Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration

Size: px
Start display at page:

Download "Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration"

Transcription

1 Chapter 5 Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration Andrew Putnis & Håkon Austrheim

2 Equilibration at a crystal - fluid interface µ fluid µ cryst crystal fluid The fluid may be an aqueous solution (or a melt), out of equilibrium with the crystal.

3 Equilibration at a crystal - fluid interface diffusion profile µ fluid µ cryst crystal fluid Equilibration by volume diffusion from the fluid into the crystal?

4 Equilibration at a crystal - fluid interface crystal recrystallisation front fluid Equilibration by interface-coupled dissolution-precipitation?

5 a b c d Reaction interfaces on an outcrop scale

6 The core of the garnet (granulitic) has lower Fe/Mg ratio than the lighter (eclogitic) rim granulite granulite eclogite

7 The core of the garnet has lower Fe/Mg ratio than the lighter rim recrystallisation front crystal fluid Pollok et al., (2008) Equilibration by interface-coupled dissolution-precipitation.

8 In all the examples we have studied, and examples taken from the literature, equilibration involves recrystallisation to form a more stable phase. See: Putnis (2009) Mineral Replacement Reactions In: Reviews in Mineralogy and Geochemistry Vol. 70 (Thermodynamics and Kinetics of Water-rock interaction) The free energy drive for mineral replacement reactions can be very small: e.g. Uptake of 133 Ba by BaSO 4 from a saturated solution at 23 0 C involves a dissolution-precipitation mechanism. Curti et al., (2010) Geochim. Cosmochim. Acta 74,

9 BaSO 4 recrystallisation front BaSO 4 enriched with 133 Ba Fluid saturated with respect to BaSO 4 but doped with 133 Ba Uptake of 133 Ba by BaSO 4 from a saturated solution at 23 0 C involves a dissolutionprecipitation mechanism. Curti et al., (2010) Geochim. Cosmochim. Acta 74, Suggests that small free energy differences may be sufficient to drive interface-coupled dissolution-precipitation reactions.

10 What is interface-coupled dissolution-precipitation? crystal a b c d e (a) Dissolution of even a few monolayers of the parent crystal may result in an interfacial fluid layer which is supersaturated with respect to another phase (b) This product phase may nucleate on the surface of the parent (c) The porosity generated depends on both the solid molar volume change and the relative solubilities of parent and product in the fluid (d-e) A reaction/replacement interface moves through the parent crystal

11 Pseudomorphic Mineral Replacement Examples

12 Example 1: Experiment Single crystal aragonite replaced by calcite

13 BSE of cross sections of an aragonite crystal partially replaced by calcite in a hydrothermal experiment

14 The dissolution of aragonite and precipitation of calcite results in porosity in the calcite allowing fluid to access the dissolution-precipitation front Even though the molar volume of calcite is greater than that of aragonite

15 Raman map of the 18 O distribution when the fluid is enriched in 18 O The calcite is enriched in 18 O showing that oxygen is also replaced in the transformation i.e. coupled dissolutionprecipitation

16 The aragonite calcite transition can also take place by a solid state mechanism*. * solid state mechanism - one that involves the reorganisation of the structure without the need for a fluid phase (i.e. no dissolution and reprecipitation) The activation energy for the wet process is about half that of the dry process, so that at a temperature of 200 o C the transformation is faster by a factor of about

17 Example 2: Experiment Calcium carbonate (Carrara marble) replaced by apatite

18 Cross section of cube of Carrara marble reacted with phosphate solution at C for 1 week Calcite is partially replaced by apatite Ca 5 (PO 4 ) 3 (OH) BSE image: L.Jonas

19 calcite is being replaced by apatite, Ca 5 (PO 4 ) 3 (OH) Experiments with Carrara marble with a hydrothermal fluid containing phosphate ions. The dissolution of the calcite results in a Ca-P bearing fluid, from which apatite nucleates. The dissolution and precipitation are coupled so that the parent phase is replaced by the product.

20 porous apatite replacing calcite

21 How relevant is this to metamorphism?

22 The conversion of gabbro to eclogite Image: Timm John Gabbro Eclogite Igneous texture of the gabbro preserved: garnet replaces plagioclase, omphacite replaces augite from Putnis & John, Elements 6, 2010

23 from Putnis & John, Elements 6, 2010

24 Albitisation one of the most common metasomatic reactions

25 Fluid - induced chemical reequilibration of feldspars Albitisation of granitoid in the Bamble sector, Norway Plagioclase (Na,Ca) feldspar replaced by albite (NaAlSi 3 O 8 )

26 Fluid - induced chemical reequilibration of feldspars Albitisation of granitoid in the Bamble sector, Norway Plagioclase (Na,Ca) feldspar replaced by albite (NaAlSi 3 O 8 )

27 Feldspar replacement microstructure An 22 Ab 77 Note the porosity developed in the product phase An 2 Ab 95 The crystal structure is preserved across the sharp interface Engvik et al. (2008) Can. Mineral

28 What happens to the charged fluid which has albitised the country rock? - Ore deposits after Korneliussen et al., 2000

29 In Australia, < 100 kms south west of Broken Hill Albitisation in the Curnamona Province, South Australia

30 Albitisation in the Curnamona Province, South Australia

31 How much saline fluid is needed to albitise such large volumes? How does the fluid move through the rock? Albitisation in the Curnamona Province, South Australia

32 Ultimately albitisation can replace the whole rock Albite quarry in Turkey David Ettner

33 Albite (dark) growing within phlogopite (pale)during albitisation Ab Image: Håkon Austrheim

34 Albite (dark) growing within phlogopite (pale) during albitisation How is this extra volume created? Ab Image: Håkon Austrheim

35 Metasomatism and Metamorphism Both involve dissolution-transport-precipitation Is it just a question of the spatial scale? Can we define any equilibrium reactions?

