This file is part of the following reference: Access to this file is available from:

Size: px
Start display at page:

Download "This file is part of the following reference: Access to this file is available from:"

Transcription

1 This file is part of the following reference: Quentin de Gromard, R. (2011) The Paleozoic tectonometamorphic evolution of the Charters Towers Province, North Queensland, Australia. PhD thesis, James Cook University. Access to this file is available from: The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact ResearchOnline@jcu.edu.au and quote

2 RQ30-matrix Order Mineral/feature identified X-ray maps used Threshold Area Significance of pixels with highest greyscale values (inch 2 % ) values 1 background Inverted sum (Al+Fe+Mg+K+Ti) Black background 2 Ilmenite Sum (Ti+cumul1) Minerals containing high Ti 3 Fe oxide Sum (Fe+cumul2) Minerals contanining high Fe Total remaining iron minerals (TRFe) Min intensity (Fe+cumul3) Remaining minerals containing Fe 4 Biotite Sum (inverted TRFe+K+cumul3) Minerals containing high Fe and high K 5 Chlorite Sum (inverted TRFe+Mg+inverted K+cumul4) Minerals containing high Fe, high Mg and low K 6 Muscovite Sum (K+Al+2*cumul5) Minerals containing high K and high Al 7 Quartz Sum (inverted Al+cumul6) Remaining minerals containing no Al 8 Plagioclase Cumul Remaining minerals Modal percentage of all minerals normalized to the matrix area Ilmenite 0.7 Fe oxide 0.3 Biotite 20.9 Chlorite 9.8 Muscovite 21.2 Quartz 29.1 Plagioclase 18.0 RQ30-pseudomorph Order Mineral/feature identified X-ray maps used Threshold Area Significance of pixels with highest greyscale values (inch 2 % ) values 1 Background Sum (Al+K+Fe+Mg+Ti) White background 2 Ilmenite Sum (Fe+Ti+2*cumul1) Minerals containing high Fe and high Ti 3 Biotite Sum (Fe+K+2*cumul2) Minerals containing high Fe and high K 4 Chlorite Sum (Fe+Mg+inverted K+cumul3) Minerals containing high Fe, high Mg and low K 5 Muscovite Sum (K+Al+2*cumul4) Minerals containing high K and high Al 6 Quartz Sum (inverted Al+cumul 5) Remaining minerals containing no Al 7 Plagioclase Cumul Remaining minerals Modal percentage of all minerals normalized to the pseudomorph area Ilmenite 0.8 Biotite 36.4 Chlorite 9.4 Muscovite 34.7 Quartz 10.6 Plagioclase 8.1 Table 1. Table showing the methodology involved in the production of binary images and the calculation of mineral modes for sample RQ30. Inverted image refers to the inversion of the gray scale values (i.e. 255 minus the original gray scale value). Cumul is a summation of areas of all previously measured minerals resulting in a binary file where the mineral of interest is black. 9

3 (a) (b) Background Apatite 0.1% Ilmenite 1% Biotite 9.1% Muscovite 22.8% Quartz 10.4% Plagioclase 3.1% Cordierite 53.5% Background Ilmenite 0.8% Garnet 1.2% Biotite 30.4% Muscovite 51.6% Quartz 4.3% Cordierite 1.8% Plagioclase 10% Background (c) Muscovite 42.8% Apatite 0.3% Staurolite 2.5% Ilmenite+Pyrrhotite 2.8% Quartz 22% Biotite 16% Plagioclase 13.6% Figure 7: Binary images showing the modal mineralogy (the mineral of interest is in black) for three isolated areas: (a) the cordierite core, (b) the reaction rim and (c) the matrix. The background corresponds to the area of the map of no interest for mode calculation. Images produced via the routine described in text and in Table 1. Sample IS90. 10

4 RQ83-matrix Order Mineral/feature identified X-ray maps used Threshold Area Significance of pixels with highest greyscale values (inch 2 % ) values 1 Background Sum (Al+K+Fe+Mg+Ti) Black background (removed pseudo areas) 2 Ilmenite Sum (Ti+cumul1) Minerals containing high Ti 3 Fe oxides Sum (Fe+cumul2) Minerals containing high Fe Total Remaining Iron Minerals (TRFe) Min intensity (Fe+cumul3) Remaining minerals containing high Fe 4 Chlorite Sum (inverted TRFe+Mg+cumul3) Minerals containing high Fe and high Mg 5 Muscovite Sum (K+Al+cumul4) , Minerals containing high K and high Al 6 Quartz Sum (inverted Al+Cumul5) Remaining minerals containing no Al 7 Plagioclase Cumul Remaining minerals Modal percentage of all minerals normalized to the matrix area Ilmenite 0.6 Fe oxides 0.1 Chlorite 18.2 Muscovite 15.2 Quartz 47.6 Plagioclase 18.3 RQ83-pseudomorph Order Mineral/feature identified X-ray maps used Threshold Area % Significance of pixels with highest greyscale 1 Background values (inch 2 ) values Sum (Al+K+Fe+Mg+Ti) All pixels containing some Al, K, Fe, Mg and/or Ti Inverted cumul All pixels containing none of the above elements 3 Ilmenite Sum (Fe+Ti+2*cumul1) Minerals containing high Fe and high Ti 4 Chlorite Sum (Mg+inverted K+cumul2) Minerals containing high Mg and low K 5 Muscovite Sum (Al+K+2*cumul3) Minerals containing high Al and high K 6 Quartz Sum (inverted Al+cumul 4) Remaining minerals containing no Al 7 Plagioclase Cumul Remaining minerals Modal percentage of all minerals normalized to the pseudomorph area Ilmenite 0.7 Chlorite 28.0 Muscovite 33.1 Quartz 24.0 Plagioclase 14.2 Table 2. Table showing the methodology involved in the production of binary images and the calculation of mineral modes for sample RQ83. Inverted image refers to the inversion of the gray scale values (i.e. 255 minus the original gray scale value). Cumul is a summation of areas of all previously measured minerals resulting in a binary file where the mineral of interest is black. 11

5 Background (a) (b) Ilmenite 0.8% Chlorite 9.4% Muscovite 34.7% Background Ilmenite 0.7% Chlorite 9.8% Muscovite 21.2% Biotite 36.4% Quartz 10.6% Fe-oxide 0.3% Quartz 29.1% Plagioclase 8.1% Biotite 20.9% Plagioclase 18% Figure 8: Binary images showing the modal mineralogy (the mineral of interest is in black) for two isolated areas: (a) the pseudomorph and (b) the matrix. The background corresponds to the area of the map of no interest for mode calculation. Images produced via the routine described in text and in Table 2. Sample RQ30. 12

