Mitigation measures: stabilization works

Size: px
Start display at page:

Download "Mitigation measures: stabilization works"

Transcription

1 Intensive Course in Quantitative Landslide Risk Assessment and Risk management Mitigation measures: stabilization works E.E. Alonso Department of Geotechnical Engineering and Geosciences UPC, Barcelona September 3rd, Barcelona

2 A NOTE ON SAFETY FACTOR The discussion on safety factor is largely based on the existing knowledge of relevant strength parameters The better and more reliable the knowledge of shear strength parameters (and other relevant aspects: geometry; hydrologic regime), the lower can be the adopted SF SF= 1.5 (= τ rot /τ eq ) is a reference value for geotechnical projects for design conditions (limited knowledge of real conditions) Substantially lower SF s are acceptable in some occasions (magnitude of the landslide, probability of occurrence of extreme conditions and others

3 GLOBAL SAFETY FACTORS FOR SLIDE MITIGATION Case Safety factor, F Slides of relatively small volume whose failure is likely to produce: light damage 1.25 medium damage 1.35 high damage 1.5 Slides of relatively large volume whose failure is likely to produce: light damage 1.1 medium damage 1.15 high damage 1.2 An alternative to global safety factors is to work with partial safety factors. Typical values are: Fc = for cohesion (or undrained strength) Ftanφ = for friction (tanφ ) These values are similar to those proposed in table 2.1, hypothesis C, of the Eurocode 7.

4 STABILIZATION METHODS 1.CHANGES IN GEOMETRY 2.RETAINING STRUCTURES 3.DRAINAGE 4.PASSIVE PILES 5.SOIL NAILING 6.OTHER

5 1.CHANGES IN GEOMETRY

6 Two-block slide. Equilibrium for a purely frictional contact

7 Change in block weight ( w). Removed from upper part (w 1 ) or added to lower part (w 2 ) Best strategy: the fastest increase in R

8 Cortes landslide Location of the slide: Left margin of Júcar River. Valencia province Immediately upstream of Cortes dam: a 100 m high concrete arch dam The left margin of Júcar river according to the geological report of the dam project:

9 CORTES SLOPE AT THE BEGINNING OF DAM CONSTRUCTION

10 Plan of the site

11 Silos and auxiliary installations in upper part of landslide

12 QUARRY EXCAVATION. POSITION OF INCLINOMETERS

13 Measured deformations of inclinometer P-2-2 Displacements of top of inclinometer P-6-1 and measured rainfall intensities for individual storms in January 1998 Note: - Rigid body motion of upper 65 m - Insensitivity to relatively heavy rainfall

14 A representative profile of the slide along Profile P-6 Dip of marl layer of upper region: 25º m of cover in this area Intermediate zone: marl layer buried by cracked limestone (70 m thick). Uniform dip of marl layer: 16º- 17º Narrow lower zone. Horizontal marl layer

15 The marl: Low porosity (n= 0.25), low-plasticity clay (w l = 20%-28%; w p = 13%-14%) High consistency (w = 16%) Results of drained direct shear tests. Two complete strain reversal cycles to reach residual conditions CU triaxial tests performed on core specimens (σ 3 = 0.2; 0.45; 0.7 MPa) c = 0; φ = 20º-21º

16 BACK ANALYSIS The slide was assumed to be a reactivated slide (induced by quarry excavations) Therefore the outcome of the analysis should be the residual friction angle No indications of water table in the cracked limestone layer The marl layer was saturated Limit equilibrium analysis: Carter s method: equivalent to simplified Bishop If phreatic surface on top of marl layer: φ = 17.7º If zero water pressure in marl layer: φ = 16º These values were accepted as more reliable than the values derived from tests (despite the coincidence of direct and triaxial shear tests).

17 Influence line resulting from 10 MN load travelling Profile P-6 A convenient stabilizing method is to displace weight from the upper section to the lower one m3 initially planned

18 Profile P-6 after stabilization Safety factors achieved: 1.3 (average of the analysis of seven cross-sections) 1.19 for rapid drawdown conditions assuming a rapid reduction of water level from elevation 326m to elevation 320m Considered low by dam owners!

19 Additional stability procedures analyzed Drainage of marl layer: Slight effect and uncertainties Anchoring: Very expensive due to the extremely long anchor length Additional weigth transfer Final total excavated volume: m 3 RESULTS

20 FINAL EXCAVATION DEFINED IN PROFILE P-6

21 Displacement records of inclinometers P-22-1, P-2-1 and P-2-2

22

23 Aerial view of the landslide after stabilization

24

25

26

27

28

29 2. RETAINING STRUCTURES

30 Stabilizing a simple planar landslide The stabilizing force increases linearly with the length of the slide Note the high stabilizing forces for an increment of 0.1 of SF

31 Multiple walls

32 Concrete reinforced walls Gravity wall Wall anchored to firm stratum Counterfort wall eventually anchored

33 Anchored pile wall

34 Case study: Multiple wall failure in Les Costes, Andorra Upper wall Traza aproximada de la sección AA Intermediate wall Lower wall Local instability? (just wall overturning) Global instability (controlled also by the natural slope)?

