIMENT BUDGET SECTION G SEDIMENT BUDGET INTRODUCTION A sediment budget has been constructed for the for the time period 1952-2000. The purpose of the sediment budget is to determine the relative importance of different

More information

From micro to macro scale the impact on the sediment discharge after construction of the Three Gorges Dam on Yangtze River (Changjiang)

From micro to macro scale the impact on the sediment discharge after construction of the Three Gorges Dam on Yangtze River (Changjiang) From micro to macro scale the impact on the sediment discharge after construction of the Three Gorges Dam on Yangtze River (Changjiang) Aleksandra Dewiszek 9th International SedNet conference Solving societal

More information

Controlling Processes That Change Land

Controlling Processes That Change Land 1 Name Date Controlling Processes That Change Land People try to control some of the processes that change land. To do this, people apply technology- the use of science to solve problems in everyday life.

More information

Statement of Impact and Objectives. Watershed Impacts. Watershed. Floodplain. Tumblin Creek Floodplain:

Statement of Impact and Objectives. Watershed Impacts. Watershed. Floodplain. Tumblin Creek Floodplain: Tumblin Creek Floodplain: Impacts Assessment and Conceptual Restoration Plan Casey A. Schmidt Statement of Impact and Objectives Urbanization has increased stormflow rate and volume and increased sediment,

More information

CONCEPTS Conservational Channel Evolution and Pollutant Transport System

CONCEPTS Conservational Channel Evolution and Pollutant Transport System CONCEPTS Conservational Channel Evolution and Pollutant Transport System Eddy J. Langendoen Watershed Physical Processes Research Unit National Sedimentation Laboratory USDA Agricultural Research Service

More information

[1] Performance of the sediment trap depends on the type of outlet structure and the settling pond surface area.

[1] Performance of the sediment trap depends on the type of outlet structure and the settling pond surface area. Sediment Trench SEDIMENT CONTROL TECHNIQUE Type 1 System Sheet Flow Sandy Soils Type 2 System [1] Concentrated Flow Clayey Soils Type 3 System [1] Supplementary Trap Dispersive Soils [1] Performance of

More information

Illinois State Water Survey Division

Illinois State Water Survey Division Illinois State Water Survey Division SURFACE WATER SECTION SWS Miscellaneous Publication 108 SEDIMENT YIELD AND ACCUMULATION IN THE LOWER CACHE RIVER by Misganaw Demissie Champaign, Illinois June 1989

More information

Appendix G.19 Hatch Report Pacific NorthWest LNG Lelu Island LNG Maintenance Dredging at the Materials Offloading Facility

Appendix G.19 Hatch Report Pacific NorthWest LNG Lelu Island LNG Maintenance Dredging at the Materials Offloading Facility Appendix G.19 Hatch Report Pacific NorthWest LNG Lelu Island LNG Maintenance Dredging at the Materials Offloading Facility Project Memo H345670 To: Capt. David Kyle From: O. Sayao/L. Absalonsen December

More information

12 10 8 6 4 2 0 40-50 50-60 60-70 70-80 80-90 90-100 Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs Distribution of water in

More information

The contribution of gully erosion to the sediment budget of the River Leira

The contribution of gully erosion to the sediment budget of the River Leira Variability in Stream Erosion and Sediment Transport (Proceedings of the Canberra Symposium, December 1994). IAHS Publ. no. 224, 1994. 307 The contribution of gully erosion to the sediment budget of the

More information

Vermont Stream Geomorphic Assessment. Appendix E. River Corridor Delineation Process. VT Agency of Natural Resources. April, E0 - April, 2004

Vermont Stream Geomorphic Assessment. Appendix E. River Corridor Delineation Process. VT Agency of Natural Resources. April, E0 - April, 2004 Vermont Stream Geomorphic Assessment Appendix E River Corridor Delineation Process Vermont Agency of Natural Resources - E0 - River Corridor Delineation Process Purpose A stream and river corridor delineation

More information

Towards the design of a strategy for sampling suspended sediments in small headwater catchments