6 IS90-matrix Order Mineral/feature Threshold Area Significance of pixels with highest X-ray maps used identified values (inch 2 % ) greyscale values 1 Background Sum (Al+K+Fe+Mg+Ca+CP) White background 2 Apatite Sum (Ca+cumul1) Minerals containing high Ca 3 Ilmenite and pyrrhotite Sum (Fe+cumul2) Minerals containing high Fe 4 Biotite Sum (K+Mg+cumul3) Minerals containing high K and high Mg 5 Muscovite Sum (K+cumul4) Remaining minerals containing high K 6 Staurolite Sum (Al+cumul5) Minerals containing high Al 7 Quartz Sum (inverted Al+cumul6) Remaining minerals containing no Al 8 Plagioclase Sum (Ca+cumul7) Remaining minerals containing Ca Modal percentage of all minerals normalized to the matrix area Apatite 0.3 FeS and FeTi oxides 2.8 Biotite 16.0 Muscovite 42.8 Staurolite 2.5 Quartz 22.0 Plagioclase 13.6 IS90-reaction rim Order Mineral/feature Threshold Area Significance of pixels with highest X-ray maps used identified values (inch 2 % ) greyscale values 1 Background Sum (Al+K+Fe+Mg+Ca+CP) White background 2 Ilmenite Sum (Fe+inverted Al+cumul1) Minerals containing high Fe and no Al 3 Garnet Sum (Fe+inverted K+cumul2) Minerals containing high Fe and no K 4 Biotite Sum (K+Mg+cumul3) Minerals containing high K and high Mg 5 Muscovite Sum (K+cumul4) Remaining minerals containing high K 6 Quartz Sum (inverted Al+cumul5) Remaining minerals containing no Al 7 Cordierite Sum (Mg+cumul6) Remaining minerals containing Mg 8 Plagioclase Sum (Ca+cumul7) Remaining minerals containing Ca Modal percentage of all minerals normalized to the mantle area Ilmenite 0.8 Garnet 1.2 Biotite 30.4 Muscovite 51.6 Quartz 4.3 Cordierite 1.8 Plagioclase 10.0 IS90-cordierite core Order Mineral/feature Threshold Area Significance of pixels with highest X-ray maps used identified values (inch 2 % ) greyscale values 1 Background Sum (Al+K+Fe+Mg+Ca+CP) White background 2 Apatite Sum (Ca+cumul1) Minerals containing high Ca 3 Ilmenite Sum (Fe+cumul2) Minerals containing high Fe 4 Biotite Sum (K+Mg+cumul3) Minerals containing high K and high Mg 5 Muscovite Sum (K+cumul4) Remaining minerals containing high K 6 Quartz Sum (inverted Al+cumul5) Remaining minerals containing no Al 7 Plagioclase Sum (Ca+cumul6) Remaining minerals containing Ca 8 Cordierite Sum (Mg+cumul7) Remaining minerals containing Mg Modal percentage of all minerals normalized to the pseudomorph area Apatite 0.1 Ilmenite 1.0 Biotite 9.1 Muscovite 22.8 Quartz 10.4 Plagioclase 3.1 Cordierite 53.5 Table 3. Table showing the methodology involved in the production of binary images and the calculation of mineral modes for sample IS90. Inverted image refers to the inversion of the gray scale values (i.e. 255 minus the original gray scale value). Cumul is a summation of areas of all previously measured minerals resulting in a binary file where the mineral of interest is black. 13

7 Background Ilmenite 0.7% (a) Quartz 24% Background (b) Chlorite 28% Plagioclase 14.2% Ilmenites 0.6% Muscovite 15.2% Muscovite 33.1% Fe oxide 0.1% Quartz 47.6% Chlorite 18.2% Plagioclase 18.3% Figure 9: Binary images showing the modal mineralogy (the mineral of interest is in black) for two isolated areas: (a) the pseudomorph and (b) the matrix. The background corresponds to the area of the map of no interest for mode calculation. Images produced via the routine described in text and in Table 3. Sample RQ83. 14

8 Ilmenite+Pyrrhotite Quartz Biotite Muscovite Plagioclase Cordierite Figure 10: Reconstructed binary images showing the distribution of each mineral over the whole pseudomorph plus matrix area for sample IS90. 15

9 Ilmenite Biotite Chlorite Muscovite Quartz Plagioclase Figure 11: Reconstructed binary images showing the distribution of each mineral over the whole pseudomorph plus matrix area for sample RQ30. 16

10 Ilmenite Chlorite Quartz Muscovite Plagioclase Figure 12: Reconstructed binary images showing the distribution of each mineral over the whole pseudomorph plus matrix area for sample RQ83. 17

11 Cordierite Biotite Muscovite Staurolite cc rr cc rr m cc rr m SiO TiO Al 2 O FeO MnO MgO CaO Na 2 O K 2 O Total Si iv Al (iv) vi Al Ti Fe Mn Mg Ca Na K Total Table 4. Table showing representative analyses of cordierite, biotite, muscovite and staurolite from sample IS90. cc cordierite core; rr reaction rim; m matrix 18

12 Biotite Muscovite Chlorite Plagioclase p m p m p m p m c r c r SiO TiO Al 2 O FeO MnO MgO CaO Na 2 O K 2 O Cl Total Si iv Al (iv) vi Al Ti Fe Mn Mg (vi) Ca Na K Cl (xii) Total An Ab Table 5. Table showing representative analyses of biotite, muscovite, chlorite and plagioclase from sample RQ30. m matrix, p pseudomorph, c core, r - rim 19

13 Biotite Muscovite Chlorite m p m p m SiO TiO Al 2 O FeO MnO MgO CaO Na 2 O K 2 O Cl Total Si iv Al (iv) vi Al Ti Fe Mn Mg (vi) Ca Na K Cl 0.01 (xii) Total Table 6. Table showing representative analyses of biotite, muscovite and chlorite from sample RQ83. m matrix, p - pseudomorph 20

14 Garnet Plagioclase rr m cc rr m c r c r c r c r c r SiO TiO Al 2 O FeO MnO MgO CaO Na 2 O K2O Total Si Al Ti Fe Mn Mg Ca Na Total X alm X py X spess X gross An Ab Table 7. Table showing representative analyses of garnet and plagioclase from sample IS90. cc cordierite core, rr reaction rim, m matrix, c core, r - rim 21

15 Fe+Mg+Mn+Ti (a) VI Al K (b) Na Fe+Mg+Mn+Ti (c) VI Al K (d) Na Fe+Mg+Mn+Ti (e) VI Al An (f) Si X Mg 0.68 Na (g) Si 0.15 (h) Si Legend RQ30 pseudomorph RQ30 matrix RQ30 pseudomoprh/matrix boudary IS90 cordierite core IS90 reaction rim IS90 matrix RQ83 pseudomorph RQ83 matrix IS104 pseudomorph IS104 matrix 22

16 Figure 13: Diagrams showing the relationship between VIAl and Fe+Mg+Mn+Ti (a) and Na and K (b) in muscovite. Diagrams showing the relationship between VIAl and Fe+Mg+Mn+Ti (c) and Na and K (d) in biotite. Diagram showing the relationship between VIAl and Fe+Mg+Mn+Ti in chlorite (e). Diagram showing the relationship between Si and An content in plagioclase (f). shaded areas represents plagioclase core analysis, the arrows indicate the transition from plagioclase core (shaded) to rim. Diagram showing the relationship between Si and XMg (g) and Si and Na (h) in cordierite. 23

