HYMENOLAIMUS MAlACORHYNCHOS, IN THE SOUTH ISLAND,

Size: px
Start display at page:

Download "HYMENOLAIMUS MAlACORHYNCHOS, IN THE SOUTH ISLAND,"

Transcription

1 MAURI ORA, 1976, 4: DISTRIBUTION AND HABITAT OF THE BLUE DUCK, HYMENOLAIMUS MAlACORHYNCHOS, IN THE SOUTH ISLAND, NEW ZEALAND R.E. FORDYCE Department of Zoology, University of Canterbury, Christchurch, New Zealand ABSTRACT The South Island distribution of the New Zealand blue duck, Hymeno1aimus ma1acorhynchos, is mapped and its habitat is defined. The blue duck occurs predominantly in hill country, where it lives in degraded (eroding) streams. INTRODUCTION New Zealand's endemic blue duck, Hymeno1aimus ma1acorhynchos (Gmelin, 1789), is an unusual ana tid which differs in morphology and behaviour from many other ducks (see for example, Potts 1870, Douglas in Pascoe 1957, Pengelly and Kear 1970, Kear and Burton 1971, and Kear and Steel 1971). A preliminary _survey of the South Island distribution of the blue duck (Fordyce and Tunnicliffe 1973) suggested that its distribution and habitat is markedly different from those of other New Zealand ducks. The present paper, which formed the basis for an unpublished B.Sc. (Hons) project, presents further data which allow both the distribution pattern and habitat of the blue duck in the South Island to be more accurately defined. METHODS Records of b1ue duck distribution were compiled predominantly from personal communications and sightings abstracted from literature. Some data, particularly those relating to distribution in early European times, were obtained from informa-tion provided by museum collections. The data collected included the following information: observer, date, time of day, locality, grid reference on N.Z.M.S. (New Zealand Mapping Service). 1 yard-based grid maps (me-tric maps not available), details of habitat, number of ducks, sex of ducks, and observed behaviour. Over 500 records were used to compile the distribution map (Fig. 1), on which yard grid squares from which blue duck were recorded are marked. In order to determine possible changes in blue duck distribution within the last 50 years, three sighting categories were plotted: before 1930, after 1930, before and after The date 1930 was chosen as, by this time, human interference, particularly predation and bush clearance, with blue duck populations was relatively low. This meant that populations could then stabilise, and that any trends in the change of range size in the last 50 years could be determined. A brief review of man's influence on blue duck distribution was given by Fordyce and Tunnic1iffe (1973)

2 80 MAURI ORA, 1976, Vol. 4.. present after 1930 IZl present before and after present before Fig 1. Distribution of the blue duck in the South Island, New Zealand, before and after Squares represent the yard grid squares of the N.Z.M.S. 1 maps.

3 FORDYCE - BLUE DUCK DISTRIBUTION AND HABITAT 81 Fig. 2. Distribution of recent alluvium in the South Island, New Zealand, based on Grindleyet al Alluvial deposits, characteristic of aggraded streams, are coloured black.

4 82 MAURI ORA, 1976, Vol. 4 DISTRIBUTION Data presented in Fig. 1 show that blue duck are relatively widespread throughout the hill country of the South Island. A brief outline of provincial patterns of distribution follows: 1. Nelson: common in the interior Tasman Mountains and rugged north-western country. May occur 3poradically in Pikikiruna Range; fossil evidence suggests' past abundance here (Canterbury Museum data). Probably once widespread throughout low-lying areas of Golden Bay, where it still occurs occasionally. No records from Moutere Plains. Occurs in hill country southeast of Nelson City. 2. Marlborough: fairly common in mountain country west of Wairau River and in Marlborough Sounds. May have previously occurred in low eastern foothills similar in topography to areas in Canterbury where blue duck once occurred. Probably abundant in past (Handly 1895) and present in the Kaikoura Ranges. 3. Canterbury: before 1930, quite abundant in many of the eastern foothills; probably extended to sea in north- and south Canterbury foothills. No records from Banks Peninsula, Lake Ellesmere (Tunnicliffe 1973) or flat alluvial Canterbury Plains. Now occur occasionally in Rakaia foothills (N. Fowke, pers. comrn. 1973), Geraldine foothills, and Hunters Hills (M. Polglaze, pers. comrn. 1974). Absent from many inland hill-country areas of north Canterbury (field surveys, , R.E. Fordyce). Common in Southern Alps close to the main divide. 4. Otago: occurred almost down to sea-level in some northeastern foothills, for example, around the Wai taki River, 1I'hich resemble areas in Canterbury where they occurred (data from Canterbury Museum). Now very rare or absent in eastern Otago (I<. Westerskov, pars. comm. 1974). Apparently common in river valleys near main divide. S. Southland: no past or present records from eastern areas. Foothill areas, as in Otago, may have provided suitable habitats in the past. Still present in Takitimu Mountains and possibly other western hill country. 6 ~lestland: there has been Ii ttle apparent change in distribution here since prehistoric times. Distribution contracted noticeably in the 1880-l890s (Douglas, in Pascoe 1957). Apparently abundant in river headwaters towards main divide, and often (in the south) occur near sea level. 7. Fiordland: abundant probably throughout, in past and present, from sea-level to valley headwaters. 8. Stewart Island: no data. The early, pre-1930 records (e.g. sightings made in the 1890s, E. Roberts, pers. comm. 1972) indicate that blue duck were once more widespread than they are now. This is also revealed by records which indicate that blue duck were abundant enough in some areas to be used as food by early settlers (Buller 1877, Douglas, in Pascoe 1957). These findings verify those of the preliminary survey made by Fordyce and Tunnicliffe (l973).