Towards the design of a strategy for sampling suspended sediments in small headwater catchments Erosion and Sediment Transport Monitoring Programmes in River Basins (Proceedings of the Oslo»,» Symposium, August 1992). IAHS Publ. no. 210, 1992. 225 Towards the design of a strategy for sampling suspended

More information

CASE STUDY NATHPA JHAKRI, INDIA

CASE STUDY NATHPA JHAKRI, INDIA SEDIMENT MANAGEMENT CASE STUDY NATHPA JHAKRI, INDIA Key project features Name: Nathpa Jhakri Country: India Category: reduce sediment production (watershed management); upstream sediment trapping; bypass

More information

2. PRESENT CONDITION OF THE RESERVOIR 2.1 View of Wonogiri Reservoir (1/3)

2. PRESENT CONDITION OF THE RESERVOIR 2.1 View of Wonogiri Reservoir (1/3) 2.1 View of Wonogiri Reservoir (1/3) Wonogiri dam abutment on the left side of dam Spillway forebay on thet left side of dam Bank erosion around Wonogiri reservoir. Wonogiri Dam view from chersonese. An

More information

Continuing Education Associated with Maintaining CPESC and CESSWI Certification

Continuing Education Associated with Maintaining CPESC and CESSWI Certification Continuing Education Associated with Maintaining CPESC and CESSWI Certification Module 2: Stormwater Management Principles for Earth Disturbing Activities Sponsors: ODOTs Local Technical Assistance Program

More information

The use of environmental radionuclides in investigations of sediment sources and overbank sedimentation rates in the Himalaya Foreland, India

The use of environmental radionuclides in investigations of sediment sources and overbank sedimentation rates in the Himalaya Foreland, India Predictions in Ungauged Basins: PUB Kick-off (Proceedings of the PUB Kick-off meeting held in Brasilia, 20 22 November 2002). IAHS Publ. 309, 2007. 137 The use of environmental radionuclides in investigations

More information

Introduction Fluvial Processes in Small Southeastern Watersheds

Introduction Fluvial Processes in Small Southeastern Watersheds Introduction Fluvial Processes in Small Southeastern Watersheds L. Allan James Scott A. Lecce Lisa Davis Southeastern Geographer, Volume 50, Number 4, Winter 2010, pp. 393-396 (Article) Published by The

More information

Can Measurement of Nitrate, Oxygen, and Boron isotopes be useful for your nitrate problem? A guideline. Problem. Measures. November 2009.

Can Measurement of Nitrate, Oxygen, and Boron isotopes be useful for your nitrate problem? A guideline. Problem. Measures. November 2009. δ 18 O NO3 NO3 Problem O O N δ 11 B δ 15 N NO3 O Measures Can Measurement of Nitrate, Oxygen, and Boron isotopes be useful for your nitrate problem? November 2009 Content 1 Introduction: ISONITRATE project...

More information

Using caesium-137 measurements to establish a sediment budget for the catchment of a small reservoir in southern Italy

Using caesium-137 measurements to establish a sediment budget for the catchment of a small reservoir in southern Italy Considering Hydrological Change in Reservoir Planning and Management Proceedings of H09, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, July 2013 (IAHS Publ. 362, 2013. 125 Using caesium-137 measurements

More information

Technical Memorandum. City of Salem, Stormwater Management Design Standards. Project No:

Technical Memorandum. City of Salem, Stormwater Management Design Standards. Project No: Technical Memorandum 6500 SW Macadam Avenue, Suite 200 Portland, Oregon, 97239 Tel: 503-244-7005 Fax: 503-244-9095 Prepared for: Project Title: City of Salem, Oregon City of Salem, Stormwater Management

More information

Squaw Creek. General Information

Squaw Creek. General Information General Information is a tributary to the Salmon River. It enters the north side of the river about 0 miles downstream of North Fork, Idaho. The study reach is about a 30 ft length of stream about 2 miles

More information

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012 Stream Geomorphology Leslie A. Morrissey UVM July 25, 2012 What Functions do Healthy Streams Provide? Flood mitigation Water supply Water quality Sediment storage and transport Habitat Recreation Transportation