17 P (kbar) 7 6 Pattison 92TP a H2 O = 1 Ky Sil Ms Als Kfs Ky And P Als Chl Crd Bt Mg-Bt Sil Mg-Crd Sil 1 0 (a) And T (ºC) Fe-Bt Als Fe-Crd P (kbar) Holdaway 71TP a H2 O = 1 Ky Sil Ms Als Kfs Ky And 0.3 H Als Chl Crd Bt Mg-Bt Sil Mg-Crd 1 0 (b) 0.1 Sil And T (ºC) P-T region of reaction (1) (Ms+Qtz+Crd+Als+Bt) assemblages Isopleths of Mg/(Mg+Fe) in Bt in reaction (1) Qtz + H2O in excess; Ms in excess below reaction Ms=Als+Kfs Figure 14: Contours of Mg/(Mg+Fe) in biotite plotted on petrogenetic grids of Pattison et al. (2002) for the Pattison 1999 triple point (a) and the Holdaway 1971 triple point (b). Reaction 1: 2Ms + 3Crd = 2Bt + 8Als + 7Qtz +3n H2O. 24

18 o C 0.3 Ti (apfu) o C 500 o C IS90 RQ RQ (a) Mg/(Mg+Fe) o C Ti (apfu) o C 500 o C IS90-matrix IS90-reaction rim RQ30-matrix RQ30-pseudomorph 0 (b) Mg/(Mg+Fe) Figure 15: Ti-in-biotite thermometer grid of Henry et al. (2005). (a) Ti/XMg plot for all biotite analysis for samples IS90, RQ30 and RQ83. (b) Ti/XMg plot for the average biotite composition from the pseudomorph and from the matrix for samples IS90 and RQ30. 25

19 (a) (b) (c) Legend: Matrix: Qz + Bt + Ms + Pl Reaction rim: Ms + Bt + Pl Cordierite Idioblastic biotite Deformed biotite Muscovite Quartz Plagioclase Ilmenite Crack Fluid Figure 16: Series of sketches showing the inferred textural and mineralogical evolution of mica rich pseudomorph after cordierite. (a) Cordierite porphyroblast at the onset of pseudomorphing process. Microcracks start to develop from the margin of the cordierite porphyroblast towards the core. Some cracks develop due to the replacement of quartz by plagioclase by fluid infiltration and diffusion. Another series of cracks develop by increase strain rate during exhumation. Both crack types are filled by micas. (b) The process advances until the entire rim of the cordierite porphyroblast is replaced by micas resulting in the reaction rim. Continuous replacement of quartz by plagioclase and increase strain rate contributes to further microcracking of the reaming cordierite. (c) The process continues until the whole cordierite porphyroblast is replaced. 26

The microstructural and metamorphic history. preserved within garnet porphyroblasts

The microstructural and metamorphic history. preserved within garnet porphyroblasts The microstructural and metamorphic history preserved within garnet porphyroblasts from southern Vermont and northwestern Massachusetts VOLUME II Thesis submitted by Bronwyn Patricia GAVIN BSc (Hons) Canterbury,

More information

Supplementary Table 1.

Supplementary Table 1. Supplementary Table 1. Compositional groups, typical sample numbers and location with their bulk compositional, mineralogical and petrographic characteristics at different metamorphic grades. Metamorphic

More information

In this practical we study the AKF and the Thompson AFM diagrams for pelites.

In this practical we study the AKF and the Thompson AFM diagrams for pelites. LIVERPOOL UNIVERSITY EARTH SCIENCE ENVS212 page 1 of 10 ENVS212 Practical 6: Triangular compatibility diagrams for pelites In this practical we study the AKF and the Thompson AFM diagrams for pelites.

More information

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap)

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap) APPENDIX TABLES Table A2. XRF analytical results for samples from drill hole AP5 (Areachap) Sample No. AP5/19 AP5/20 AP5/21 AP5/22 AP5/23 AP5/24 AP5/25AP5/26AP5/27AP5/28AP5/29AP5/30AP5/31AP5/32 AP5/33

More information

Supplemental Material, Kohn et al., p.1 Mineral compositions from Darondi rocks, central Nepal

Supplemental Material, Kohn et al., p.1 Mineral compositions from Darondi rocks, central Nepal 2001063 Supplemental Material, Kohn et al., p.1 Mineral compositions from Darondi rocks, central Nepal Plagioclase rim compositions Sample DH17 DH19 DH22 DH23 DH26 DH38 DH58 XAn 0.12 0.23 0.19 0.20 0.13

More information

This file is part of the following reference: Access to this file is available from:

This file is part of the following reference: Access to this file is available from: ResearchOnline@JCU This file is part of the following reference: Quentin de Gromard, R. (2011) The Paleozoic tectonometamorphic evolution of the Charters Towers Province, North Queensland, Australia. PhD

More information

Investigation of metamorphic zonation and isogrades of Garnet rocks in Hamadan area

Investigation of metamorphic zonation and isogrades of Garnet rocks in Hamadan area Investigation of metamorphic zonation and isogrades of Garnet rocks in Hamadan area Zahra Hossein mirzaei 1 *, Ali Asghar Sepahi 1, Farhad Aliani 1, Zohreh Hossein mirzaei 2 Corresponding author: 1 GeologicalSurveyofHamadan,

More information

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in Chapter - IV PETROGRAPHY 4.1. Introduction Petrographic studies are an integral part of any structural or petrological studies in identifying the mineral assemblages, assigning nomenclature and identifying

More information

Previous Tectonic Models for the Eastern Fold Belt, Mt Isa Inlier

Previous Tectonic Models for the Eastern Fold Belt, Mt Isa Inlier A novel solution for the tectonic evolution of the Eastern Fold Belt, Mt Isa Inlier (I/2+3) Mohammad Sayab and Mike Rubenach James Cook University, QLD Acknowledgments Tom Evans, JCU Dr. Peter Welch, JCU

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION GSA Data Repository 080 Schorn et al., 08, Thermal buffering in the orogenic crust: Geology, https://doi.org/0.30/g4046.. SUPPLEMENTARY INFORMATION 3 PHASE DIAGRAM MODELING 4 5 6 7 8 9 0 3 4 Phase diagrams

More information

Metamorphic Petrology GLY 262 P-T and T-X phase diagrams

Metamorphic Petrology GLY 262 P-T and T-X phase diagrams Metamorphic Petrology GLY 262 P-T and T-X phase diagrams How do we estimate P-T conditions? Inverse modelling: (1) Look at our rock, identify the mineral assemblage and determine the compositions of the

More information

Metamorphic Petrology GLY 712 Geothermo-barometry

Metamorphic Petrology GLY 712 Geothermo-barometry Metamorphic Petrology GLY 712 Geothermo-barometry What is thermobarometry? Thermobarometry is concerned with estimating or inferring the temperatures and pressures at which a rock formed and/or subsequently

More information

T6 soil base cation weathering rates

T6 soil base cation weathering rates T6 soil base cation weathering rates julian aherne :: trent university FORFLUX :: biogeochemistry of irish forests [RSF 07510] Advisory Group Meeting [5 6 December 2011] objective (a) to determine the

More information

Lecture 14: A brief review

Lecture 14: A brief review Lecture 14: A brief review A few updates for the remainder of the course Report for the lab on pelite metamorphism - Lab 3 Needs to be handed in before Tuesday the 14 th of March at 17:00. My most important