36 Metasomatic rocks often are not recognised as such... but how do we recognise a metamorphic event? Vernon RH, White RW, Clarke GL (2008) False metamorphic events inferred from misinterpretation of microstructural evidence and P-T data. Journal of Metamorphic Geology, 26, In Vernon s context a metamorphic event constitutes a series of reactions through P,T space, and he addresses the problem of recognising textures which indicate crossing a particular P,T reaction line., i.e. recognising phases which define an equilibrium assemblage at some point in time.

37 Vernon identifies two reliable microstructural criteria for recognising a metamorphic event: partial replacement textures reaction coronas at grain boundaries between two reacting phases

38 Metasomatic rocks often are not recognised as such... but how do we recognise a metamorphic event? Two typical partial replacement textures: An 22 An 2 Apatite-OH replacing Apatite-Cl Albite (An 2 ) replacing plagioclase (An 22 )

39 Metasomatic rocks often are not recognised as such... but how do we recognise a metamorphic event? Two typical partial replacement textures: In these examples the equilibrium (if any) is An 22 between the product phase and the interfacial fluid and An not between the parent and the product 2 solid phases Apatite-OH replacing Apatite-Cl Albite (An 2 ) replacing plagioclase (An 22 )

40 A sharp interface between two apparently coexisting phases does not mean they are in equilibrium. Partial replacement textures cannot be used as a criterion for a metamorphic event in the sense of crossing a reaction line in P,T space.

41 Vernon identifies two reliable microstructural criteria for recognising a metamorphic event: partial replacement textures reaction coronas at grain boundaries between two reacting phases

42 Corona textures A concentric arrangement of one or several rims of minerals around a core mineral Dimensions: µm to dm across Easy to interpret and frequently used to unravel the history of rocks

43 Granulite from the Bergen Arcs, Norway

44 Interpretation A reaction texture formed due to changing P and T. Assumptions: Core is older than the rim The system is closed Solid-solid reaction Reaction deduced: A + B = C + D + E Converting a gabbro to a granulite facies rock B C D E A

45 Application in petrology P-T diagram Provided we know the stability fields of the mineral assemblages, we can infer the P - T path. Pressure (P) Temperature (T)

46 Mechanism of Corona formation 1. Nucleation at the contact between the reacting minerals 2. Diffusion of material through the product mineral 3. The growth must slow down with time 4. New rims may nucleate as P and T continue to change 5. Regarded as solid solid reaction Ol Opx Cpx Grt Plag

47 Corona formation and fracturing Double opx rims around olivine Discontinuous rims. How can we explain this? oliv plag

48 Are coronas a reliable indicator of a metamorphic event? A typical reaction corona: spr + plag Straume and Austrheim, 1999 Reaction between garnet + kyanite to plagioclase + sapphirine along grain boundaries (but not all grain boundaries)

49 Are coronas a reliable indicator of a metamorphic event? spr + plag (i) The grt + ky reaction only takes place on some interfaces (ii) The plag contains >10% albite component Straume and Austrheim, 1999 Conclusion: Reaction has only taken place where an Nabearing fluid has infiltrated

50 Partial reactions on some grain boundaries and not others is typical of such corona reaction textures and is more consistent with a metasomatic reaction limited by fluid availability than with a solid state volume diffusion controlled reaction. Both of the Vernon et al. reliable criteria for a metamorphic event are indicators of metasomatism. The equilibrium (if any) is not likely to be that between the parent and product phases but between the fluid and the product.

51 The Journal of Geology, 26, (1918) Metamorphic reactions should be balanced on volume

52 The conversion of gabbro to eclogite Image: Timm John Gabbro Eclogite Igneous texture of the gabbro preserved: garnet replaces plagioclase, omphacite replaces augite

53 The problem of identifying metasomatism when there is no chemical or physical reference frame. Small zircon crystals are often associated with ilmenite grain boundaries in a wide range of rock types. During metasomatism where the ilmenite and hornblende are replaced by phlogopite, the zircon may remain unreacted and outlines the position of the former ilmenite grain boundary. Note: no deformation has been involved in this replacement. Austrheim et al., 2008

54 Serpentinisation of olivine : Volume increase?

55 Molar volumes: Olivine ~ 46.5 ccs Antigorite ~ 110 ccs 2Mg 2 SiO 4 + 2H + + 2H 2 O Mg 3 [Si 2 O 5 ](OH) 4 + Mg 2+ 3Mg 2 SiO 4 + H 4 SiO 4 (aq) + 2H 2 O 2Mg 3 [Si 2 O 5 ](OH) 4 5Mg 2 SiO 4 + 2H 2 O +8H + 2Mg 3 [Si 2 O 5 ](OH) 4 + 4Mg 2+ + H 4 SiO 4(aq)

56 Pressure (kbars) Jadeite + Quartz Albite Temperature 0 C NaAlSi 3 O 8 NaAlSi 2 O 6 + SiO 2 Does this reaction represent the actual mechanism?