35 Les Costes, Andorra 200 saturada: 4 µm/min (una probeta multi-etapas) seca: 25 µm/min (dos probetas) The walls before the failure Tensión tangencial, τ (kpa) φ' = 40 o φ' = 35 o m 3.5 m 3m 2m 0.7 m Tensión normal, σ n (kpa) 7m Conjunto de viviendas Houses Fase 1 3m 1 1 3m 2m 3m 0.5 m 2m 3m 0.7 m

36 Les Costes, Andorra Intermediate wall after overturning

37 Les Costes, Andorra. The natural soil γ d = 21 kn/m3 c = 13,1 kpa φ = 38º

38 Les Costes, Andorra Simulation of the construction process. Drained analysis Stability of natural slope. Incremental shear strains. SF = 1.35 Stability of natural slope after first excavations. Incremental shear strains. SF = 1.02

39 Les Costes, Andorra Simulation of the construction process Calculated deformations (x 200) after construction of houses and lower wall Failure mechanism in a (c,φ) reduction calculation. SF = 1.15

40 Les Costes, Andorra Simulation of the construction process Calculated deformations (x 200) after construction of intermediate wall Plastified areas. Note active states against walls

41 Les Costes, Andorra Critical failure mechanism after construction of intermediate wall. SF = 1.18

42 Les Costes, Andorra Simulation of the construction process Calculated deformations (x 200) after construction of upper wall Plastified areas. Note active states against walls

43 Les Costes, Andorra Simulation of the construction process Critical failure mechanism after construction of upper wall. SF = 1.17

44 Les Costes, Andorra The failure mechanism

45 Les Costes, Andorra Stabilization works. Anchored micropile wall. SF = 1.35 (long term)

46 Flow of soil under the footing of intermediate wall

47 Case study: Multiple wall failure in Les Costes, Andorra CONCLUSIONS The lower wall was probably the first to fail Failure of the lower wall can be a attributed to a general slope failure The intermediate micropile foundation was not enough to limit the earth pressures against the lower wall The triggering mechanism was probably some excess pore pressures, induced by rain, associated with the wall barrier effect

48 3. DRAINAGE

49 Drainage trenches FILL

50 Californian drains. Charts for design (Desnouveaux et al, 1990)

51 Deep drainage (Collota et al, 1988)

52 Drilling rig Courtesy of Rodio Spain

53

54 Case study: slopes in Guadalquivir blue/brown clays. El Carambolo. Sevilla 10 m spacing; D = 1.5 m

55 Case study: slopes in Guadalquivir blue/brown clays. El Carambolo. Sevilla Botanic garden

56 Case study: slopes in Guadalquivir blue/brown clays. El Carambolo. Sevilla Terraces built in upper slope to remove weight

57 Case study: slide in Sort, Lleida. Ancient landslide reactivated by road cut.

58 Case study: slide in Sort, Lleida. Ancient landslide reactivated by road cut. Stabilization design

59 Case study: slide in Sort, Lleida. Ancient landslide reactivated by road cut. Stabilization design

60 Case study: slide in Sort, Lleida. Ancient landslide reactivated by road cut.

61 Case study: slide in Sort, Lleida. Ancient landslide reactivated by road cut. Evolution of slide displacement of a surface point

62 Case study: slide in Sort, Lleida. Ancient landslide reactivated by road cut. Flow rates measured in drainage system of Sort slide

63 Case study: slide in Sort, Lleida. Ancient landslide reactivated by road cut. Anchoring the slope toe

64 Case study: Guardia de Tremp, Lleida. Unstable Garumniense formation reactivated by road embankments

65 Case study: Guardia de Tremp, Lleida. Unstable Garumniense formation reactivated by road embankments

66 Case study: Guardia de Tremp, Lleida. Unstable Garumniense formation reactivated by road embankments

67 Case study: Guardia de Tremp, Lleida. Unstable Garumniense formation reactivated by road embankments

68 Case study: Guardia de Tremp, Lleida. Unstable Garumniense formation reactivated by road embankments

69 4. PASSIVE PILES

70 Deep circular diaphragm wall Protection of deep foundations. Bridge for the High Speed train MAD-BCN. S. Sadurní

71 S. Sadurní slide. Barcelona Slide direction Plan view of sliding area and two railway bridges crossing it

72 S. Sadurní slide. Barcelona. Cross section

73 S. Sadurní slide. Barcelona Well drainage at the slide head

74 S. Sadurní slide. Barcelona RENFE railway bridge piles. Some piles are protected by a wall enclosure

75 S. Sadurní slide. Barcelona Anchored walls protecting piles 5 and 6 of RENFE bridge

76 S. Sadurní slide. Barcelona Pilas RENFE sin proteger FS= Initial Landslide. Unprotected piles of RENFE railway bridge Backanalysis: residual friction angle of lower marly clays (Miocene). φ res = 20º

77 Forces against row of piles in a moving soil (Ito and Matsui, 1975) SECTION E 2 = σ αφ 1 αφ ( ', D1, d) = N φ F( z) '( z) ( ', D, d) 2 π φ ' N φ = tan ( + ) 4 2 (Drained solution) N 2 φ tan( φ ) + Nφ 1 D 1 A= D1 D 2 1 Ae D D2 = D1 d