More information

Metaperidotites and Marbles. Marbles and Metaperidotites; Geothermobarometry. Low Grade Reactions in. Metaperidotites

Metaperidotites and Marbles. Marbles and Metaperidotites; Geothermobarometry. Low Grade Reactions in. Metaperidotites Marbles and Metaperidotites; GEOL 13.53 Metamorphic Lecture 5 Metaperidotites and Marbles Typical Composition of Peridotites and Carbonate Rocks Peridotite Limestone Dolostone SiO 2 42.26 3.64 0.41 Al

More information

Prograde muscovite-rich pseudomorphs as indicators of conditions during metamorphism: An example from NW Maine

Prograde muscovite-rich pseudomorphs as indicators of conditions during metamorphism: An example from NW Maine American Mineralogist, Volume 93, pages 300 314, 2008 Prograde muscovite-rich pseudomorphs as indicators of conditions during metamorphism: An example from NW Maine Barbara L. Dutrow, 1, * C.T. Foster

More information

Calculating pressures and temperatures of petrologic events: geothermobarometry

Calculating pressures and temperatures of petrologic events: geothermobarometry Calculating pressures and temperatures of petrologic events: geothermobarometry Donna L. Whitney University of Minnesota Minneapolis, Minnesota 55455 The goal of this exercise is to calculate the pressure

More information

GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008

GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008 GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008 Homework Assignment 3 Calculation of CIPW Norm Due in Class February 13, 2008 Problem

More information

Chapter IV MINERAL CHEMISTRY

Chapter IV MINERAL CHEMISTRY Chapter IV MINERAL CHEMISTRY Chapter-IV MINERAL CHEMISTRY 4.1 INTRODUCTION In this chapter, chemical analyses of different minerals present in various rocks of Mashhad granitoid plutons have been presented.

More information

Name Petrology Spring Metamorphic rocks lab Part III Metamorphic mineral assemblages and reactions Due Tuesday 4/13

Name Petrology Spring Metamorphic rocks lab Part III Metamorphic mineral assemblages and reactions Due Tuesday 4/13 Metamorphic rocks lab Part III Metamorphic mineral assemblages and reactions Due Tuesday 4/13 Problem 24-1: Given the following mineral compositions (Fe is Fe +2 unless indicated): Staurolite (St) (Fe,Mg)

More information

GEOLOGY 285: INTRO. PETROLOGY

GEOLOGY 285: INTRO. PETROLOGY Dr. Helen Lang Dept. of Geology & Geography West Virginia University SPRING 2016 GEOLOGY 285: INTRO. PETROLOGY Metamorphic Mineralogy depends on Temperature, Pressure and Rock Composition but Metamorphic

More information

Metamorphic Petrology GLY 262 Metamorphic reactions and isograds

Metamorphic Petrology GLY 262 Metamorphic reactions and isograds Metamorphic Petrology GLY 262 Metamorphic reactions and isograds What do we mean by reaction? Reaction: change in the nature or types of phases in a system=> formation of new mineral(s) ) which are stable

More information

Metamorphic Facies. Metamorphic Facies. Metamorphic Facies. ERSC 3P21 Metamorphic Petrology II 03/11/2005. Facies

Metamorphic Facies. Metamorphic Facies. Metamorphic Facies. ERSC 3P21 Metamorphic Petrology II 03/11/2005. Facies Metamorhic Facies Facies There is a redictable and common corresondence between the of each rock and its Mineral that define the metamorhic indicate that a state of stable has been over a restricted T

More information

Real-time AFM diagrams on your Macintosh

Real-time AFM diagrams on your Macintosh Spear Geological Materials Research v.1, n.3, p.1 Real-time AFM diagrams on your Macintosh Frank S. Spear Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute Troy, NY 12180

More information

Zn-Rich Spinel in Association with Quartz in the Al-Rich Metapelites from the Mashan Khondalite Series, NE China

Zn-Rich Spinel in Association with Quartz in the Al-Rich Metapelites from the Mashan Khondalite Series, NE China Journal of Earth Science, Vol. 25, No. 2, p. 207 223, April 2014 ISSN 1674-487X Printed in China DOI: 10.1007/s12583-014-0428-4 Zn-Rich Spinel in Association with Quartz in the Al-Rich Metapelites from

More information

SECTION B A METHOD FOR CALCULATING EFFECTIVE BULK COMPOSITION MODIFICATION DUE TO CRYSTAL FRACTIONATION IN GARNET-

SECTION B A METHOD FOR CALCULATING EFFECTIVE BULK COMPOSITION MODIFICATION DUE TO CRYSTAL FRACTIONATION IN GARNET- SECTION B A METHOD FOR CALCULATING EFFECTIVE BULK COMPOSITION MODIFICATION DUE TO CRYSTAL FRACTIONATION IN GARNET- BEARING SCHIST: IMPLICATIONS FOR ISOPLETH THERMOBAROMETRY 7 ABSTRACT Quantitative P-T

More information

Cathodoluminescence imaging and titanium thermometry in metamorphic quartz

Cathodoluminescence imaging and titanium thermometry in metamorphic quartz J. metamorphic Geol., 2009, 27, 187 205 doi:10.1111/j.1525-1314.2009.00813.x Cathodoluminescence imaging and titanium thermometry in metamorphic quartz. S. SPEAR AND D. A. WARK* Department of Earth and

More information

Grimmer et al. GSA DATA REPOSITORY

Grimmer et al. GSA DATA REPOSITORY GSA DATA REPOSITORY 2015126 Grimmer et al. Additional methodological details P-T pseudosection calculation To constrain detailed P-T paths of the garnet-micaschists and the garnet-kyanite-micaschists,

More information

Ultrahigh-temperature Metamorphism (1150 C, 12 kbar) and Multistage Evolution of Mg-, Al-rich Granulites from the Central Highland Complex, Sri Lanka

Ultrahigh-temperature Metamorphism (1150 C, 12 kbar) and Multistage Evolution of Mg-, Al-rich Granulites from the Central Highland Complex, Sri Lanka JOURNAL OF PETROLOGY VOLUME 45 NUMBER 9 PAGES 1821 1844 2004 DOI: 10.1093/petrology/egh035 Ultrahigh-temperature Metamorphism (1150 C, 12 kbar) and Multistage Evolution of Mg-, Al-rich Granulites from

More information

Geodiversity Research Centre, Australian Museum, Sydney, NSW 2010, Australia.