57 Albite Albite being replaced isovolumetrically by jadeite a Jadeite 0.2 mm NaAlSi 3 O 8 NaAlSi 2 O 6 + SiO 2 (aq)??? Molar volumes: Albite~ ccs Jadeite~ 60.4 ccs Albite To balance the reaction on volume: 0.6 Albite + Fluid 1.0 Albite Jadeite To mass balance the reaction the Fluid phase must add 0.4 moles of Na and Al, and 0.2 moles of Si b Image: R. Rysza

58 Jadeite being replaced isovolumetrically by albite NaAlSi 2 O 6 + SiO 2 (aq) NaAlSi 3 O 8??? a Molar volumes: Albite~ ccs Jadeite~ 60.4 ccs To balance the reaction on volume: 1.6 Jadeite 1.0 Albite + Fluid b To mass balance the reaction the Fluid must remove 0.6 moles of Na and Al, and 0.2 moles of Si Image: M.Shigeno

59 Some problems this raises How do we determine the thermodynamics of these open system reactions? The textures imply a very significant element exchange in the fluid phase? How does the fluid pass through the minerals?

60 Partial transformation of single crystal coesite (cubic, isotropic) to polycrystalline low quartz (trigonal, anisotropic) Image: J.R.Smyth 0.2 mm 0.5 mm Image: J.R.Smyth

61 Element maps of metasomatic tournaline. The Ca and Ti distribution preserve chemical features of the precursor phases. Bast R. MSc 2010

62 Pervasive metamorphism requires pervasive fluid infiltration and diffusion of elements through the fluid. How do fluids move through low permeability rocks? 1.Reaction generated porosity. Plenty of experimental evidence for interface-coupled dissolution-precipitation, which involves fluids accessing internal reaction interfaces within crystals. Fluid infiltration through nanopores which are generated within the product phase due to differences in the relative molar volumes and solubilities of parent and product phases.

63 Pervasive metamorphism requires pervasive fluid infiltration and diffusion of elements through the fluid. How do fluids move through low permeability rocks? 2. Reaction generated fractures.. or dissolution pathways? The product phase nucleates within these fractures.

64 Implications of interface-coupled dissolution-precipitation as a mechanism of mineral replacement Fluid control of metamorphic reactions Austrheim et al., (1987), Pollok et al., (2008)

65 Implications of interface-coupled dissolution-precipitation as a mechanism of mineral replacement Is the fluid more than just a catalyst in a metamorphic reaction? A + B + F 1 C + D + F 2? or Pressure C + D A + B Temperature

66 Acknowledgements This work is supported by: The EU ITN Network Delta-Min (Mechanisms of Mineral Replacement Reactions) The Humboldt Foundation

GEOLOGY 285: INTRO. PETROLOGY

GEOLOGY 285: INTRO. PETROLOGY Dr. Helen Lang Dept. of Geology & Geography West Virginia University SPRING 2016 GEOLOGY 285: INTRO. PETROLOGY Metamorphic Mineralogy depends on Temperature, Pressure and Rock Composition but Metamorphic

More information

Metamorphism. Bjørn Jamtveit

Metamorphism. Bjørn Jamtveit Metamorphism Bjørn Jamtveit Physics of Geological Processes, University of Oslo, P.O.Box 1048 Blindern, N-0316 Oslo, Norway E-mail: bjorn.jamtveit@geo.uio.no CHANGE According to Winkler (1979): Metamorphism

More information

Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II)

Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II) Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II) Metamorphic processes Metamorphism is very complex and involves a large number of chemical and physical processes occurring

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10 GEOL 2312 Igneous and Metamorphic Petrology Name KEY Spring 2016 Score / 58 Midterm 1 Chapters 1-10 1) Name two things that petrologists want to know about magmas (1 pt) Formation, source, composition,

More information

amphibole PART 3 Pyroxene: augite CHAIN SILICATES

amphibole PART 3 Pyroxene: augite CHAIN SILICATES amphibole PART 3 Pyroxene: augite CHAIN SILICATES CHAIN SILICATES = INOSILICATES inos = chains Basic structural group: Si 2 O 6 (each tetrahedra shared two corners) Simple or double chains linked by cations

More information

Chemical Geology. Coupled dissolution and precipitation at mineral fluid interfaces. E. Ruiz-Agudo a,,c.v.putnis b,a.putnis b

Chemical Geology. Coupled dissolution and precipitation at mineral fluid interfaces. E. Ruiz-Agudo a,,c.v.putnis b,a.putnis b Chemical Geology 383 (2014) 132 146 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Coupled dissolution and precipitation at mineral fluid interfaces

More information

Earth Science 232 Petrography

Earth Science 232 Petrography Earth Science 232 Petrography Course notes by Shaun Frape and Alec Blyth Winter 2002 1 Petrology - Introduction Some Definitions Petra Greek for rock Logos Greek for disclosure or explanation Petrology

More information

Reactions take place in a direction that lowers Gibbs free energy

Reactions take place in a direction that lowers Gibbs free energy Metamorphic Rocks Reminder notes: Metamorphism Metasomatism Regional metamorphism Contact metamorphism Protolith Prograde Retrograde Fluids dewatering and decarbonation volatile flux Chemical change vs