78 S. Sadurní slide. Barcelona Summary of calculations Φ Fill and gravel: Φ clay: D 1 ; distance among pile axis (m) D 2 ; internal distance (m) d; diameter of protection structure (m) D 1 /d Total force against protection structure (KN) Average stabilizing force on the landslide (KN/m) 35º 20º

79 S. Sadurní slide. Barcelona Safety Factor of Landslide. Protected piles of RENFE railway bridge Pilas RENFE con protección FS= SF = 1.208

80 Force against a pile in a row. Pile diameter : 2m. Effect of distance among pile axis F F Empuje medio en talud (kn/m) Carga por pilote (kn) Separación entre ejes (m)

81 S. Sadurní slide. Barcelona Safety Factor of Landslide. Protected piles on RENFE and AVE railway bridges Pilas RENFE y AVE con protección FS= SF = 1.33

82 S. Sadurní slide. Barcelona Protected shaft 16 Suggested distribution of protection piles Rigid cap on piles 10 d 25 m long piles. D = 2m Eje y (m) c c Sliding surface at 14 m depth Winkler model for the embedment depth (11m) 2 0 a b a Eje x (m) Landslide displacement

83 Structure of protection piles Calculated bending moments of protection piles

84 Calculated axial forces on protection piles Piles in extension (max: 7.5 MN) Pile in compression(16 MN)

85 S. Sadurní slide. Barcelona Final design of stabilizing structures at the foot of the landslide Slide direction

86 Final remarks 1. There are no single rules to select the appropriate stabilization method. The following aspects should be considered: Type of slide Importance of facilities affected Volume of the slide and intensity of stabilization forces Time available to design and implement the comforting action Cost

87 Final remarks 2. Stabilizing slopes remains an art with strong empirical basis In rotational slides, unloading the upper part is probably the most effective method. Check instability upwards In purely translational slides changes in geometry are not effective. Deep or surface drainage is effective and suitable in almost any case. It requires acceptable soil permeability and the possibility of gravity drainage. Passive piles are an attractive solution in surface to medium depth slides when bending moments induced on piles are moderate. They are also useful in slides controlled by thin plastic layers difficult to locate and drain. Anchored solutions provides large active retaining forces. Tend to be expensive. Limited information on its long term behavior

88 Final remarks 3. Very often mixed procedures are designed for a given landslide. They may benefit from a complementary action among them. Thank you for your attention!

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

Climate effects on landslides

Climate effects on landslides GEORAMP ONE DAY SYMPOSIUM Climate effects on landslides E. E. Alonso, M. Sondón, N. M. Pinyol Universitat Politècnica de Catalunya October 14th, 2016. UPC, Barcelona Infiltration (evaporation) and slope

More information

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test.

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (d) COMPRESSIBILITY AND CONSOLIDATION D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (a) Plot the e - σ curve. (b)

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 19 Module 5: Lecture -1 on Stability of Slopes Contents Stability analysis of a slope and finding critical slip surface; Sudden Draw down condition, effective stress and total stress analysis; Seismic

More information

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Topic Outline LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Types of retaining structures Lateral earth pressure Earth pressure at rest Rankine s Theory Coulomb s Theory Cullman s graphic solution Braced

More information

INTI COLLEGE MALAYSIA

INTI COLLEGE MALAYSIA EGC373 (F) / Page 1 of 5 INTI COLLEGE MALAYSIA UK DEGREE TRANSFER PROGRAMME INTI ADELAIDE TRANSFER PROGRAMME EGC 373: FOUNDATION ENGINEERING FINAL EXAMINATION : AUGUST 00 SESSION This paper consists of

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE 07 3.0 ANALYSIS AND DESIGN OF RETAINING STRUCTURES LEARNING OUTCOMES Learning outcomes: At the end of this lecture/week the students would be able to: Understand

More information

1.8 Unconfined Compression Test

1.8 Unconfined Compression Test 1-49 1.8 Unconfined Compression Test - It gives a quick and simple measurement of the undrained strength of cohesive, undisturbed soil specimens. 1) Testing method i) Trimming a sample. Length-diameter

More information

Modelling Progressive Failure with MPM

Modelling Progressive Failure with MPM Modelling Progressive Failure with MPM A. Yerro, E. Alonso & N. Pinyol Department of Geotechnical Engineering and Geosciences, UPC, Barcelona, Spain ABSTRACT: In this work, the progressive failure phenomenon

More information

Internal C Unit Dilatanc y

Internal C Unit Dilatanc y 2 Grimsby Sub was not at any time definitively established. The preliminary analysis provided by Thurber Engineering Ltd indicates the slope should be stable with a factor of safety of 1.23 for a deep

More information

CE 4780 Hurricane Engineering II. Section on Flooding Protection: Earth Retaining Structures and Slope Stability. Table of Content

CE 4780 Hurricane Engineering II. Section on Flooding Protection: Earth Retaining Structures and Slope Stability. Table of Content CE 4780 Hurricane Engineering II Section on Flooding Protection: Earth Retaining Structures and Slope Stability Dante Fratta Fall 00 Table of Content Introduction Shear Strength of Soils Seepage nalysis

More information

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland.