Geodiversity Research Centre, Australian Museum, Sydney, NSW 2010, Australia. Cumulate-rich xenolith suite in Late Cenozoic basaltic eruptives, Hepburn Lagoon, Newlyn, in relation to western Victorian lithosphere F. L. SUTHERLAND 1, J. D. HOLLIS 2, W. D. BIRCH 3, R. E. POGSON 1

More information

Fig. Captions. Fig. 1. Generalized geologic map of eastern Nepal after Akiba et al. (1973), Carosi et al. (1993b),

Fig. Captions. Fig. 1. Generalized geologic map of eastern Nepal after Akiba et al. (1973), Carosi et al. (1993b), 41 Fig. Captions Fig. 1. Generalized geologic map of eastern Nepal after Akiba et al. (1973), Carosi et al. (1993b), Lombardo et al. (1993), and our field interpretations. The upper left inset shows the

More information

Dynamic weakening of ring faults and catastrophic caldera collapse

Dynamic weakening of ring faults and catastrophic caldera collapse GSA Data Repository 019045 Dynamic weakening of ring faults and catastrophic caldera collapse Raehee Han*, Jong Sun Kim, Chang Min Kim, Takehiro Hirose, Jong Ok Jeong, Gi Young Jeong *E mail: raeheehan@gnu.ac.kr

More information

Weathering and mineral equilibria. Seminar at NGU 23 May 2016 Håkon Rueslåtten

Weathering and mineral equilibria. Seminar at NGU 23 May 2016 Håkon Rueslåtten Weathering and mineral equilibria Seminar at NGU 23 May 2016 Håkon Rueslåtten Weathering is the breakdown of rocks and minerals that are exposed to surface processes (climatically controlled). Water is

More information

APPENDICES. Appendix 1

APPENDICES. Appendix 1 Corthouts, T.L., Lageson, D.R., and Shaw, C.A., 2016, Polyphase deformation, dynamic metamorphism and metasomatism of Mount Everest s summit limestone, east central Himalaya, Nepal/Tibet: Lithosphere,

More information

Origin of Grandite Garnet in Calc-Silicate Granulites: Mineral Fluid Equilibria and Petrogenetic Grids

Origin of Grandite Garnet in Calc-Silicate Granulites: Mineral Fluid Equilibria and Petrogenetic Grids JOURNAL OF PETROLOGY VOLUME 46 NUMBER 5 PAGES 1045 1076 2005 doi:10.1093/petrology/egi010 Origin of Grandite Garnet in Calc-Silicate Granulites: Mineral Fluid Equilibria and Petrogenetic Grids SOMNATH

More information

Metamorphic Petrology GLY 262 Petrogenetic grids and Schreinemakers

Metamorphic Petrology GLY 262 Petrogenetic grids and Schreinemakers Metamorphic Petrology GLY 262 Petrogenetic grids and Schreinemakers Petrogenetic grids P-T grids or petrogenetic grids illustrate the positions AND intersections of ALL the possible equilibria (reactions)

More information

The Role of Water Retention in the Anatexis of Metapelites in the Bushveld Complex Aureole, South Africa: an Experimental Study

The Role of Water Retention in the Anatexis of Metapelites in the Bushveld Complex Aureole, South Africa: an Experimental Study JOURNAL OF PETROLOGY VOLUME 45 NUMBER 9 PAGES 1777 1797 2004 DOI: 10.1093/petrology/egh033 The Role of Water Retention in the Anatexis of Metapelites in the Bushveld Complex Aureole, South Africa: an Experimental

More information

TABLE DR1. COMBINED EMPA AND LA-ICP-MS DATA FOR WATERSHED 2 AND 34 MINERALS USED IN THE MASS BALANCE CALCULATIONS

TABLE DR1. COMBINED EMPA AND LA-ICP-MS DATA FOR WATERSHED 2 AND 34 MINERALS USED IN THE MASS BALANCE CALCULATIONS TABLE DR1. COMBINED EMPA AND LA-ICP-MS DATA FOR WATERSHED 2 AND 34 MINERALS USED IN THE MASS BALANCE CALCULATIONS Allanite Plagioclase C17-3 C17-3 C17-3 C17-3 Mean C17-3 C17-3 C17-3 C17-3 Mean E1C E1R

More information

A Projection for Analysis of Mineral Assemblages in Calc-Pelitic Metamorphic Rocks

A Projection for Analysis of Mineral Assemblages in Calc-Pelitic Metamorphic Rocks NOTES- NOTISER A Projection for Analysis of Mineral Assemblages in Calc-Pelitic Metamorphic Rocks WILLIAM L. GRIFFIN & MICHAEL T. STYLES Griffin, W. L. & Styles, M. T.: A projection for analysis of mineral

More information

Chapter 6: Phase equilibria modelling of complex coronas in pelitic granulites from the Vredefort Dome

Chapter 6: Phase equilibria modelling of complex coronas in pelitic granulites from the Vredefort Dome Chapter 6: Phase equilibria modelling of complex coronas in pelitic granulites from the Vredefort Dome 6.1 Introduction The capacity of a rock to attain equilibrium is governed by complex interdependent

More information

UNRAVELING THE FLUID-PRESENT METAMORPHISM OF SCHISTS FROM GARNET COMPOSITIONS IN THE BLACK HILLS, SOUTH DAKOTA. A Thesis presented to

UNRAVELING THE FLUID-PRESENT METAMORPHISM OF SCHISTS FROM GARNET COMPOSITIONS IN THE BLACK HILLS, SOUTH DAKOTA. A Thesis presented to UNRAVELING THE FLUID-PRESENT METAMORPHISM OF SCHISTS FROM GARNET COMPOSITIONS IN THE BLACK HILLS, SOUTH DAKOTA A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia

More information

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area Breeding, Ague, and Brocker 1 Figure DR1 21 o 24 Greece o A 38 o Athens Tinos 37 o Syros Attic-Cycladic Blueschist Belt Syros Kampos B Study Area Ermoupoli N Vari Unit Cycladic HP-LT Unit Marble horizons

More information

ARTICLE IN PRESS. Genesis of monazite and Y zoning in garnet from the Black Hills, South Dakota

ARTICLE IN PRESS. Genesis of monazite and Y zoning in garnet from the Black Hills, South Dakota + model Lithos xx (2005) xxx xxx www.elsevier.com/locate/lithos Genesis of monazite and Y zoning in garnet from the Black Hills, South Dakota Panseok Yang *, David Pattison Department of Geology and Geophysics,

More information

Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II)

Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II) Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II) Metamorphic processes Metamorphism is very complex and involves a large number of chemical and physical processes occurring

More information

RECEIVED JANUARY 3, 2003; ACCEPTED OCTOBER 17, KEY WORDS: garnet microtexture; P---T pseudosection; geochronology;

RECEIVED JANUARY 3, 2003; ACCEPTED OCTOBER 17, KEY WORDS: garnet microtexture; P---T pseudosection; geochronology; JOURNAL OF PETROLOGY VOLUME 45 NUMBER 5 PAGES 949 973 2004 DOI: 10.1093/petrology/egg117 Polymetamorphism in the NE Shackleton Range, Antarctica: Constraints from Petrology and U---Pb, Sm---Nd, Rb---Sr

More information

Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration

Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration Chapter 5 Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration Andrew Putnis & Håkon Austrheim Equilibration

More information

Zoning of chloritoid from kyanite-facies metapsammites, Alpi Apuane, Italy

Zoning of chloritoid from kyanite-facies metapsammites, Alpi Apuane, Italy Mineralogical Magazine. February 1. I/ol. 63(1), pp. 105-110 Zoning of chloritoid from kyanite-facies metapsammites, Alpi Apuane, Italy M. FRANCESCIII'LI.I I AND I. MEMMI 2 J Dipartimento di Scienze della

More information

Introduction. Antonio Garcõ a-casco á Rafael Luis Torres-Rolda n

Introduction. Antonio Garcõ a-casco á Rafael Luis Torres-Rolda n Contrib Mineral Petrol (1999) 136: 131±153 Ó Springer-Verlag 1999 Antonio Garcõ a-casco á Rafael Luis Torres-Rolda n Natural metastable reactions involving garnet, staurolite and cordierite: implications

More information

What is going on here?