More information

Metamorphic Petrology GLY 262 Metamorphic fluids

Metamorphic Petrology GLY 262 Metamorphic fluids Metamorphic Petrology GLY 262 Metamorphic fluids The metamorphic fluid is arguably the most geologically important phase Spear (1993) The great volumetric abundance of hydrate-rich and carbonate-rich minerals

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION GSA Data Repository 080 Schorn et al., 08, Thermal buffering in the orogenic crust: Geology, https://doi.org/0.30/g4046.. SUPPLEMENTARY INFORMATION 3 PHASE DIAGRAM MODELING 4 5 6 7 8 9 0 3 4 Phase diagrams

More information

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in Chapter - IV PETROGRAPHY 4.1. Introduction Petrographic studies are an integral part of any structural or petrological studies in identifying the mineral assemblages, assigning nomenclature and identifying

More information

Metamorphic Petrology. Jen Parks ESC 310, x6999

Metamorphic Petrology. Jen Parks ESC 310, x6999 Metamorphic Petrology Jen Parks ESC 310, x6999 jeparks@sciborg.uwaterloo.ca Definition of Metamorphism The IUGS-SCMR SCMR definition of metamorphism: Metamorphism is a subsolidus process leading to changes

More information

Metamorphic Petrology GLY 712 Geothermo-barometry

Metamorphic Petrology GLY 712 Geothermo-barometry Metamorphic Petrology GLY 712 Geothermo-barometry What is thermobarometry? Thermobarometry is concerned with estimating or inferring the temperatures and pressures at which a rock formed and/or subsequently

More information

Metamorphic Facies. Metamorphic Facies. Metamorphic Facies. ERSC 3P21 Metamorphic Petrology II 03/11/2005. Facies

Metamorphic Facies. Metamorphic Facies. Metamorphic Facies. ERSC 3P21 Metamorphic Petrology II 03/11/2005. Facies Metamorhic Facies Facies There is a redictable and common corresondence between the of each rock and its Mineral that define the metamorhic indicate that a state of stable has been over a restricted T

More information

Chapter 18: Granitoid Rocks. Chapter 18: Granitoid Rocks. Melting of crustal materials at high pressure

Chapter 18: Granitoid Rocks. Chapter 18: Granitoid Rocks. Melting of crustal materials at high pressure Melting of crustal materials at high pressure Melting in the crust: the traditional low pressure view to be applied to HP CaO P 2 O 5 Zircon from a HP granite HP-HT garnets from Massif Central (Vielzeuf

More information

MET LABS 3 and 4: METABASITES

MET LABS 3 and 4: METABASITES GEOLOGY 13.53: Igneous and Metamorphic Petrology MET LABS 3 and 4: METABASITES Learning Objectives: Students will improve their ability to describe a metamorphic rock Students will be able to assign metamorphic

More information

Metamorphism (means changed form

Metamorphism (means changed form Metamorphism (means changed form) is recrystallization without melting of a previously existing rock at depth in response to a change in the environment of temperature, pressure, and fluids. Common minerals

More information

PII S (99)

PII S (99) Pergamon PII S0016-7037(99)00150-7 Geochimica et Cosmochimica Acta, Vol. 63, No. 22, pp. 3829 3844, 1999 Copyright 1999 Elsevier Science Ltd Printed in the USA. All rights reserved 0016-7037/99 $20.00.00

More information

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Metamorphism What happens to rocks that are

More information

Feldspar in felsic orthogneiss as indicator for UHT crustal processes

Feldspar in felsic orthogneiss as indicator for UHT crustal processes 260 Journal of Mineralogical and Petrological T. Hokada and Sciences, S. Suzuki Volume 101, page 260 264, 2006 LETTER Feldspar in felsic orthogneiss as indicator for UHT crustal processes Tomokazu HOKADA

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition Metamorphic Energy Flow Categories of Metamorphism Best, Chapter 10 Metamorphic processes are endothermic They absorb heat and mechanical energy Absorption of heat in orogenic belts Causes growth of mineral

More information

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout)

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout) Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and 20 MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout) Chain silicate eg Diopside Mg and Fe ions link SiO 3 chains The chain runs up and down

More information

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Geol 2312 Igneous and Metamorphic Petrology Spring 2009 Name DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Objective: This exercise is intended to improve understanding

More information

predictive mineral discovery*cooperative Research Centre A legacy for mineral exploration science Mineral Systems Q3 Fluid reservoirs

predictive mineral discovery*cooperative Research Centre A legacy for mineral exploration science Mineral Systems Q3 Fluid reservoirs Mineral Systems Q3 Fluid reservoirs 1 Key Parameter Mineral System Exploration is reflected in scale-dependent translation A. Gradient in hydraulic potential B. Permeability C. Solubility sensitivity to

More information

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification:

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks

More information

Chapter IV MINERAL CHEMISTRY

Chapter IV MINERAL CHEMISTRY Chapter IV MINERAL CHEMISTRY Chapter-IV MINERAL CHEMISTRY 4.1 INTRODUCTION In this chapter, chemical analyses of different minerals present in various rocks of Mashhad granitoid plutons have been presented.