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland. EN 1997 1: Sections 3 and 6 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 3 Geotechnical Data Section 6 Spread Foundations Trevor L.L. Orr

More information

(Refer Slide Time: 01:15)

(Refer Slide Time: 01:15) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 56 Stability analysis of slopes II Welcome to lecture two on stability analysis of

More information

Slope Stability. loader

Slope Stability. loader Slope Stability Slope Stability loader Lower San Fernando Dam Failure, 1971 Outlines Introduction Definition of key terms Some types of slope failure Some causes of slope failure Shear Strength of Soils

More information

Rock Slope Analysis Small and Large Scale Failures Mode of Failure Marklands Test To establish the possibility of wedge failure. Plane failure is a special case of wedge failure. Sliding along

More information

Introduction to Soil Mechanics

Introduction to Soil Mechanics Introduction to Soil Mechanics Sela Sode and Colin Jones WILEY Blackwell Contents Preface Dedication and Acknowledgments List of Symbols Soil Structure 1.1 Volume relationships 1.1.1 Voids ratio (e) 1.1.2

More information

Comparison of shear pile force and moment in slippage reinforced with shear pile Mona Mohamadi 1, Abolfazl Eslami, Farhad Nabizade 1 1. Department of Technology, Guilan University, Iran. Department of

More information

Landslide stability analysis using the sliding block method

Landslide stability analysis using the sliding block method Landslide stability analysis using the sliding block method E. Lino, R. Norabuena, M. Villanueva & O. Felix SRK Consulting (Peru) S.A., Lima, Peru A. Lizcano SRK Consulting (Vancouver) S.A., British Columbia,

More information

Project: Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free Earth Support In accordance Eurocode 7.

Project: Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free Earth Support In accordance Eurocode 7. App'd by Construction Stages Name Term Objects present in this stage Stage 1 Long Wall 1 (Generated) (Generated) On retained side: Ground 1 (Generated), Borehole 1 (Generated), On excavated side: Excavation

More information

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room 2017 Soil Mechanics II and Exercises Final Exam 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room Attention: The exam consists of five questions for which you are provided with five answer sheets. Write

More information

3/8/17. #20 - Landslides: Mitigation and Case Histories. Questions for Thought. Questions for Thought

3/8/17. #20 - Landslides: Mitigation and Case Histories. Questions for Thought. Questions for Thought #20 - Landslides: Mitigation and Case Histories Web Exercise #3 (Volcanoes) Due Wednesday There is a 2-point penalty for every day the assignment is late. Exam 1 Scores Scores and exam key are posted Vaiont

More information

Deformation And Stability Analysis Of A Cut Slope

Deformation And Stability Analysis Of A Cut Slope Deformation And Stability Analysis Of A Cut Slope Masyitah Binti Md Nujid 1 1 Faculty of Civil Engineering, University of Technology MARA (Perlis), 02600 Arau PERLIS e-mail:masyitahmn@perlis.uitm.edu.my

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

Laboratory Testing Total & Effective Stress Analysis

Laboratory Testing Total & Effective Stress Analysis SKAA 1713 SOIL MECHANICS Laboratory Testing Total & Effective Stress Analysis Prepared by: Dr. Hetty Mohr Coulomb failure criterion with Mohr circle of stress 2 ' 2 ' ' ' 3 ' 1 ' 3 ' 1 Cot Sin c ' ' 2

More information

FINITE ELEMNT ANALYSIS FOR EVALUATION OF SLOPE STABILITY INDUCED BY CUTTING

FINITE ELEMNT ANALYSIS FOR EVALUATION OF SLOPE STABILITY INDUCED BY CUTTING FINITE ELEMNT ANALYSIS FOR EVALUATION OF SLOPE STABILITY INDUCED BY CUTTING Toshinori SAKAI Department of Environmental Science and Technology, Mie University, Tsu, Japan Tadatsugu TANAKA Graduate School

More information

Seismic Stability of Tailings Dams, an Overview

Seismic Stability of Tailings Dams, an Overview Seismic Stability of Tailings Dams, an Overview BY Gonzalo Castro, Ph.D., P.E. Principal International Workshop on Seismic Stability of Tailings Dams Case Western Reserve University, November 2003 Small

More information

INTRODUCTION TO STATIC ANALYSIS PDPI 2013

INTRODUCTION TO STATIC ANALYSIS PDPI 2013 INTRODUCTION TO STATIC ANALYSIS PDPI 2013 What is Pile Capacity? When we load a pile until IT Fails what is IT Strength Considerations Two Failure Modes 1. Pile structural failure controlled by allowable

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm 444 Chapter : Shear Strength of Soil Example. Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 5 mm Normal Shear force

More information

BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS

BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS CONTENTS: 1.0 INTRODUCTION 2.0 SHALLOW FOUNDATIONS 2.1 Design criteria 2.2 Spreading load 2.3 Types of foundations 2.4 Ground failure modes 2.5 Definitions

More information

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters.