5 FORDYCE - BLUE DUCK DISTRIBIITION ANT,! HAIlITAT 83 Altitudinal pattern of distribution The data used here allow the altitudinal range of the blue duck to be more accurately defined than by Fordyce and Tunnicliffe (1973). Although the blue duck is primarily a freshwater bird, it may occur at sea-level. Blue duck have often been seen on beaches or swimming on the sea in Fiordland (Buller 1888, J. Clark, pers. cornrn. 1974), and have been observed "about 1 mile from the sea" in Boundary Gully, Motunau, Canterbury, about 1893 (E. Roberts, pers. cornrn. 1972). Apparently, however, they are not physiologically adapted to living in a saltwater environment, for their skulls show no evidence of well-developed supra-orbital salt glands characteristic of marine birds. Upper altitude limits are probably determined by the presence of permanent snow or ice, for example, in proximity to glaciers (Potts 1870), P. Croft, pers. cornrn. 1974), The usual alti'tude range is between 450 m and 1350 m, which correlates with the occurrence of suitable habitats (see Habitat). HABITAT When the distribution map (Fig. 1) was being assembled, it became apparent that areas in which blue duck had never been recorded coincided with the areas mapped by Grindley et al. (1961) as recent alluvial deposits (Fig. 2). These deposits comprise sediments such as outwash terraces, swamps, dunes, fans, and moraines. A close study of the distribution map and Fig. 2 verified this observation: blue duck have not been recorded in areas where alluvial deposits are abundant but are known from areas where significant alluvial deposits are absent. The type of stream or river that occurs in allu.vium-free areas may be defined as a degraded stream. Conversely, streams and rivers in areas of significant alluvial deposits are generally aggraded streams. The differences between these two types of streams are summarised in Table 1, which is based on field observations. TABLE 1. A COMPARISON OF THE CHARACTERISTICS OF AGGRADED AND DEGRADED STREAMS. Character Aggraded streams Degraded streams Profile Physiography Sediment sizes shallow plains, with meandering rivers and streams generally fine Sediment sortl.ng well sorted; little variation in sizes present Water velocity slow steep mountainous, hilly, with gorgy streams generally coarse poorly sorted; considerable variation in sizes fast

6 84 MAURI ORA, 1976, Vol. 4 That this habitat is preferred was further verified by my personal field observations, which show that blue duck occur in fast-flowing degraded streams, with a width of 2 m to over 20 m (e.g. the Waimakariri River headwaters, Canterbury), characteristically in rugged hill country between 450 m and 1350 m above sea level. These often-gorged streams may contain stretches of rapid-flowing water and waterfalls or rapids, which may alternate with pools commonly 5 m to 15 m long. Here the water flows more s;owly, and sediments are finer. The gorges of degraded streams are often quite narrow (20 m to 40 m wide) and water may often fiji up to half thelr width. Interspersed between the gorges, of which there may be several in river headwaters, there may be large stretches of open river bed 50 m to several hundred metres wide. Blue duck also utilise small, steep streams that flow out onto plains or into the sea without any pronounced gorges or stretches of open riverbed. It is common to see blue duck flying and swimming through the gorges of degraded streams and rivers. Here, they often forage in rapids and around the edges of slower, flowing pools in gorges, and occasionally in pools in open, aggraded riverbed above and below these gorges. They often withdraw to less turbulent waters, in or just out of gorges, to preen and rest; hence there may be a locus of activity around these areas (e.g. by Lake Kaurapataka, Otehake River, North Westland). Whlle a degraded stream is a necessary feature of typical blue duck habitat, ~t is certain that factors such as the occurrence of food (freshwater insects Kear and Burton 1971, and my unpublished data) and suitable vegetation for shelter are also important. The absence of blue duck in areas where degraded streams occur but where vegetation around streams is scarce, for "example, in Central Otago, emphasises this point. However, since the aim of this section is to define the type of habitat suitable for blue duck rather than to determine why the habitat is suitable, the influence of vegetation and food is not further discussed. My conclusion from this study is that the distribution of the blue duck is limited by its restricted habitat, a degraded stream. ACKNOWLEDGMENTS I thank the many people who provided data used to assemble Fig. 1. Records provided by C.N. Challies were particularly useful. Dr M.C. Crawley, O.R. Hughes, and P. Sagar commented on and read part or all of the manuscript. G.A. Tunnicliffe enthusiastically encouraged and discussed all parts of this work. LITERATURE CITED BULLER, W.L Notes on the ornithology of New Zealand. of the New Zealand Institute 10: Transactions FORDYCE, R.E. and TUNNICLIFFE, G.A The distribution of the blue duck Hymeno1aimus ma1acorhynchos, in the South Island: a preliminary survey. Mauri Ora 1: GRINDLEY, G.W., HARRINGTON, H.J. and WOOD, B.L The geological map of New Zealand 1:2,000,000. New Zealand Geological Survey bulletin n.s. 66: 111 pp."