More information

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams Page 1 of 12 EENS 211 Earth Materials Tulane University Prof. Stephen A. Nelson TWO COMPONENT (BINARY) PHASE DIAGRAMS This document last updated on 08-Oct-2003 Experimental Determination of 2-Component

More information

Chapter 3. Atoms and Minerals. Earth Materials

Chapter 3. Atoms and Minerals. Earth Materials Chapter 3 Atoms and Minerals Earth Materials Atoms and Elements: Isotopes and Ions A Review of Chemistry Atoms Atoms are composed of Protons, Neutrons and Electrons A proton has an electric charge of +1

More information

Chapter 7 Metamorphism: A Process of Change

Chapter 7 Metamorphism: A Process of Change Chapter 7 Metamorphism: A Process of Change Metamorphism: A Process of Change Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides

More information

Partial melting of mantle peridotite

Partial melting of mantle peridotite Partial melting of mantle peridotite 1100 1200 1300 1400 1500 (TºC) Depth (km) 50 100 150 Plag lherzolite (ol-opx-cpx-pl) Spinel lherzolite (Ol-opx-cpx-sp) Garnet lherzolite (Ol-opx-cpx-gar) Graphite Diamond

More information

Numerical Modelling in Predictive Mineral Discovery: Geochemical Models

Numerical Modelling in Predictive Mineral Discovery: Geochemical Models Numerical Modelling in Predictive Mineral Discovery: Geochemical Models F1-2 pmd Team Thursday 4 th September 2003 Key F1/2 Workflow Modelling mineral deposit geology and fluid processes using equilibrium

More information

"When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka

When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka Metamorphosis "When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka Metamorphism The transformation of rock by temperature

More information

Originally published as:

Originally published as: Originally published as: Kusebauch, C., John, T., Whitehouse, M. J., Engvik, A. (2015): Apatite as probe for the halogen composition of metamorphic fluids (Bamble Sector, SE Norway). - Contributions to

More information

CO 2 -water-rock reactivity at hydrothermal temperatures: The BigRig2 experiment

CO 2 -water-rock reactivity at hydrothermal temperatures: The BigRig2 experiment CO 2 -water-rock reactivity at hydrothermal temperatures: The BigRig2 experiment C.A. ROCHELLE 1 *, K. BATEMAN 1, A. LACINSKA 1, D. WAGNER 1, J. LIONS 2 AND I. GAUS 2 1 British Geological Survey, Keyworth,

More information

Supplementary Table 1.

Supplementary Table 1. Supplementary Table 1. Compositional groups, typical sample numbers and location with their bulk compositional, mineralogical and petrographic characteristics at different metamorphic grades. Metamorphic

More information

Interpreting Phase Diagrams

Interpreting Phase Diagrams Interpreting Phase Diagrams Understanding chemical reactions requires that we know something about how materials behave as the temperature and pressure change. For a single component (like quartz or ice)

More information

About Earth Materials

About Earth Materials Grotzinger Jordan Understanding Earth Sixth Edition Chapter 3: EARTH MATERIALS Minerals and Rocks 2011 by W. H. Freeman and Company About Earth Materials All Earth materials are composed of atoms bound

More information

Trace Elements. Today s lecture

Trace Elements. Today s lecture Trace Elements 300 Ni 200 ppm 100 0 300 Zr 200 100 0 40 50 60 70 80 SiO 2 wt. % Updates: M&M due date: Tuesday Today s lecture Topics: Trace element compositions Trace element behavior Partitioning Spider(

More information

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks Chapter 3.0: Weathering & soils Chapter 4.0: Geological

More information

A. One component system (c = 1)

A. One component system (c = 1) A. One component system (c = 1) Example: SiO 2 system. Since all phases in this system have the same composition, there are no compositional variables to consider. Phase equilibria can be shown completely

More information

Rocks and Minerals C Key. Science Olympiad North Regional Tournament at the University of Florida

Rocks and Minerals C Key. Science Olympiad North Regional Tournament at the University of Florida Rocks and Minerals C Key Science Olympiad North Regional Tournament at the University of Florida Station 1 Answer: Azurite 2. What is the chemical formula Answer: Cu 3 (CO 3 ) 2 (OH) 2 3. What element

More information

LAB 2: SILICATE MINERALS

LAB 2: SILICATE MINERALS GEOLOGY 640: Geology through Global Arts and Artifacts LAB 2: SILICATE MINERALS FRAMEWORK SILICATES The framework silicates quartz and feldspar are the most common minerals in Earth s crust. Quartz (SiO

More information

Geol 5310 (Spr 09) Lab 1 Review of Optical Mineralogy (9/9/09) Due Date: Wed., September 16.