What is going on here? Major Digression! Atoms? Elements? Compounds? Minerals? Rocks? What is going on here? Source:SERC @ Carleton College http://www.brocku.ca/earthsciences/people/gfinn/petrology/periodic.gif http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?pt_id=335

More information

Paper 1: THE ROLE OF FLUORINE IN THE FORMATION OF COLOR ZONING IN RUBIES FROM MONG HSU, MYANMAR (BURMA)

Paper 1: THE ROLE OF FLUORINE IN THE FORMATION OF COLOR ZONING IN RUBIES FROM MONG HSU, MYANMAR (BURMA) Paper 1: THE ROLE OF FLUORINE IN THE FORMATION OF COLOR ZONING IN RUBIES FROM MONG HSU, MYANMAR (BURMA) Dr A. Peretti 1,DrJ.Mullis 2 and F. Mouawad 3 1. P. O. Box 4028, 6002 Lucerne, Switzerland 2. Sissach,

More information

Numerical Modelling in Predictive Mineral Discovery: Geochemical Models

Numerical Modelling in Predictive Mineral Discovery: Geochemical Models Numerical Modelling in Predictive Mineral Discovery: Geochemical Models F1-2 pmd Team Thursday 4 th September 2003 Key F1/2 Workflow Modelling mineral deposit geology and fluid processes using equilibrium

More information

Earth and Planetary Materials

Earth and Planetary Materials Earth and Planetary Materials Spring 2013 Lecture 4 2013.01.16 Example Beryl Be 3 Al 2 (SiO 3 ) 6 Goshenite Aquamarine Emerald Heliodor Red beryl Morganite pure Fe 2+ & Fe 3+ Cr 3+ Fe 3+ Mn 3+ Mn 2+ Rules

More information

Geology, Alteration and. Petrogenesis

Geology, Alteration and. Petrogenesis The Mutooroo Copper Deposit: Geology, Alteration and Petrogenesis Graham S. Teale Consultant t Andrew T. Price Havilah Resources NL The speaker would like to thank Havilah Resources NL for the opportunity

More information

Reactions take place in a direction that lowers Gibbs free energy

Reactions take place in a direction that lowers Gibbs free energy Metamorphic Rocks Reminder notes: Metamorphism Metasomatism Regional metamorphism Contact metamorphism Protolith Prograde Retrograde Fluids dewatering and decarbonation volatile flux Chemical change vs

More information

Metcalf and Buck. GSA Data Repository

Metcalf and Buck. GSA Data Repository GSA Data Repository 2015035 Metcalf and Buck Figure DR1. Secondary ionization mass-spectrometry U-Pb zircon geochronology plots for data collected on two samples of Wilson Ridge plutonic rocks. Data presented

More information

RECEIVED JANUARY 11, 2006; ACCEPTED AUGUST 15, 2006; ADVANCE ACCESS PUBLICATION SEPTEMBER 29, 2006

RECEIVED JANUARY 11, 2006; ACCEPTED AUGUST 15, 2006; ADVANCE ACCESS PUBLICATION SEPTEMBER 29, 2006 JOURNAL OF PETROLOGY VOLUME 47 NUMBER 12 PAGES 2335 2356 2006 doi:10.1093/petrology/egl046 Calculation of Garnet Fractionation in Metamorphic Rocks, with Application to a Flat-Top, Y-rich Garnet Population

More information

Diffusion control of garnet growth, Harpswell Neck, Maine, USA

Diffusion control of garnet growth, Harpswell Neck, Maine, USA J. metamorphic Geol., 2001, 19, 179±195 Diffusion control of garnet growth, Harpswell Neck, Maine, USA F. S. SPEAR 1. AND C. G. DANIEL 2 *. 1 Department of Earth and Environmental Sciences, Rensselaer

More information

Borojević Šoštarić 1, S., Cvetković 2, V., Neubauer 3, F., Palinkaš 4, LA., Bernroider 3, M., Genser 3, J.

Borojević Šoštarić 1, S., Cvetković 2, V., Neubauer 3, F., Palinkaš 4, LA., Bernroider 3, M., Genser 3, J. RUDARSKO- GEOLOŠKO NAFTNI FAKULTET FACULTY OF MINING, GEOLOGY AND PETROLEUM ENGINEERING Oligocene shoshonitic rocks of the Rogozna Mts. (Central Balkan Peninsula): evidence of petrogenetic links to the

More information

Estimation of oxygen fugacity according to amphibole chemical composition in Vash granitoid, NW Natanz(Esfahan,Iran)

Estimation of oxygen fugacity according to amphibole chemical composition in Vash granitoid, NW Natanz(Esfahan,Iran) Estimation of oxygen fugacity according to amphibole chemical composition in Vash granitoid, NW Natanz(Esfahan,Iran) Behafarin Shojaei Department of Geology, Islamic Azad University,Khoresgan Branch. E-mail:

More information

S. M. HOMAM ** Faculty of Earth Sciences, Damghan University of Sciences, Cheshmeh-Ali Road, Damghan, I. R. of Iran,

S. M. HOMAM ** Faculty of Earth Sciences, Damghan University of Sciences, Cheshmeh-Ali Road, Damghan, I. R. of Iran, Iranian Journal of Science & Technology, Transaction A, Vol. 29, No. A1 Printed in The Islamic Republic of Iran, 2005 Shiraz University GEOTHERMOBAROMETRY OF Al 2 SiO 5 -BEARING METAPELITES IN THE ARDARA

More information

Accessory phase petrogenesis in relation to major phase assemblages in pelites from the Nelson contact aureole, southern British Columbia

Accessory phase petrogenesis in relation to major phase assemblages in pelites from the Nelson contact aureole, southern British Columbia J. metamorphic Geol., 2007, 25, 401 421 doi:10.1111/j.1525-1314.2007.00702.x Accessory phase petrogenesis in relation to major phase assemblages in pelites from the Nelson contact aureole, southern British

More information

EPSC 233. Compositional variation in minerals. Recommended reading: PERKINS, p. 286, 41 (Box 2-4).