7 FORDYCE - BLUE DUCK DISTRIBUTION AND HABITAT 85 HANDLY, J.W Notes on some species of New Zealand birds. Transactions of the New Zealand Institute 28: KEAR, J. and BURTON,!?J.K Food and feeding apparatus of the Blue Duck Hymeno1aimus. Ibis 113: KEAR, J. and STEEL, T.H Aspects of social behaviour in the blue duck. Notornis 18: PASCOE, J. (Ed.) Mr. Explorer Douglas. A.H. and A.W. Reed, Wellington. 331 pp. PENGELLY, W.J. and KEAR, J Wildfowl 21: The hand rearing of young blue duck. POTTS, T.H On the birds of New Zealand (II). Transactions of the New Zealand Institute 3: TUNNICLIFFE, G.A The avifauna of the Lake Ellesmere area, Canterbury. Mauri Ora 1:

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output strong interaction between streams & hillslopes Sediment Budgets for Mountain Rivers Little

More information

Page 1 of 9 Name: Base your answer to the question on the diagram below. The arrows show the direction in which sediment is being transported along the shoreline. A barrier beach has formed, creating a

More information

Streams. Stream Water Flow

Streams. Stream Water Flow CHAPTER 14 OUTLINE Streams: Transport to the Oceans Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Streams Streams are the major geological agents

More information

4. The map below shows a meandering stream. Points A, B, C, and D represent locations along the stream bottom.

4. The map below shows a meandering stream. Points A, B, C, and D represent locations along the stream bottom. 1. Sediment is deposited as a river enters a lake because the A) velocity of the river decreases B) force of gravity decreases C) volume of water increases D) slope of the river increases 2. Which diagram

More information

NEW ZEALAND WEATHER. BRIEF REVIEW OF THE WEATHER WINTER 1989 (Fig. 1) MONTHLY HIGHLIGHTS JUNE-AUGUST Weather and Climate (1990) 10: 27-31

NEW ZEALAND WEATHER. BRIEF REVIEW OF THE WEATHER WINTER 1989 (Fig. 1) MONTHLY HIGHLIGHTS JUNE-AUGUST Weather and Climate (1990) 10: 27-31 Weather and Climate (1990) 10: 27-31 27 NEW ZEALAND WEATHER BRIEF REVIEW OF THE WEATHER (Fig. 1) WARMER THAN USUAL This was the third warmer than normal winter in a row, but not as warm as those of 1987

More information

What are the different ways rocks can be weathered?

What are the different ways rocks can be weathered? Romano - 223 What are the different ways rocks can be weathered? Weathering - the breakdown of rocks and minerals at the Earth s surface 1. 2. PHYSICAL WEATHERING Rock is broken into smaller pieces with

More information

Page 1. Name:

Page 1. Name: Name: 1) Which property would best distinguish sediment deposited by a river from sediment deposited by a glacier? thickness of sediment layers age of fossils found in the sediment mineral composition

More information

Erosion and Deposition

Erosion and Deposition Erosion and Deposition Erosion Sediment natural forces move rock/soil from one place to another. gravity, water, wind, glaciers, waves are causes material moved by erosion Deposition when erosion lays

More information

The United States & Canada. A Regional Study of Anglo America

The United States & Canada. A Regional Study of Anglo America A Regional Study of Anglo America Landform Regions of the United States & Canada world leaders in agricultural and industrial production because of... VAST LANDS stretch from the Atlantic Ocean on the

More information

Topographical Maps ANSWER KEY- Assignment 6

Topographical Maps ANSWER KEY- Assignment 6 Topographical Maps ANSWER KEY- Assignment 6 Question 1 (To be answered using toposheet 45 D/7, Grid reference 76 to 85) 1. Cite two differences between the Sipu River and the Mahadeviyo Nala? Sipu River

More information

Unit 1: Geography. For additional information, refer to this website: 1 G e o g r a p h y

Unit 1: Geography. For additional information, refer to this website:  1 G e o g r a p h y Unit 1: Geography For additional information, refer to this website: http://mryoungtms.weebly.com/ 1 G e o g r a p h y Continents and Oceans SOL USI. 2a Essential Understanding: Continents are large land

More information

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Hydrologic Cycle The hydrologic cycle is a summary of the circulation of Earth s water supply. Processes involved in the hydrologic

More information

Changes in Texas Ecoregions

Changes in Texas Ecoregions Comment On Lesson Changes in Texas Ecoregions The state of Texas can be divided into 10 distinct areas based on unique combinations of vegetation, topography, landforms, wildlife, soil, rock, climate,

More information

Science EOG Review: Landforms

Science EOG Review: Landforms Mathematician Science EOG Review: Landforms Vocabulary Definition Term canyon deep, large, V- shaped valley formed by a river over millions of years of erosion; sometimes called gorges (example: Linville

More information

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy.

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy. 1 2 Function... Sevier River... to successfully carry sediment and water from the watershed....dissipate energy. 3 ALLUVIAL FEATURES 4 CHANNEL DIMENSION The purpose of a stream is to carry water and sediment

More information

Rivers. Regents Earth Science Weathering & Erosion

Rivers. Regents Earth Science Weathering & Erosion Regents Earth Science Weathering & Erosion Name: Rivers Use your notes, the handout Weathering and Erosion and your review book to answer the following questions on Rivers. Be sure to read the information

More information

Ch 10 Deposition Practice Questions

Ch 10 Deposition Practice Questions 1. Base your answer to the following question on the data table below. Six identical cylinders, A through F, were filled with equal volumes of sorted spherical particles. The data table shows the particle

More information

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown.