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters. TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane Mohr-Coulomb Failure Criterion Laboratory Shear Strength Testing Direct Shear Test Triaxial Compression Test

More information

Soil strength. the strength depends on the applied stress. water pressures are required

Soil strength. the strength depends on the applied stress. water pressures are required Soil Strength Soil strength u Soils are essentially frictional materials the strength depends on the applied stress u Strength is controlled by effective stresses water pressures are required u Soil strength

More information

Chapter (12) Instructor : Dr. Jehad Hamad

Chapter (12) Instructor : Dr. Jehad Hamad Chapter (12) Instructor : Dr. Jehad Hamad 2017-2016 Chapter Outlines Shear strength in soils Direct shear test Unconfined Compression Test Tri-axial Test Shear Strength The strength of a material is the

More information

Liquefaction and Foundations

Liquefaction and Foundations Liquefaction and Foundations Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Seismic Design of Reinforced Concrete Buildings 26 30 November, 2012 What is Liquefaction? Liquefaction

More information

The Bearing Capacity of Soils. Dr Omar Al Hattamleh

The Bearing Capacity of Soils. Dr Omar Al Hattamleh The Bearing Capacity of Soils Dr Omar Al Hattamleh Example of Bearing Capacity Failure Omar Play the move of bearing Capacity failure The Philippine one Transcona Grain Silos Failure - Canada The Bearing

More information

LAND SLIDE STABILIZATION FOR A WORKING PLATFORM WHICH OCCURRED DURING EXCAVATION IN CLUJ-NAPOCA

LAND SLIDE STABILIZATION FOR A WORKING PLATFORM WHICH OCCURRED DURING EXCAVATION IN CLUJ-NAPOCA Bulletin of the Transilvania University of Braşov CIBv 05 Vol. 8 (57) Special Issue No. - 05 LAND SLIDE STABILIZATION FOR A WORKING PLATFORM WHICH OCCURRED DURING EXCAVATION IN CLUJ-NAPOCA I. ABRUDAN C.

More information

Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis

Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis Disaster Mitigation of Debris Flows, Slope Failures and Landslides 113 Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis Yasuo Ishii, 1) Hisashi Tanaka, 1) Kazunori

More information

Introduction to Geotechnical Engineering. ground

Introduction to Geotechnical Engineering. ground Introduction to Geotechnical Engineering ground 1 Typical Geotechnical Project Geo-Laboratory ~ for testing soil properties Design Office ~ for design & analysis construction site 2 Shallow Foundations

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

A design Model for Pile Walls Used to Stabilize Landslides

A design Model for Pile Walls Used to Stabilize Landslides WV DOH RP #121 Experimental and Analytical Behavior of Slide Suppressors Embedded in Bedrock A design Model for Pile Walls Used to Stabilize Landslides By: Tia Maria Richardson, P.E. Principal Investigator

More information

Design of RC Retaining Walls

Design of RC Retaining Walls Lecture - 09 Design of RC Retaining Walls By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Topics Retaining Walls Terms Related to Retaining Walls Types of Retaining

More information

Chapter (11) Pile Foundations

Chapter (11) Pile Foundations Chapter (11) Introduction Piles are structural members that are made of steel, concrete, or timber. They are used to build pile foundations (classified as deep foundations) which cost more than shallow

More information

30/03/2011. Eurocode 7 Today and Tomorrow. Ground structures t Slope and Retaining wall design in the Netherlands. Contents

30/03/2011. Eurocode 7 Today and Tomorrow. Ground structures t Slope and Retaining wall design in the Netherlands. Contents Eurocode 7 Today and Tomorrow Ground structures t Slope and Retaining wall design in the Netherlands Adriaan van Seters Hein Jansen Fugro Ingenieursbureau BV The Netherlands Contents Design Approach 3

More information

Safety Concepts and Calibration of Partial Factors in European and North American Codes of Practice

Safety Concepts and Calibration of Partial Factors in European and North American Codes of Practice Safety Concepts and Calibration of Partial Factors in European and North American Codes of Practice The Dutch approach on Geotechnical Design by Eurocode 7 Adriaan van Seters Hein Jansen Fugro GeoServices

More information

THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS

THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS Hideaki Nishida 1,Toshiaki Nanazawa 2, Masahiro Shirato 3, Tetsuya Kohno 4, and Mitsuaki Kitaura 5 Abstract One of the motivations

More information

Research on the Concrete Dam Damage and Failure Rule under the Action of Fluid-Solid Coupling

Research on the Concrete Dam Damage and Failure Rule under the Action of Fluid-Solid Coupling Research on the Concrete Dam Damage and Failure Rule under the Action of Fluid-Solid Coupling Ke Ming Sun, Moj Raj Bagale Liaoning Technical University, Fuxin, Liaoning province P.R China Emails of the

More information

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida SOIL SHEAR STRENGTH Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida What is shear strength Shear strength of a soil is the maximum internal resistance to applied shearing forces Why it is

More information

LANDSLIDES IN THE WHITE MOUNTAIN (GEOTECHNICAL STUDIES AND ENGINEERING TESTS)

LANDSLIDES IN THE WHITE MOUNTAIN (GEOTECHNICAL STUDIES AND ENGINEERING TESTS) J. Al Azhar University Gaza 2004, Vol. 7, NO. 2 P 15-26 LANDSLIDES IN THE WHITE MOUNTAIN (GEOTECHNICAL STUDIES AND ENGINEERING TESTS) Isam G. Jardaneh (1), Jalal Al-Dabeek (2), Abdel hakeem Al-Jawhari