EPSC 233. Compositional variation in minerals. Recommended reading: PERKINS, p. 286, 41 (Box 2-4). EPSC 233 Compositional variation in minerals Recommended reading: PERKINS, p. 286, 41 (Box 2-4). Some minerals are nearly pure elements. These are grouped under the category of native elements. This includes

More information

The Genesis of Kurišková U-Mo ore deposits. Rastislav Demko, Štefan Ferenc, Adrián Biroň, Ladislav Novotný & Boris Bartalský

The Genesis of Kurišková U-Mo ore deposits. Rastislav Demko, Štefan Ferenc, Adrián Biroň, Ladislav Novotný & Boris Bartalský The Genesis of Kurišková U-Mo ore deposits Rastislav Demko, Štefan Ferenc, Adrián Biroň, Ladislav Novotný & Boris Bartalský Kurišková project development Uranium (uranium ore) has higher value in comparison

More information

CHLORITE-CHLORITOID-GARNET EQUILIBRIA AND GEOTHERMOMETRY IN THE SANANDAJ-SIRJAN METAMORPHIC BELT, SOUTHERN IRAN * M. MOAZZEN

CHLORITE-CHLORITOID-GARNET EQUILIBRIA AND GEOTHERMOMETRY IN THE SANANDAJ-SIRJAN METAMORPHIC BELT, SOUTHERN IRAN * M. MOAZZEN Iranian Journal of Science & Technology, Transaction A, Vol. 28, No. A1 Printed in Islamic Republic of Iran, 2004 Shiraz University CHLORITE-CHLORITOID-GARNET EQUILIBRIA AND GEOTHERMOMETRY IN THE SANANDAJ-SIRJAN

More information

Geochronology of Metasomatic Events (Cha-6) In-situ Characterization of Chronometer Phases

Geochronology of Metasomatic Events (Cha-6) In-situ Characterization of Chronometer Phases Geochronology of Metasomatic Events (Cha-6) In-situ Characterization of Chronometer Phases M.L. Williams, I.M. Villa w/ M.J. Jercinovic Univ. of Mass Monazite: (LREE) PO 4 Common accessory phase in igneous,

More information

Geothermobarometry of metapelites of southwest Mahneshan, using multiple equilibria curves and THERMOCALC program

Geothermobarometry of metapelites of southwest Mahneshan, using multiple equilibria curves and THERMOCALC program Vol. 12, No. 2, 1383/2004 Fall & Winter Geothermobarometry of metapelites of southwest Mahneshan, using multiple equilibria curves and THERMOCALC program A. Saki, M. Moazzen, M. Moayyed Department of Geology,

More information

predictive mineral discovery*cooperative Research Centre A legacy for mineral exploration science Mineral Systems Q3 Fluid reservoirs

predictive mineral discovery*cooperative Research Centre A legacy for mineral exploration science Mineral Systems Q3 Fluid reservoirs Mineral Systems Q3 Fluid reservoirs 1 Key Parameter Mineral System Exploration is reflected in scale-dependent translation A. Gradient in hydraulic potential B. Permeability C. Solubility sensitivity to

More information

MET LABS 3 and 4: METABASITES

MET LABS 3 and 4: METABASITES GEOLOGY 13.53: Igneous and Metamorphic Petrology MET LABS 3 and 4: METABASITES Learning Objectives: Students will improve their ability to describe a metamorphic rock Students will be able to assign metamorphic

More information

PII S (99)

PII S (99) Pergamon PII S0016-7037(99)00150-7 Geochimica et Cosmochimica Acta, Vol. 63, No. 22, pp. 3829 3844, 1999 Copyright 1999 Elsevier Science Ltd Printed in the USA. All rights reserved 0016-7037/99 $20.00.00

More information

Chapter 18: Granitoid Rocks. Chapter 18: Granitoid Rocks. Melting of crustal materials at high pressure

Chapter 18: Granitoid Rocks. Chapter 18: Granitoid Rocks. Melting of crustal materials at high pressure Melting of crustal materials at high pressure Melting in the crust: the traditional low pressure view to be applied to HP CaO P 2 O 5 Zircon from a HP granite HP-HT garnets from Massif Central (Vielzeuf

More information

XM1/331 XM1/331 BLFX-3 XM1/331

XM1/331 XM1/331 BLFX-3 XM1/331 a b AkC AkC strontian fluoro-apatite clinopyroxene phlogopite K-richterite XM1/331 clinopyroxene XM1/331 Fe-Ti ox c d clinopyroxene kric AkC ilmenite Sr-barite AkC XM1/331 BLFX-3 Supplementary Figure 1.

More information

Log Interpretation Parameters Determined by Analysis of Green River Oil Shale Samples: Initial Steps

Log Interpretation Parameters Determined by Analysis of Green River Oil Shale Samples: Initial Steps Log Interpretation Parameters Determined by Analysis of Green River Oil Shale Samples: Initial Steps Michael M. Herron Susan L. Herron Malka Machlus Schlumberger-Doll Research Log Interpretation in Green

More information

An Investigation into

An Investigation into An Investigation into MINERALOGICAL CHARACTERIZATION OF FOUR TAILINGS SAMPLES prepared for LISHEEN MINE LR 11527-001 MI5002-APR07 May 28, 2007 NOTE: This report refers to the samples as received. The practice

More information

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8.

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8. EPMA IMAGES The attached images and mineral data can be used to supplement an instrument-based lab, or serve as the basis for lab that can be completed without an instrument. Please provide credit for

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL GSA DATA REPOSITORY 2014105 Earth s youngest-known ultrahigh-temperature granulites discovered on Seram, eastern Indonesia Jonathan M. Pownall 1, Robert Hall 1, Richard A. Armstrong 2, and Marnie A. Forster

More information

Trinitite the Atomic Rock

Trinitite the Atomic Rock Trinitite the Atomic Rock Nelson Eby, EEAS, University of Massachusetts, Lowell, MA Norman Charnley, Earth Sciences, University of Oxford, Oxford, UK John Smoliga, Roxbury, CT Special thanks to Robert

More information

Phase Diagram Problem 0

Phase Diagram Problem 0 Phase Diagram Problem 0 The phase diagram below includes reactions for a system that includes 6 minerals (listed in the table). The numbers and letters on points, lines and spaces are usually not preseent

More information

Shortcuts to mineral formulae

Shortcuts to mineral formulae Silicates JD Price Silicate Structure Silicate Structure (SiO2) Shortcuts to mineral formulae W cations with 8- (Ca 2+, Fe 2+, Mn 2+, Na + ) to 12-fold coordination (K +, Ba 2+ ) X divalent cations in

More information

Metasomatism Model. Metasomatism. Fluid Buffers. Volatile Species. C-O-H-S System. Speciation in C-O-H-S fluids

Metasomatism Model. Metasomatism. Fluid Buffers. Volatile Species. C-O-H-S System. Speciation in C-O-H-S fluids Metasomatism Model Metasomatism Reading: Winter, Chapter 30 Obvious in rocks with contrasting mineral layers Related to unequal partitioning of elements between solid phases and fluids Model uses ion-exchange

More information

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition Metamorphic Energy Flow Categories of Metamorphism Best, Chapter 10 Metamorphic processes are endothermic They absorb heat and mechanical energy Absorption of heat in orogenic belts Causes growth of mineral

More information

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Geol 2312 Igneous and Metamorphic Petrology Spring 2009 Name DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Objective: This exercise is intended to improve understanding

More information

GEOSCIENCE FRONTIERS 3(5) (2012) 603e611. available at China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS

GEOSCIENCE FRONTIERS 3(5) (2012) 603e611. available at   China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS GEOSCIENCE FRONTIERS 3(5) (2012) 603e611 available at www.sciencedirect.com China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS journal homepage: www.elsevier.com/locate/gsf RESEARCH PAPER Spinel

More information

Spot Name U-Pb ages (Ma) Plagioclase ages (Ma) Biotite age (Ma) Whole rock age (Ma)

Spot Name U-Pb ages (Ma) Plagioclase ages (Ma) Biotite age (Ma) Whole rock age (Ma) Table 1. Average U-Pb ages from this study in comparison with previous ages from Sherrod and Tosdal (1991, and references therein). Previous study ages are reported as ranges including uncertainty (i.e.