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown. Name 1. In the cross section of the hill shown below, which rock units are probably most resistant to weathering? 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different

More information

What landforms make up Australia?!

What landforms make up Australia?! What landforms make up Australia? The tectonic forces of folding, faulting and volcanic activity have created many of Australia's major landforms. Other forces that work on the surface of Australia, and

More information

Rivers T. Perron

Rivers T. Perron 1 Rivers T. Perron 12.001 After our discussions of large-scale topography, how we represent topography in maps, and how topography interacts with geologic structures, you should be frothing at the mouth

More information

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

Chapter 2. Denudation: Rivers and Ice

Chapter 2. Denudation: Rivers and Ice Chapter 2. Denudation: Rivers and Ice DENUDATION: process that lowers level of land - caused by rivers, glaciers, waves & wind - involves processes of WEATHERING & EROSION Weathering Def: breakdown of

More information

Landscape evolution. An Anthropic landscape is the landscape modified by humans for their activities and life

Landscape evolution. An Anthropic landscape is the landscape modified by humans for their activities and life Landforms Landscape evolution A Natural landscape is the original landscape that exists before it is acted upon by human culture. An Anthropic landscape is the landscape modified by humans for their activities

More information

Which landscape best represents the shape of the valleys occupied by glaciers? A) B) C) D)

Which landscape best represents the shape of the valleys occupied by glaciers? A) B) C) D) 1. Glaciers often form parallel scratches and grooves in bedrock because glaciers A) deposit sediment in unsorted piles B) deposit rounded sand in V-shaped valleys C) continually melt and refreeze D) drag

More information

Depositional Environment

Depositional Environment Depositional Environment Sedimentary depositional environment describes the combination of physical, chemical and biological processes associated with the deposition of a particular type of sediment. Types

More information

NIWA Outlook: September October November 2013

NIWA Outlook: September October November 2013 September-November 2013 Issued: 30 August 2013 Hold mouse over links and press ctrl + left click to jump to the information you require: Overview Regional predictions for the next three months: Northland,

More information

GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas

GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas GY 111 Lecture Notes D. Haywick (2008-09) 1 GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas Lecture Goals A) Rivers and Deltas (types) B) Water Flow and sedimentation in river/deltas

More information

New Zealand Climate Update No 221, October 2017 Current climate October 2017

New Zealand Climate Update No 221, October 2017 Current climate October 2017 New Zealand Climate Update No 221, October 2017 Current climate October 2017 October 2017 was characterised by higher than normal sea level pressure over New Zealand and the surrounding seas. This consistent

More information

STREAM SYSTEMS and FLOODS

STREAM SYSTEMS and FLOODS STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Runoff Transpiration Earth s Water and the Hydrologic Cycle The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle Runoff Transpiration The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

RIVERS, GROUNDWATER, AND GLACIERS

RIVERS, GROUNDWATER, AND GLACIERS RIVERS, GROUNDWATER, AND GLACIERS Delta A fan-shaped deposit that forms when a river flows into a quiet or large body of water, such as a lake, an ocean, or an inland sea. Alluvial Fan A sloping triangle

More information

The Niagara Escarpment extends from western New York, through the GTA all the way up to Manitoulin Island and into Michigan and Wisconsin.

The Niagara Escarpment extends from western New York, through the GTA all the way up to Manitoulin Island and into Michigan and Wisconsin. is southern Ontario s most prominent topographic feature, extending more than 500 kilometres from western New York, through Niagara Falls and the western part of the Greater Toronto Area (GTA), and north

More information

Assignment 1. Measuring River Characteristics- Vernon Creek. Applied Fluvial Geomorphology Field Techniques EESc 435

Assignment 1. Measuring River Characteristics- Vernon Creek. Applied Fluvial Geomorphology Field Techniques EESc 435 Assignment 1 Measuring River Characteristics- Vernon Creek Applied Fluvial Geomorphology Field Techniques EESc 435 Amanda Jardine 30100093 Jaime McDonald 14177083 Erica Massey 50870088 April 28, 2012 Introduction

More information

PHYSICAL FEATURES OF EUROPE. Europe Unit

PHYSICAL FEATURES OF EUROPE. Europe Unit PHYSICAL FEATURES OF EUROPE Europe Unit PENINSULA OF PENINSULAS Europe is a large peninsula that consists of many smaller peninsulas Most places in Europe are no more than 300 miles from an ocean or sea

More information

NEW ZEALAND WEATHER. BRIEF REVIEW OF THE WEATHER WINTER 1991 (Fig. 1) CONTRASTING RAINFALL, COLD IN THE SOUTH-WEST OF THE SOUTH ISLAND

NEW ZEALAND WEATHER. BRIEF REVIEW OF THE WEATHER WINTER 1991 (Fig. 1) CONTRASTING RAINFALL, COLD IN THE SOUTH-WEST OF THE SOUTH ISLAND Weather and Climate (1992) 12: 47-52 47 NEW ZEALAND WEATHER BRIEF REVIEW OF THE WEATHER (Fig. 1) CONTRASTING RAINFALL, COLD IN THE SOUTH-WEST OF THE SOUTH ISLAND An El Nino event (negative phase of the