More information

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University SHEET PILE WALLS Mehdi Mokhberi Islamic Azad University Lateral Support In geotechnical engineering, it is often necessary to prevent lateral soil movements. Tie rod Anchor Sheet pile Cantilever retaining

More information

4. Stability analyses

4. Stability analyses 4. CHAPTER 4 A slope is understood to be a portion of a natural hillside the original profile of which has been modified in a manner of relevance for its stability. A slide is considered to be a state

More information

Measurement of effective stress shear strength of rock

Measurement of effective stress shear strength of rock Measurement of effective stress shear strength of rock R. A. Failmezger, P.E., F. ASCE In-Situ Soil Testing, L.C., Lancaster, Virginia USA D. J. White, Ph. D., P.E. Iowa State University, Ames, Iowa USA

More information

Mass Wasting. Revisit: Erosion, Transportation, and Deposition

Mass Wasting. Revisit: Erosion, Transportation, and Deposition Mass Wasting Revisit: Erosion, Transportation, and Deposition While landslides are a normal part of erosion and surface processes, they can be very destructive to life and property! - Mass wasting: downslope

More information

Module 9 : Foundation on rocks. Content

Module 9 : Foundation on rocks. Content FOUNDATION ON ROCKS Content 9.1 INTRODUCTION 9.2 FOUNDATION TYPES ON ROCKS 9.3 BEARING CAPCITY- SHALLOW FOUNDATION 9.3.1 Ultimate bearing capacity 9.3.2 Safe bearing pressure 9.3.3 Estimation of bearing

More information

TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT

TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1637 TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT Mohammad

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

R.SUNDARAVADIVELU Professor IIT Madras,Chennai - 36.

R.SUNDARAVADIVELU Professor IIT Madras,Chennai - 36. Behaviour of Berthing Structure under Changing Slope in Seismic Condition - A Case Study K.MUTHUKKUMARAN Research Scholar Department of Ocean Engineering, R.SUNDARAVADIVELU Professor IIT Madras,Chennai

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL SHEAR STRENGTH OF SOIL Necessity of studying Shear Strength of soils : Soil failure usually occurs in the form of shearing along internal surface within the soil. Shear Strength: Thus, structural strength

More information

Computers and Geotechnics

Computers and Geotechnics Computers and Geotechnics xxx (29) xxx xxx Contents lists available at ScienceDirect Computers and Geotechnics journal homepage: www.elsevier.com/locate/compgeo Simulation of the progressive failure of

More information

Session 4. Risk and Reliability. Design of Retaining Structures. Slopes, Overall Stability and Embankments. (Blarney Castle)

Session 4. Risk and Reliability. Design of Retaining Structures. Slopes, Overall Stability and Embankments. (Blarney Castle) Session 4 Risk and Reliability Design of Retaining Structures Slopes, Overall Stability and Embankments (Blarney Castle) 1 2 Session 4a Risk and reliability Complexity and Geotechnical Risk The complexity

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

NUMERICAL INVESTIGATION OF LOAD TRANSFER MECHANISM IN SLOPES REINFORCED WITH PILES

NUMERICAL INVESTIGATION OF LOAD TRANSFER MECHANISM IN SLOPES REINFORCED WITH PILES NUMERICAL INVESTIGATION OF LOAD TRANSFER MECHANISM IN SLOPES REINFORCED WITH PILES A Dissertation Presented to the Faculty of the Graduate School University of Missouri-Columbia In Partial Fulfillment

More information

RAMWALL DESIGN METHODOLOGY

RAMWALL DESIGN METHODOLOGY RAMWALL DESIGN METHODOLOGY Submitted by:. June 005 CONTENTS 1. INTRODUCTION 1 Page. REFERENCED DOCUMENTS & ABBREVIATIONS 1 3 DESIGN METHODOLOGY / THEORY 3.1 General 3. Internal Analysis 4 3.3 External

More information

Numerical Study of Relationship Between Landslide Geometry and Run-out Distance of Landslide Mass

Numerical Study of Relationship Between Landslide Geometry and Run-out Distance of Landslide Mass Numerical Study of Relationship Between Landslide Geometry and Run-out Distance of Landslide Mass Muneyoshi Numada Research Associate, Institute of Industrial Science, The University of Tokyo, Japan Kazuo

More information

Transactions on Information and Communications Technologies vol 20, 1998 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 20, 1998 WIT Press,   ISSN Design Of Retaining Walls : System Uncertainty & Fuzzy Safety Measures J. Oliphant *, P. W. Jowitt * and K. Ohno + * Department of Civil & Offshore Engineering, Heriot-Watt University, Riccarton, Edinburgh.

More information

Analysis of soil failure modes using flume tests

Analysis of soil failure modes using flume tests Analysis of soil failure modes using flume tests A. Spickermann & J.-P. Malet Institute of Earth Physics, CNRS UMR 751, University of Strasbourg, Strasbourg, France Th.W.J. van Asch, M.C.G. van Maarseveen,

More information

CHAPTER FIVE 5.0 STABILITY OF CUT SLOPES IN THE STUDY AREA. them limited by a thick canopy of vegetation and steep slope angles.