Geol 5310 (Spr 09) Lab 1 Review of Optical Mineralogy (9/9/09) Due Date: Wed., September 16. Geol 5310 (Spr 09) Lab 1 Review of Optical Mineralogy (9/9/09) Due Date: Wed., September 16. Name_ Score /36 Objective: Re-familiarize yourself with the optical properties of minerals and concepts like,

More information

Metamorphic Facies. Fig Temperaturepressure

Metamorphic Facies. Fig Temperaturepressure Metamorphic Facies Fig. 25.2. Temperaturepressure diagram showing the generally accepted limits of the various facies used in this text. Boundaries are approximate and gradational. The typical or average

More information

Introduction to Geology Spring 2008

Introduction to Geology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.001 Introduction to Geology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Regional metamorphism

More information

GLY 155 Introduction to Physical Geology, W. Altermann

GLY 155 Introduction to Physical Geology, W. Altermann Earth Materials Systematic subdivision of magmatic rocks Subdivision of magmatic rocks according to their mineral components: Content of quartz SiO 2 ( free quartz presence) Quartz with conchoidal breakage

More information

Lithology: Olivine-rich gabbro medium grained Observer: Texture: granular Ave. grain size: medium grained [345] Shape Habit Comments

Lithology: Olivine-rich gabbro medium grained Observer: Texture: granular Ave. grain size: medium grained [345] Shape Habit Comments THIN SECTION LABEL ID: 179-1105A-1R-2-W 88/91-TSB-TSS Piece no.: #02 TS no.: Igneous Medium-grained olivine gabbronorite; plagioclase chadacryst within orthopyroxene oikocryst; rims of olivine and clinopyroxene

More information

Practice Test Rocks and Minerals. Name. Page 1

Practice Test Rocks and Minerals. Name. Page 1 Name Practice Test Rocks and Minerals 1. Which rock would be the best source of the mineral garnet? A) basalt B) limestone C) schist D) slate 2. Which mineral is mined for its iron content? A) hematite

More information

METAMORPHISM OF PRECAMBRIAN ROCKS IN THE SOUTHERN HIGHLAND MOUNTAINS, SOUTHWESTERN MONTANA

METAMORPHISM OF PRECAMBRIAN ROCKS IN THE SOUTHERN HIGHLAND MOUNTAINS, SOUTHWESTERN MONTANA METAMORPHISM OF PRECAMBRIAN ROCKS IN THE SOUTHERN HIGHLAND MOUNTAINS, SOUTHWESTERN MONTANA JESSICA A. MATTHEWS Amherst College Sponsor: John T. Cheney INTRODUCTION A diverse Precambrian sequence of garnetrich

More information

High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools -

High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools - High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools - SZABÓ, Csaba Lithosphere Fluid Research Lab (LRG), Department of Petrology and Geochemistry,

More information

Rocks and the Rock Cycle notes from the textbook, integrated with original contributions

Rocks and the Rock Cycle notes from the textbook, integrated with original contributions Rocks and the Rock Cycle notes from the textbook, integrated with original contributions Alessandro Grippo, Ph.D. Gneiss (a metamorphic rock) from Catalina Island, California Alessandro Grippo review Rocks

More information

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg 11 Olivine Structure Olivine is a common green or brown rock forming minerals which consists of a solid-solution series between Forsterite (Fo) and Fayalite (Fa). It is an orthorhombic orthosilicate with

More information

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements.

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. CHAPTER 5 Igneous Rocks SECTION 5.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

High-pressure Fluid Rock Reactions involving Cl-bearing Fluids in Lower-crustal Ductile Shear Zones of the Flakstadøy Basic Complex, Lofoten, Norway

High-pressure Fluid Rock Reactions involving Cl-bearing Fluids in Lower-crustal Ductile Shear Zones of the Flakstadøy Basic Complex, Lofoten, Norway JOURNAL OF PETROLOGY VOLUME 42 NUMBER 7 PAGES 1349 1372 2001 High-pressure Fluid Rock Reactions involving Cl-bearing Fluids in Lower-crustal Ductile Shear Zones of the Flakstadøy Basic Complex, Lofoten,

More information

Table 7.1 Mineralogy of metamorphic rocks related to protolith and grade

Table 7.1 Mineralogy of metamorphic rocks related to protolith and grade Geology 101 Name(s): Lab 7: Metamorphic rocks Metamorphic rocks have been subjected to sufficient heat and/or pressure to melt some of their constituent minerals, but not all of them. As a result of this

More information

PLATE TECTONICS, VOLCANISM AND IGNEOUS ROCKS

PLATE TECTONICS, VOLCANISM AND IGNEOUS ROCKS PLATE TECTONICS, VOLCANISM AND IGNEOUS ROCKS PLATE TECTONICS TO IGNEOUS ROCKS Internal Heat Seafloor Spreading/Plate Tectonics Volcanism Plate Boundary Intra-plate (hot spot) Divergent Convergent Igneous

More information

Lecture 14: A brief review

Lecture 14: A brief review Lecture 14: A brief review A few updates for the remainder of the course Report for the lab on pelite metamorphism - Lab 3 Needs to be handed in before Tuesday the 14 th of March at 17:00. My most important

More information

Metamorphic Petrology GLY 262 P-T and T-X phase diagrams

Metamorphic Petrology GLY 262 P-T and T-X phase diagrams Metamorphic Petrology GLY 262 P-T and T-X phase diagrams How do we estimate P-T conditions? Inverse modelling: (1) Look at our rock, identify the mineral assemblage and determine the compositions of the

More information

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS GEOLOGY 17.01: Mineralogy LAB 6: COMMON MINERALS IN IGNEOUS ROCKS Part 2: Minerals in Gabbroic Rocks Learning Objectives: Students will be able to identify the most common silicate minerals in gabbroic

More information

Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data)

Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data) Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data) Peter Kibarov, Peter Marchev, Maria Ovtcharova, Raya Raycheva,