More information

Streams. Water. Hydrologic Cycle. Geol 104: Streams

Streams. Water. Hydrologic Cycle. Geol 104: Streams Streams Why study streams? Running water is the most important geologic agent in erosion, transportation and deposition of sediments. Water The unique physical and chemical properties of water make it

More information

NEW ZEALAND WEATHER. BRIEF REVIEW OF WINTER AND SPRING 1990 WINTER 1990 (Fig. 1) Weather and Climate (1991) 11: 31-36

NEW ZEALAND WEATHER. BRIEF REVIEW OF WINTER AND SPRING 1990 WINTER 1990 (Fig. 1) Weather and Climate (1991) 11: 31-36 Weather and Climate (1991) 11: 31-36 31 NEW ZEALAND WEATHER BRIEF REVIEW OF WINTER AND SPRING 1990 WINTER 1990 (Fig. 1) Winter 1990 was very dry in the far south. Northeasterlies brought sunny conditions

More information

New Zealand Climate Update No 223, January 2018 Current climate December 2017

New Zealand Climate Update No 223, January 2018 Current climate December 2017 New Zealand Climate Update No 223, January 2018 Current climate December 2017 December 2017 was characterised by higher than normal sea level pressure over New Zealand and the surrounding seas. This pressure

More information

,Baynes Lake. TO...?&.?...A 2...KO.?'!!&... Sr. *logical Engineer

,Baynes Lake. TO...?&.?...A 2...KO.?'!!&... Sr. *logical Engineer > i evernment OF BRITISH COLUMBIA a TO...?&.?...A 2....KO.?'!!&... Sr. *logical Engineer... Grou,,water. Section Hydrology Division Wat.er... In~.~s.tiga.ti.On.s..Branck.... 5 u BJECT...C;.roun.dw.ater...Snve

More information

Module 10: Resources and Virginia Geology Topic 4 Content: Virginia Geology Notes

Module 10: Resources and Virginia Geology Topic 4 Content: Virginia Geology Notes Virginia is composed of a very diverse landscape that extends from the beaches and barrier islands all of the way to the highly elevated Appalachian Plateau. Geologists have discovered ancient shallow

More information

Chapter 3 Erosion and Deposition. The Big Question:

Chapter 3 Erosion and Deposition. The Big Question: Chapter 3 Erosion and Deposition The Big Question: 1 Design a way to represent and describe the 4 types of mass movement. You may use pictures, diagrams, list, web, chart, etc 2 Chapter 3: Erosion and

More information

A journey through the earth history of Australia s Coastal Wilderness Part 3 The backdrop - a 70 million year old plain

A journey through the earth history of Australia s Coastal Wilderness Part 3 The backdrop - a 70 million year old plain A journey through the earth history of Australia s Coastal Wilderness Part 3 The backdrop - a 70 million year old plain Monaro Plain 3. The Cretaceous Plain The western horizon behind Moruya is dominated

More information

CHAPTER 28. PHYSIOGRAPHY Cook Inlet Drainages

CHAPTER 28. PHYSIOGRAPHY Cook Inlet Drainages PEBBLE PROJECT ENVIRONMENTAL BASELINE DOCUMENT 2004 through 2008 CHAPTER 28. PHYSIOGRAPHY Cook Inlet Drainages PREPARED BY: Knight Piésold Ltd. PHYSIOGRAPHY COOK INLET DRAINAGES TABLE OF CONTENTS TABLE

More information

GEOLOGY MEDIA SUITE Chapter 5

GEOLOGY MEDIA SUITE Chapter 5 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 5 Sedimentation Rocks Formed by Surface Processes 2010 W.H. Freeman and Company Mineralogy of sandstones Key Figure 5.12

More information

New Zealand ecoregions

New Zealand ecoregions New Zealand ecoregions a classification for use in stream conservation and management DEPARTMENT OF CONSERVATION TECHNICAL SERIES No. 11 Jon S. Harding and Michael J. Winterbourn Published by Department

More information

COSMORPHOLOGY - May 2009

COSMORPHOLOGY - May 2009 Name COSMORPHOLOGY - May 2009 Geologic landforms Purpose: By studying aerial photographs you will learn to identify different kinds of geologic features based on their different morphologies and learn

More information

NIWA Outlook: April June 2019

NIWA Outlook: April June 2019 April June 2019 Issued: 28 March 2019 Hold mouse over links and press ctrl + left click to jump to the information you require: Outlook Summary Regional predictions for the next three months Northland,

More information

e Southeast Region of the United Statesg

e Southeast Region of the United Statesg e Southeast of the United Statesg - relative location: the location of a place in relation to another place (i.e. south, near, bordering, next to) - barrier islands: located off the southeast coast of

More information

Summary. Streams and Drainage Systems

Summary. Streams and Drainage Systems Streams and Drainage Systems Summary Streams are part of the hydrologic cycle and the chief means by which water returns from the land to the sea. They help shape the Earth s surface and transport sediment

More information

Sediment and sedimentary rocks Sediment

Sediment and sedimentary rocks Sediment Sediment and sedimentary rocks Sediment From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) Types of sedimentary rocks (clastic, chemical and organic) Sedimentary