More information

In the space provided, write the letter of the description that best matches the term or phrase. a. any form of water that falls to Earth s

In the space provided, write the letter of the description that best matches the term or phrase. a. any form of water that falls to Earth s Skills Worksheet Concept Review In the space provided, write the letter of the description that best matches the term or phrase. 1. condensation 2. floodplain 3. watershed 4. tributary 5. evapotranspiration

More information

Sediment budgets and sinks in the Brahmaputra basin and their agricultural and ecological impacts

Sediment budgets and sinks in the Brahmaputra basin and their agricultural and ecological impacts Sediment Dynamics and the Hydromorphology of Fluvial Systems (Proceedings of a symposium held in Dundee, UK, July 2006). IAHS Publ. 306, 2006. 399 Sediment budgets and sinks in the Brahmaputra basin and

More information

Linking land use, erosion and sediment yields in river basins

Linking land use, erosion and sediment yields in river basins Hydrobiologia 410: 223 240, 1999. J. Garnier & J.-M. Mouchel (eds), Man and River Systems. 1999 Kluwer Academic Publishers. Printed in the Netherlands. 223 Linking land use, erosion and sediment yields

More information

National Hydrology committee of Afghanistan (NHCA) Sedimentation in Reservoire

National Hydrology committee of Afghanistan (NHCA) Sedimentation in Reservoire National Hydrology committee of Afghanistan (NHCA) Sedimentation in Reservoire OCt.2007 Prof. Mohammad Qasem Seddeqy KPU بسم االله الرحمن الرحيم وجعلنامن الماءکل شي ء حی 30 واز ا ب هر چيزی رازنده گردانيدیم

More information

Floods Lecture #21 20

Floods Lecture #21 20 Floods 20 Lecture #21 What Is a Flood? Def: high discharge event along a river! Due to heavy rain or snow-melt During a flood, a river:! Erodes channel o Deeper & wider! Overflows channel o Deposits sediment

More information

Differentiating Mining and Non-mining Sourced Contaminants in the San Juan River Delta of Lake Powell, USA

Differentiating Mining and Non-mining Sourced Contaminants in the San Juan River Delta of Lake Powell, USA Differentiating Mining and Non-mining Sourced Contaminants in the San Juan River Delta of Lake Powell, USA Logan Frederick, Thure Cerling, Diego Fernandez, James VanDerslice, William P. Johnson San Juan

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level *7041204919* GEOGRAPHY 9696/11 Paper 1 Core Geography October/November

More information

Source Identification for particle bound metals in the San Juan River

Source Identification for particle bound metals in the San Juan River Source Identification for particle bound metals in the San Juan River Logan Frederick, William Johnson, Diego Fernandez, Thure Cerling University of Utah, Geology and Geophysics Mines in the area (Upper

More information

24.0 Mineral Extraction

24.0 Mineral Extraction Chapter 24 - Mineral Extraction 24.0 Mineral Extraction 24.1 Introduction Apart from gravel, sand, rock, limestone and salt extraction in relatively small quantities mineral extraction is not a strong

More information

Materials. Use materials meeting the following.

Materials. Use materials meeting the following. 208.01 Section 208. SOIL EROSION AND SEDIMENTATION CONTROL 208.01 Description. Install and maintain erosion and sedimentation controls to minimize soil erosion and to control sedimentation from affecting

More information

Domino Effect of River Training in Large Sand-Bed Braiding Rivers

Domino Effect of River Training in Large Sand-Bed Braiding Rivers 6 th International Conference on Structural Engineering and Construction Management 2015, Kandy, Sri Lanka, 11 th -13 th December 2015 SECM/15/176 Domino Effect of River Training in Large Sand-Bed Braiding

More information

Diego Burgos. Geology 394. Advisors: Dr. Prestegaard. Phillip Goodling

Diego Burgos. Geology 394. Advisors: Dr. Prestegaard. Phillip Goodling Sediment Transport into an Urban Tributary Junction Diego Burgos Geology 394 Advisors: Dr. Prestegaard Phillip Goodling 1 Abstract Tributary junctions are an important component of stream morphology and

More information