More information

Chapter 9: Trace Elements

Chapter 9: Trace Elements Lecture 13 Introduction to Trace Elements Wednesday, March 9, 2005 Chapter 9: Trace Elements Note magnitude of major element changes Figure 8-2. Harker variation diagram for 310 analyzed volcanic rocks

More information

ERSC 3P21. Metamorphic Petrology

ERSC 3P21. Metamorphic Petrology ERSC 3P21 Metamorphic Petrology, and adjustments in solid rocks in response to and conditions which have been imposed due to changes in (_) and (_) The conditions of metamorphism differ from the conditions

More information

Metasomatism Model. Metasomatism. Fluid Buffers. Volatile Species. C-O-H-S System. Speciation in C-O-H-S fluids

Metasomatism Model. Metasomatism. Fluid Buffers. Volatile Species. C-O-H-S System. Speciation in C-O-H-S fluids Metasomatism Model Metasomatism Reading: Winter, Chapter 30 Obvious in rocks with contrasting mineral layers Related to unequal partitioning of elements between solid phases and fluids Model uses ion-exchange

More information

Silicates. The most common group of minerals forming the silicate Earth

Silicates. The most common group of minerals forming the silicate Earth Silicates The most common group of minerals forming the silicate Earth 25% of all minerals (~1000) 40% of rock forming minerals 90% of earth s crust i.e those minerals you are likely to find ~100 of earth

More information

GSA Data Repository

GSA Data Repository GSA Data Repository 2019057 1 METHODS Grain Boundary Imaging and Orientation Analysis Backscatter electron (BSE) maps of thin sections were acquired using the FEI Verios XHR scanning electron microscope

More information

Objectives of this Lab. Introduction. The Petrographic Microscope

Objectives of this Lab. Introduction. The Petrographic Microscope Geological Sciences 101 Lab #9 Introduction to Petrology Objectives of this Lab 1. Understand how the minerals and textures of rocks reflect the processes by which they were formed. 2. Understand how rocks

More information

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks Name: Date: Igneous Rocks Igneous rocks form from the solidification of magma either below (intrusive igneous rocks) or above (extrusive igneous rocks) the Earth s surface. For example, the igneous rock

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

How 2 nd half labs will work

How 2 nd half labs will work How 2 nd half labs will work Continue to use your mineral identification skills Learn to describe, classify, interpret rock hand samples: Igneous sedimentary metamorphic volcanic plutonic (1 week) (1 wk)

More information

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith Ultramafic rocks Definition: Color Index > 90, i.e., less than 10% felsic minerals. Not to be confused with Ultrabasic Rocks which are rocks with

More information

CO 2 sequestration via direct mineral carbonation of Mg-silicates. Natalie Johnson GCEP Symposium 4 October 2011

CO 2 sequestration via direct mineral carbonation of Mg-silicates. Natalie Johnson GCEP Symposium 4 October 2011 CO 2 sequestration via direct mineral carbonation of Mg-silicates Natalie Johnson GCEP Symposium 4 October 2011 CO 2 release/year (Gt) 2 CCS: Part of climate change mitigation Projection based on current

More information

Igneous petrology EOSC 321

Igneous petrology EOSC 321 Igneous petrology EOSC 321 Laboratory 2: Determination of plagioclase composition. Mafic and intermediate plutonic rocks Learning Goals. After this Lab, you should be able: Determine plagioclase composition

More information

This file is part of the following reference: Access to this file is available from:

This file is part of the following reference: Access to this file is available from: ResearchOnline@JCU This file is part of the following reference: Quentin de Gromard, R. (2011) The Paleozoic tectonometamorphic evolution of the Charters Towers Province, North Queensland, Australia. PhD

More information

Grimmer et al. GSA DATA REPOSITORY

Grimmer et al. GSA DATA REPOSITORY GSA DATA REPOSITORY 2015126 Grimmer et al. Additional methodological details P-T pseudosection calculation To constrain detailed P-T paths of the garnet-micaschists and the garnet-kyanite-micaschists,

More information

Introduction. Introduction. Introduction 10/15/2014. The Agents of Metamorphism. Metamorphism. and Metamorphic Rocks

Introduction. Introduction. Introduction 10/15/2014. The Agents of Metamorphism. Metamorphism. and Metamorphic Rocks Introduction Metamorphism The transformation of rocks, usually beneath Earth's surface, as the result of heat, pressure, and/or fluid activity, produces metamorphic rocks Metamorphism and Metamorphic Rocks

More information

Search and Discovery Article #50999 (2014)** Posted August 18, Abstract

Search and Discovery Article #50999 (2014)** Posted August 18, Abstract Oil Degradation in the Gullfaks Field (Norway): How Hydrogeochemical Modeling can Help to Decipher Organic- Inorganic Interactions Controlling CO 2 Fate and Behavior* Wolfgang van Berk 1, Yunjiao Fu 2,

More information

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc.

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc. Chapter 8 Lecture Earth: An Introduction to Physical Geology Twelfth Edition Metamorphism and dmetamorphic Rocks Tarbuck and Lutgens Chapter 8 Metamorphic Rocks What Is Metamorphism? Metamorphism means

More information

Rocks and Minerals. Tillery, Chapter 19. Solid Earth Materials

Rocks and Minerals. Tillery, Chapter 19. Solid Earth Materials Rocks and Minerals Tillery, Chapter 19 Science 330 Summer 2007 No other planet in the solar system has the unique combination of fluids of Earth. Earth has a surface that is mostly covered with liquid

More information

Net-transfer reactions may be terminal reactions or tie-line flip reactions (discussed below).