More information

W he natural resources of Adams

W he natural resources of Adams Above: Houghton Rock, Town of Adams. Following Page: "The Hole in the Rock" on Rattlesnake Mound--both remnants of rock formed by ancient seas hundreds of millions of year5 ago. (Courtesy, H.H. Bennett

More information

Chapter 2. Wearing Down Landforms: Rivers and Ice. Physical Weathering

Chapter 2. Wearing Down Landforms: Rivers and Ice. Physical Weathering Chapter 2 Wearing Down Landforms: Rivers and Ice Physical Weathering Weathering vs. Erosion Weathering is the breakdown of rock and minerals. Erosion is a two fold process that starts with 1) breakdown

More information

The Effect of Weather, Erosion, and Deposition in Texas Ecoregions

The Effect of Weather, Erosion, and Deposition in Texas Ecoregions The Effect of Weather, Erosion, and Deposition in Texas Ecoregions 7.8B: I can analyze the effects of weathering, erosion, and deposition on the environment in ecoregions of Texas Weathering The breakdown

More information

Teacher s Pack Key Stage 3 GEOGRAPHY

Teacher s Pack Key Stage 3 GEOGRAPHY Teacher s Pack Key Stage 3 GEOGRAPHY Geography Key Stage 3 Fieldwork Worksheet Rivers: 1. Is the water fresh or salty? (test its resistance or specific gravity) 2. Do you know where the water is coming

More information

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water.

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water. Aggradation raising of the streambed by deposition that occurs when the energy of the water flowing through a stream reach is insufficient to transport sediment conveyed from upstream. Alluvium a general

More information

SAMPLE Earth science BOOSTERS CARDS. Copyright Regents Boosters 2013 EARTH SCIENCE BOOSTERS 1

SAMPLE Earth science BOOSTERS CARDS. Copyright Regents Boosters 2013 EARTH SCIENCE BOOSTERS 1 SAMPLE Earth science BOOSTERS CARDS Copyright Regents Boosters 2013 EARTH SCIENCE BOOSTERS 1 Here is a selection from Earth Science Boosters on Deposition. Copyright Regents Boosters 2013 EARTH SCIENCE

More information

2.6.3 Forms of standing open water

2.6.3 Forms of standing open water Fig. 33 Distinctive forms created by oioi restiad rushland, New River Estuary, Southland. These pikelets are elevating themselves above the level of mudflats and tidal channels as the rushes trap sediment.

More information

Erosion and Deposition

Erosion and Deposition Erosion and Deposition Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. Water erosion begins when runoff from rainfall flows in a thin layer over the land

More information

NATURAL RIVER. Karima Attia Nile Research Institute

NATURAL RIVER. Karima Attia Nile Research Institute NATURAL RIVER CHARACTERISTICS Karima Attia Nile Research Institute NATURAL RIVER DEFINITION NATURAL RIVER DEFINITION Is natural stream of water that flows in channels with ih more or less defined banks.

More information

1/6/ th Grade Earth s Surface. Chapter 3: Erosion and Deposition. Lesson 1 (Mass Movement)

1/6/ th Grade Earth s Surface. Chapter 3: Erosion and Deposition. Lesson 1 (Mass Movement) Lesson 1 (Mass Movement) 7 th Grade Earth s Surface Chapter 3: Erosion and Deposition Weathering the chemical and physical processes that break down rock at Earth s surface Mechanical weathering when rock

More information

LANDFORM REGIONS IN CANADA. Classroom Notes and Descriptions

LANDFORM REGIONS IN CANADA. Classroom Notes and Descriptions LANDFORM REGIONS IN CANADA Classroom Notes and Descriptions Landform Regions in Canada There are eight distinct landforms in Canada: Western Cordillera Region Interior Plains Canadian Shield Hudson Bay

More information

MARINE GEOLOGY & GEOGRAPHY

MARINE GEOLOGY & GEOGRAPHY MARINE GEOLOGY & GEOGRAPHY Bathymetry BATHYMETRY BATHYMETRY THE UNDERWATER EQUIVALENT TO TOPOGRAPHY THE STUDY OF WATER DEPTH A BATHYMETRIC MAP SHOWS FLOOR RELIEF OR TERRAIN AS CONTOUR LINES Bathymetry

More information

Geography is the study of the earth, it s land, it s people and it s environments. When you study geography, you should be looking at five distinct

Geography is the study of the earth, it s land, it s people and it s environments. When you study geography, you should be looking at five distinct I.N pg. 9 Geography is the study of the earth, it s land, it s people and it s environments. When you study geography, you should be looking at five distinct themes. LOCATION PLACE REGION MOVEMENT HUMANENVIRONMENTAL

More information

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b.

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b. ES 105 Surface Processes I. Hydrologic cycle A. Distribution 1. +97% in oceans 2. >3% surface water a. +99% surface water in glaciers b. >1/3% liquid, fresh water in streams and lakes~1/10,000 of water

More information

24.0 Mineral Extraction

24.0 Mineral Extraction Chapter 24 - Mineral Extraction 24.0 Mineral Extraction 24.1 Introduction Apart from gravel, sand, rock, limestone and salt extraction in relatively small quantities mineral extraction is not a strong

More information

Weathering Erosion and Deposition. Presented by Kesler Science

Weathering Erosion and Deposition. Presented by Kesler Science Weathering Erosion and Deposition Presented by Kesler Science Essential Questions: 1. What effects do weathering, erosion, and deposition have on the environment in ecoregions? Weathering Chemical and

More information

Water Erosion (pages )

Water Erosion (pages ) Water Erosion (pages 272 281) Runoff and Erosion (pages 273 274) Key Concept: Moving water is the major agent of the erosion that has shaped Earth s land surface. Falling raindrops can loosen and pick

More information

Chapter 6, Part Colonizers arriving in North America found extremely landscapes. It looked different to region showing great.