CHAPTER FIVE 5.0 STABILITY OF CUT SLOPES IN THE STUDY AREA. them limited by a thick canopy of vegetation and steep slope angles. CHAPTER FIVE 5.0 STABILITY OF CUT SLOPES IN THE STUDY AREA 5.1. Introduction Ukay Perdana area is a developing community with continuous building activities and road construction. There are thus only left

More information

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL When the height of the retaining wall exceeds about 6 m, the thickness of the stem and heel slab works out to be sufficiently large and the design becomes

More information

Seismic design of bridges

Seismic design of bridges NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY FOR EARTHQUAKE ENGINEERING Seismic design of bridges Lecture 3 Ioannis N. Psycharis Capacity design Purpose To design structures of ductile behaviour

More information

Stability Analysis on Clay Slopes Impacting US Highway 45 near Military Hill, Ontonagon, MI

Stability Analysis on Clay Slopes Impacting US Highway 45 near Military Hill, Ontonagon, MI Stability Analysis on Clay Slopes Impacting US Highway 45 near Military Hill, Ontonagon, MI GE4900 Presented by: Tasha Cook, Kirsten DePrekel, Leah Meek, Megan Sprague, Luke Weidner Advisor: Dr. Thomas

More information

Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation

Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation Pengfei Xu Tongji University August 4, 2015 Outline Introduction Two circular excavations for anchorage foundations 3D

More information

APPROACH FILL DESIGN OF NORTH SASKATCHEWAN RIVER BRIDGE. A.F. Ruban, EBA Engineering Consultants Ltd., Edmonton, Alberta, Canada

APPROACH FILL DESIGN OF NORTH SASKATCHEWAN RIVER BRIDGE. A.F. Ruban, EBA Engineering Consultants Ltd., Edmonton, Alberta, Canada APPROACH FILL DESIGN OF NORTH SASKATCHEWAN RIVER BRIDGE A.F. Ruban, EBA Engineering Consultants Ltd., Edmonton, Alberta, Canada Paper prepared for presentation at the Slope and Embankment Engineering for

More information

Entrance exam Master Course

Entrance exam Master Course - 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES

INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES S. K. Vanapalli and D.G. Fredlund Department of Civil Engineering University of Saskatchewan, Saskatoon

More information

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS INFORMATION BULLETIN / PUBLIC - BUILDING CODE REFERENCE NO.: LAMC 98.0508 Effective: 1-26-84 DOCUMENT NO. P/BC 2002-049 Revised: 11-1-02 Previously Issued As: RGA #1-84 SLOPE STABILITY EVALUATION AND ACCEPTANCE

More information

CENTRAL REGION GEOHAZARDS RISK ASSESSMENT SITE INSPECTION FORM

CENTRAL REGION GEOHAZARDS RISK ASSESSMENT SITE INSPECTION FORM SITE NUMBER AND NAME C55 H861:02 Slide LEGAL DESCRIPTION NW 14-40-14-W4 CENTRAL REGION GEOHAZARDS RISK ASSESSMENT SITE INSPECTION FORM HIGHWAY & KM NAD 83 COORDINATES N 5811217 E 437291 PREVIOUS INSPECTION

More information

CONTROLLING FACTORS BASIC ISSUES SAFETY IN OPENCAST MINING WITH SPECIAL REFERENCE TO SLOPE STABILITY

CONTROLLING FACTORS BASIC ISSUES SAFETY IN OPENCAST MINING WITH SPECIAL REFERENCE TO SLOPE STABILITY SAFETY IN OPENCAST MINING WITH SPECIAL REFERENCE TO SLOPE STABILITY CONTROLLING FACTORS Dr. J C. JHANWAR Sr. Principal Scientist CSIR-Central Institute of Mining & Fuel Research Regional Centre, Nagpur

More information

QUESTION BANK DEPARTMENT: CIVIL SUBJECT CODE / Name: CE 2251 / SOIL MECHANICS SEMESTER: IV UNIT 1- INTRODUCTION PART - A (2 marks) 1. Distinguish between Residual and Transported soil. (AUC May/June 2012)

More information

Seismic Evaluation of Tailing Storage Facility

Seismic Evaluation of Tailing Storage Facility Australian Earthquake Engineering Society 2010 Conference, Perth, Western Australia Seismic Evaluation of Tailing Storage Facility Jonathan Z. Liang 1, David Elias 2 1 Senior Geotechnical Engineer, GHD

More information

Calculation and analysis of internal force of piles excavation supporting. based on differential equation. Wei Wang

Calculation and analysis of internal force of piles excavation supporting. based on differential equation. Wei Wang International Conference on Energy and Environmental Protection (ICEEP 016) Calculation and analysis of internal force of piles excavation supporting based on differential equation Wei Wang School of Prospecting

More information

(Refer Slide Time: 02:18)

(Refer Slide Time: 02:18) Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture 40 Shear Strength of Soil - C Keywords: Shear strength of soil, direct shear test,

More information

PRINCIPLES OF GEOTECHNICAL ENGINEERING

PRINCIPLES OF GEOTECHNICAL ENGINEERING PRINCIPLES OF GEOTECHNICAL ENGINEERING Fourth Edition BRAJA M. DAS California State University, Sacramento I(T)P Boston Albany Bonn Cincinnati London Madrid Melbourne Mexico City New York Paris San Francisco