More information

Appendix A2: Detailed description of all results

Appendix A2: Detailed description of all results Appendix A2: Detailed description of all results This Appendix presents detailed descriptions of all results in this study. It is presented separately in order to streamline the main paper, and to provide

More information

Mass Transfer during Andalusite Replacement by Kyanite in Al- and Fe-Rich Metapelites in the Yenisei Range

Mass Transfer during Andalusite Replacement by Kyanite in Al- and Fe-Rich Metapelites in the Yenisei Range Petrology, Vol. 10, No. 5, 2002, pp. 479 494. Translated from Petrologiya, Vol. 10, No. 5, 2002, pp. 543 560. Original Russian Text Copyright 2002 by Likhanov, Reverdatto. English Translation Copyright

More information

Activity-composition relationships

Activity-composition relationships Activity-composition relationships back In the application of equilibrium thermodynamics, the starting point is the equilibrium relationship : the relationship for a balanced chemical reaction between

More information

Two Stages of Sapphirine Formation During Prograde and Retrograde Metamorphism in the Palaeoproterozoic Lewisian Complex in South Harris, NW Scotland

Two Stages of Sapphirine Formation During Prograde and Retrograde Metamorphism in the Palaeoproterozoic Lewisian Complex in South Harris, NW Scotland JOURNAL OF PETROLOGY VOLUME 44 NUMBER 2 PAGES 329±354 2003 Two Stages of Sapphirine Formation During Prograde and Retrograde Metamorphism in the Palaeoproterozoic Lewisian Complex in South Harris, NW Scotland

More information

High-pressure Fluid Rock Reactions involving Cl-bearing Fluids in Lower-crustal Ductile Shear Zones of the Flakstadøy Basic Complex, Lofoten, Norway

High-pressure Fluid Rock Reactions involving Cl-bearing Fluids in Lower-crustal Ductile Shear Zones of the Flakstadøy Basic Complex, Lofoten, Norway JOURNAL OF PETROLOGY VOLUME 42 NUMBER 7 PAGES 1349 1372 2001 High-pressure Fluid Rock Reactions involving Cl-bearing Fluids in Lower-crustal Ductile Shear Zones of the Flakstadøy Basic Complex, Lofoten,

More information

Petrology of Metamorphic Rocks from the Highland and Kadugannawa Complexes, Sri Lanka

Petrology of Metamorphic Rocks from the Highland and Kadugannawa Complexes, Sri Lanka Journal of the Geological Society of Sri Lanka, Vol. 14, 103-122 Journal of the Geological Society of Sri Lanka Vol. 14 (2011): 103-122. C.B. Dissanayake Felicitation Volume Petrology of Metamorphic Rocks

More information

Metamorphic Petrology

Metamorphic Petrology Metamorphic Petrology Session 4: PT-t Paths and Regional Metamorphism MP-SKM, slide 1 Review: Clapeyron slopes of dehydration reactions Solid-Solid Reactions ~small entropy change Dehydration Reactions

More information

Ti-in-biotite geothermometry in non-graphitic, peraluminous metapelites from Crni vrh and Resavski humovi (Central Serbia)

Ti-in-biotite geothermometry in non-graphitic, peraluminous metapelites from Crni vrh and Resavski humovi (Central Serbia) GEOLOGICA CARPATHICA, FEBRUARY 2009, 60, 1, 3 14 doi: 10.2478/v10096-009-0003-6 Ti-in-biotite geothermometry in non-graphitic, peraluminous metapelites from Crni vrh and Resavski humovi (Central Serbia)

More information

Petrographic Data. Appendix C. Edward F. Stoddard

Petrographic Data. Appendix C. Edward F. Stoddard Appendix C Petrographic Data Edward F. Stoddard Standard size (27 46 mm) petrographic thin sections (30 m) of all rock and artifact samples were examined with a binocular Zeiss polarizing microscope using

More information

Metamorphic Petrology GLY 262 Metamorphic fluids

Metamorphic Petrology GLY 262 Metamorphic fluids Metamorphic Petrology GLY 262 Metamorphic fluids The metamorphic fluid is arguably the most geologically important phase Spear (1993) The great volumetric abundance of hydrate-rich and carbonate-rich minerals

More information

THIS IS A NEW SPECIFICATION

THIS IS A NEW SPECIFICATION THIS IS A NEW SPECIFICATION ADVANCED SUBSIDIARY GCE GEOLOGY Rocks Processes and Products F792 * OCE / 1 3804* Candidates answer on the Question Paper OCR Supplied Materials: None Other Materials Required:

More information

MINERALOGY LABORATORY Metamorphic Rocks and Minerals

MINERALOGY LABORATORY Metamorphic Rocks and Minerals Some of the samples used in Mineralogy Lab are museum specimens. Please do not destroy or heist them. You can do just about anything you want to the grungy ones, but be nice to the pretty specimens as

More information

METAMORPHISM AS A FUNCTION OF DEPTH IN METASEDIMENTARY ROCKS OF THE OUTOKUMPU DEEP DRILL HOLE

METAMORPHISM AS A FUNCTION OF DEPTH IN METASEDIMENTARY ROCKS OF THE OUTOKUMPU DEEP DRILL HOLE Outokumpu Deep Drilling Project 2003 2010 Edited by Ilmo T. Kukkonen Geological Survey of Finland, Special Paper 51, 47 62, 2011 METAMORPHISM AS A FUNCTION OF DEPTH IN METASEDIMENTARY ROCKS OF THE OUTOKUMPU

More information

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc.

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc. Chapter 8 Lecture Earth: An Introduction to Physical Geology Twelfth Edition Metamorphism and dmetamorphic Rocks Tarbuck and Lutgens Chapter 8 Metamorphic Rocks What Is Metamorphism? Metamorphism means

More information

ANNEX VIII: APPENDIX E MINERALOGY RESULTS

ANNEX VIII: APPENDIX E MINERALOGY RESULTS ANNEX VIII: APPENDIX E MINERALOGY RESULTS Tables Table E-1 Mineralogical Analysis of Waste Rock Samples... 1 Table E-2 Mineralogical Analysis of Kimberlite Coarse Reject Samples... 3 E-i Table E-1 Mineralogical

More information

Mutsuko Inui. School of Science and Engineering, Kokushikan University, , Setagaya, Setagaya - ku, Tokyo , Japan

Mutsuko Inui. School of Science and Engineering, Kokushikan University, , Setagaya, Setagaya - ku, Tokyo , Japan Journal A of thin Mineralogical section scale and original Petrological inhomogeneity Sciences, of bulk Volume rock 103, chemistry page 135 140, inferred 2008-135 LETTER A thin-section scale original inhomogeneity

More information

Supporting Information Appendix

Supporting Information Appendix Supporting Information Appendix 1. Supporting Text. Silica-rich terrestrial deposits without tridymite. 2. Table S1. Chemical compositions from Rietveld analysis and chemical composition of minerals used

More information