Chapter 6, Part Colonizers arriving in North America found extremely landscapes. It looked different to region showing great. Social Studies 9 Unit 1 Worksheet Chapter 6, Part 1. 1. Colonizers arriving in North America found extremely landscapes. It looked different to region showing great. 2. The Earth is years old and is composed

More information

Chapter 2 Planet Earth

Chapter 2 Planet Earth Chapter 2 Planet Earth Section Notes Earth and the Sun s Energy Water on Earth The Land Close-up The Water Cycle World Almanac Major Eruptions in the Ring of Fire Quick Facts Chapter 2 Visual Summary Video

More information

THE TOPOGRAPHY AND GEOLOGY OF THE GRAND PORTAGE^

THE TOPOGRAPHY AND GEOLOGY OF THE GRAND PORTAGE^ THE TOPOGRAPHY AND GEOLOGY OF THE GRAND PORTAGE^ Few areas within the boundaries of Minnesota are of greater historical interest than the region surrounding the Grand Portage, which long before the first

More information

Defining the Limit of Regulated Areas. C.1 Defining the River or Stream Flood Hazard 138. C.2 Defining the River or Stream Erosion Hazard 139

Defining the Limit of Regulated Areas. C.1 Defining the River or Stream Flood Hazard 138. C.2 Defining the River or Stream Erosion Hazard 139 C.1 Defining the River or Stream Flood Hazard 138 C.2 Defining the River or Stream Erosion Hazard 139 C.3 Defining Watercourses 141 C.4 Defining the Lake Ontario Shoreline Flood, Erosion and Dynamic Beach

More information

New Zealand Seasonal Fire Danger Outlook 2018/19

New Zealand Seasonal Fire Danger Outlook 2018/19 New Zealand Seasonal Fire Danger Outlook 2018/19 ISSUE: South Island, January 2019 Current fire danger situation & outlook: to moderate fire dangers and fire climate severity currently exist in most areas

More information

Page 1. Name:

Page 1. Name: Name: 1) Which event is the best example of erosion? dissolving of rock particles on a limestone gravestone by acid rain breaking apart of shale as a result of water freezing in a crack rolling of a pebble

More information

Name: Date: Class: Louisiana: Our History, Our Home Chapter 1: Louisiana s Geography - Section 2: Natural Regions Guided Reading

Name: Date: Class: Louisiana: Our History, Our Home Chapter 1: Louisiana s Geography - Section 2: Natural Regions Guided Reading Instructions: Read the section and complete each item with words from the passages in this section. 1. The diversity of Louisiana s can surprise residents and visitors alike. 2. Physical geography is concerned

More information

EROSIONAL FEATURES. reflect

EROSIONAL FEATURES. reflect reflect Have you ever looked at the land around you and wondered what processes shaped what you see? Perhaps you see mountains, valleys, rivers, or canyons. Do you know how long these geologic features

More information

New Zealand Climate Update No 222, November 2017 Current climate November 2017

New Zealand Climate Update No 222, November 2017 Current climate November 2017 New Zealand Climate Update No 222, November 2017 Current climate November 2017 November 2017 was characterised by higher than normal sea level pressure over New Zealand and the surrounding seas, particularly

More information

Developed in Consultation with Florida Educators

Developed in Consultation with Florida Educators Developed in Consultation with Florida Educators Table of Contents Next Generation Sunshine State Standards Correlation Chart... 7 Benchmarks Chapter 1 The Practice of Science...................... 11

More information

Final Exam. Running Water Erosion and Deposition. Willamette Discharge. Running Water

Final Exam. Running Water Erosion and Deposition. Willamette Discharge. Running Water Final Exam Running Water Erosion and Deposition Earth Science Chapter 5 Pages 120-135 Scheduled for 8 AM, March 21, 2006 Bring A scantron form A calculator Your 3 x 5 paper card of formulas Review questions

More information

The Agents of Erosion

The Agents of Erosion The Agents of Erosion 1. Erosion & Deposition 2. Water 3. Wind 4. Ice California Science Project 1 1. Erosion and Deposition Erosion is the physical removal and transport of material by mobile agents such

More information

fauna ecological unit

fauna ecological unit fauna The forested area of this site was surveyed by the NZ Wildlife Service, Fauna Survey Unit in 1977 (SSBI Q08/H012); however, no fauna observations were made. This site is dominated by a relatively

More information

Sutherland et al: Glacial chronology, NZ

Sutherland et al: Glacial chronology, NZ Orbital forcing of mid-latitude southern hemisphere glaciation since 100 ka, inferred from cosmogenic nuclide ages of moraine boulders from the Cascade Plateau, southwest New Zealand Rupert Sutherland

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Washover sandsheets are often found in low-lying coastal embayment s (Sedgwick and Davis 2003). Washover deposition of marine sand is usually attributed to storm activity