More information

HKIE-GD Workshop on Foundation Engineering 7 May Shallow Foundations. Dr Limin Zhang Hong Kong University of Science and Technology

HKIE-GD Workshop on Foundation Engineering 7 May Shallow Foundations. Dr Limin Zhang Hong Kong University of Science and Technology HKIE-GD Workshop on Foundation Engineering 7 May 2011 Shallow Foundations Dr Limin Zhang Hong Kong University of Science and Technology 1 Outline Summary of design requirements Load eccentricity Bearing

More information

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS INFORMATION BULLETIN / PUBLIC - BUILDING CODE REFERENCE NO.: LABC 7006.3, 7014.1 Effective: 01-01-2017 DOCUMENT NO.: P/BC 2017-049 Revised: 12-21-2016 Previously Issued As: P/BC 2014-049 SLOPE STABILITY

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

Erratum. Chapter 4 - Earth and water pressure 26. Chapter Area loads. q a. c+d ϕ'/2. Piling Handbook, 9th edition (2016)

Erratum. Chapter 4 - Earth and water pressure 26. Chapter Area loads. q a. c+d ϕ'/2. Piling Handbook, 9th edition (2016) Chapter 4 - Earth and water pressure 26 Chapter 4.9.15. Area loads z x q ϕ' a c+d 45 + ϕ'/2 Fig. 4.3. Force distribution area lords. Chapter 5 - Design of steel sheetpile structures 22 Chapter 5.8.3. Surcharge

More information

Landslide Stability Analysis Utilizing Shear Strength of Slip Surface Soil: Asato and Tyunjun Landslides, Okinawa, Japan

Landslide Stability Analysis Utilizing Shear Strength of Slip Surface Soil: Asato and Tyunjun Landslides, Okinawa, Japan 1246 Landslide Stability nalysis Utilizing Shear Strength of Slip Surface Soil: sato and Tyunjun Landslides, Okinawa, Japan Sho Kimura 1, SeiichiGibo 2, Shinya Nakamura 3, Shriwantha Buddhi Vithana 1 1

More information

Hazard assessment in dynamic slope stability analysis

Hazard assessment in dynamic slope stability analysis Hazard assessment in dynamic slope stability analysis C. Cherubini 1, F. Santoro 2 & G. Vessia 1 1 Polytechnic of Bari 2 University of Bari Abstract The estimate of risk in urban planning activities should

More information

This report was prepared by Klohn Crippen Consultants Ltd. for Alberta Transportation Central Region under Contract No. CE053/2000.

This report was prepared by Klohn Crippen Consultants Ltd. for Alberta Transportation Central Region under Contract No. CE053/2000. Alberta Transportation Central Region #401, 4902 51 Street Red Deer, Alberta T4N 6K8 June 7, 2002 Mr. Melvin Mayfield, P.Eng. Project Engineer Dear Mr. Mayfield: Central Region Landslide Assessment Site

More information

What is Failure? What is Failure? unplanned outcome. results in loss. and why do failures occur? John Atkinson. Failure to learn from failure.

What is Failure? What is Failure? unplanned outcome. results in loss. and why do failures occur? John Atkinson. Failure to learn from failure. What is Failure? and why do failures occur? John Atkinson Professor of Soil Mechanics City University, London. What is Failure? unplanned outcome. results in loss. Inconvenient Loss of life Fit for purpose?

More information

APPENDIX I. Deformation Analysis of the Left Abutment

APPENDIX I. Deformation Analysis of the Left Abutment APPENDIX I Deformation Analysis of the Left Abutment August 25, 2016 Appendix I Deformation Analysis of the Left Abutment TABLE OF CONTENTS I1 INTRODUCTION... 1 I2 MODEL DEVELOPMENT... 2 I2.1 General...

More information

Class Principles of Foundation Engineering CEE430/530

Class Principles of Foundation Engineering CEE430/530 Class Principles of Foundation Engineering CEE430/530 1-1 General Information Lecturer: Scott A. Barnhill, P.E. Lecture Time: Thursday, 7:10 pm to 9:50 pm Classroom: Kaufmann, Room 224 Office Hour: I have

More information

Analysis of the horizontal bearing capacity of a single pile

Analysis of the horizontal bearing capacity of a single pile Engineering manual No. 16 Updated: 07/2018 Analysis of the horizontal bearing capacity of a single pile Program: Soubor: Pile Demo_manual_16.gpi The objective of this engineering manual is to explain how

More information

Seabed instability and 3D FE jack-up soil-structure interaction analysis

Seabed instability and 3D FE jack-up soil-structure interaction analysis Seabed instability and 3D FE jack-up soil-structure interaction analysis Lindita Kellezi, GEO Danish Geotechnical Institute, Denmark Gregers Kudsk, Maersk Contractors, Denmark Hugo Hofstede, Marine Structure

More information

Chapter 5 Shear Strength of Soil

Chapter 5 Shear Strength of Soil Page 5 Chapter 5 Shear Strength of Soil. The internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it is called (a) strength (b) shear strength

More information

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment Proc. of Second China-Japan Joint Symposium on Recent Development of Theory and Practice in Geotechnology, Hong Kong, China Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment J. C. Chai 1

More information