More information

Wednesday, November 15, 2017

Wednesday, November 15, 2017 Wednesday, November 15, 2017 Northern Europe: Physical Geography Objective: Locate and describe the various traditional regions of Western Europe. Outline how the physical geography varies from region

More information

NEW ZEALAND WEATHER. BRIEF REVIEW OF THE WEATHER WINTER 1988 (Fig. 1)

NEW ZEALAND WEATHER. BRIEF REVIEW OF THE WEATHER WINTER 1988 (Fig. 1) Weather and Climate (1989) 9: 29-36 29 NEW ZEALAND WEATHER BRIEF REVIEW OF THE WEATHER WINTER 1988 (Fig. 1) Rainfall for winter was above normal in central highcountry regions of the North Island, Wanganui,

More information

Surface Water and Stream Development

Surface Water and Stream Development Surface Water and Stream Development Surface Water The moment a raindrop falls to earth it begins its return to the sea. Once water reaches Earth s surface it may evaporate back into the atmosphere, soak

More information

Chapter 32. Australia & New Zealand

Chapter 32. Australia & New Zealand Chapter 32 Australia & New Zealand Lesson 1: Physical Geography of Australia & New Zealand Landforms Australia lies between the Pacific and Indian Oceans in the Southern Hemisphere. Although an island,

More information

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement Surface Water SECTION 9.1 Surface Water Movement In your textbook, read about surface water and the way in which it moves sediment. Complete each statement. 1. An excessive amount of water flowing downslope

More information

CANADA S LANDFORM REGIONS

CANADA S LANDFORM REGIONS CANADA S LANDFORM REGIONS Canada s Regions Canada is divided into Eight major regions. A Region is an area that is defined on the basis of the presence or absence of certain characteristics: Age of rock

More information

Lowland Glaciation North Wales

Lowland Glaciation North Wales Lowland Glaciation North Wales Background Although there have been many glaciations and advances in ice, the most significant for this are was the Dimlington Stadial which was a period of glacial advance

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 7 Glaciers, Desert, and Wind 7.1 Glaciers Types of Glaciers A glacier is a thick ice mass that forms above the snowline over hundreds or thousands of

More information

New Zealand Seasonal Fire Danger Outlook 2017/18

New Zealand Seasonal Fire Danger Outlook 2017/18 New Zealand Seasonal Fire Danger Outlook 2017/18 ISSUE: South Island, March 2018 Current fire danger situation & outlook: Looking back at February, it was a very unsettled month. The tropics directed New

More information

Did You Ever Wonder? Landforms, C52. Slow Changes on Land, C58. Fast Changes on Land, C68

Did You Ever Wonder? Landforms, C52. Slow Changes on Land, C58. Fast Changes on Land, C68 \ - i -Vt1 t _ 9 \ "» y \R Landforms, C52 Slow Changes on Land, C58 Fast Changes on Land, C68 w -4 Did You Ever Wonder? What forces shaped these rocks? Wind and rain shaped them over thousands of years.

More information

Physical Geology, 15/e

Physical Geology, 15/e Lecture Outlines Physical Geology, 15/e Plummer, Carlson & Hammersley Deserts & Wind Action Physical Geology 15/e, Chapter 13 Deserts Desert any arid region that receives less than 25 cm of precipitation

More information

Map Makers 2nd Grade

Map Makers 2nd Grade Map Makers 2nd Grade Students use mapmaking to develop science and social studies concepts and practice map skills while developing a sense of place and a connection to the property. Concepts of landforms,

More information

UNIT 2 WARM UP. List the OCEANS. Bonus: Name the Largest LAKE on Earth

UNIT 2 WARM UP. List the OCEANS. Bonus: Name the Largest LAKE on Earth UNIT 2 WARM UP List the OCEANS Bonus: Name the Largest LAKE on Earth Land Forms Land Mountain Hill Cliff Butte Mesa Plateau Cave Volcano Desert Plains Prairie Steppe Marsh Swamp Tundra Glacier Continent

More information

NIWA Outlook: March-May 2015

NIWA Outlook: March-May 2015 March May 2015 Issued: 27 February 2015 Hold mouse over links and press ctrl + left click to jump to the information you require: Overview Regional predictions for the next three months: Northland, Auckland,

More information

Erosion and Deposition

Erosion and Deposition Erosion and Deposition The Erosion-Deposition Process What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with

More information

Erosion and Deposition

Erosion and Deposition CHAPTER 3 LESSON 2 Erosion and Deposition Landforms Shaped by Water and Wind Key Concepts What are the stages of stream development? How do water erosion and deposition change Earth s surface? How do wind

More information

Percentage of normal rainfall for August 2017 Departure from average air temperature for August 2017

Percentage of normal rainfall for August 2017 Departure from average air temperature for August 2017 New Zealand Climate Update No 219, August 2017 Current climate August 2017 Overall, mean sea level pressure was lower than normal over and to the west of New Zealand during August while higher than normal

More information

Chapter 21 Southwest Asia: Harsh & Arid Lands

Chapter 21 Southwest Asia: Harsh & Arid Lands Name Hour Chapter 21 Southwest Asia: Harsh & Arid Lands Essential Question: How has the physical geography of Asia influenced the development of these regions (i.e. history, population distribution, &

More information