Net-transfer reactions may be terminal reactions or tie-line flip reactions (discussed below). 1 Reaction Types & Curves Handout Dexter Perkins, Dept. of Geology, University of North Dakota.. (Based heavily on material provided by Dave Hirsch, Western Washington University) Reactions among solid

More information

Experimental investigation of reaction-driven stress development during mineral carbonation:

Experimental investigation of reaction-driven stress development during mineral carbonation: US National Academies Webinar on Subsurface Geological Capture and Storage of CO 2 15 November 2017 Experimental investigation of reaction-driven stress development during mineral carbonation: Implications

More information

Chapter 9: Trace Elements

Chapter 9: Trace Elements Chapter 9: Trace Elements Note magnitude of major element changes Figure 8.2. Harker variation diagram for 310 analyzed volcanic rocks from Crater Lake (Mt. Mazama), Oregon Cascades. Data compiled by Rick

More information

Hand specimen descriptions of igneous rocks

Hand specimen descriptions of igneous rocks Hand specimen descriptions of igneous rocks Basically, hand specimen descriptions should tell someone looking at a rock everything they need to know to recognize it in the field. Descriptions should be

More information

Environments of Mineral Formation. Stability Diagrams

Environments of Mineral Formation. Stability Diagrams Environments of Mineral Formation Unary, Binary, and Ternary Mineral Stability Diagrams Minerals of differing composition (or polymorphs of the same mineral) that coexist at a set of pressure (P) temperature

More information

Geodiversity Research Centre, Australian Museum, Sydney, NSW 2010, Australia.

Geodiversity Research Centre, Australian Museum, Sydney, NSW 2010, Australia. Cumulate-rich xenolith suite in Late Cenozoic basaltic eruptives, Hepburn Lagoon, Newlyn, in relation to western Victorian lithosphere F. L. SUTHERLAND 1, J. D. HOLLIS 2, W. D. BIRCH 3, R. E. POGSON 1

More information

Activity-composition relationships

Activity-composition relationships Activity-composition relationships back In the application of equilibrium thermodynamics, the starting point is the equilibrium relationship : the relationship for a balanced chemical reaction between

More information

Weathering and mineral equilibria. Seminar at NGU 23 May 2016 Håkon Rueslåtten

Weathering and mineral equilibria. Seminar at NGU 23 May 2016 Håkon Rueslåtten Weathering and mineral equilibria Seminar at NGU 23 May 2016 Håkon Rueslåtten Weathering is the breakdown of rocks and minerals that are exposed to surface processes (climatically controlled). Water is

More information

Minerals: Building Blocks of Rocks Chapter 2. Based on: Earth Science, 10e

Minerals: Building Blocks of Rocks Chapter 2. Based on: Earth Science, 10e Minerals: Building Blocks of Rocks Chapter 2 Based on: Earth Science, 10e Minerals: the building blocks of rocks Definition of a mineral Solid Inorganic Natural Crystalline Structure - Possess an orderly

More information

Worked Example of Batch Melting: Rb and Sr

Worked Example of Batch Melting: Rb and Sr Worked Example of Batch Melting: Rb and Sr Basalt with the mode: Table 9.2. Conversion from mode to weight percent Mineral Mode Density Wt prop Wt% ol 15 3.6 54 0.18 cpx 33 3.4 112.2 0.37 plag 51 2.7 137.7

More information

Review - Unit 2 - Rocks and Minerals

Review - Unit 2 - Rocks and Minerals Review - Unit 2 - Rocks and Minerals Base your answers to questions 1 and 2 on the diagram below, which shows the results of three different physical tests, A, B, and C, that were performed on a mineral.

More information

Geochemical controls on high-grade grade gold mineralisation at the Junction lode-gold deposit, Kambalda, WA

Geochemical controls on high-grade grade gold mineralisation at the Junction lode-gold deposit, Kambalda, WA Geochemical controls on high-grade grade gold mineralisation at the Junction lode-gold deposit, Kambalda, WA Kate Moran Geology Honours 2003 Supervisors Steffen Hagemann (UWA, pmd*crc) Peter Neumayr (UWA,

More information

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque GSA Data Repository 2017365 Marshall et al., 2017, The role of serpentinite derived fluids in metasomatism of the Colorado Plateau (USA) lithospheric mantle: Geology, https://doi.org/10.1130/g39444.1 Appendix

More information

Fluids, melts, and supercriticality in the MSH system and element transport in subduction zones

Fluids, melts, and supercriticality in the MSH system and element transport in subduction zones cosmic rays Fluids, s, and supercriticality in the MSH system and element transport in subduction zones 10 Be volcanic front N, O 10 Be ocean water + CO 2 tracing petrologic and geotectonic processes (trace)

More information

Questions on the characteristics and generation of subduction-related andesitic magmas at convergent margins (not covered on Midterm exam)

Questions on the characteristics and generation of subduction-related andesitic magmas at convergent margins (not covered on Midterm exam) Study Guide for GEOL 285 - Petrology Final Exam Fall 2005 The exam will be held at 8-10 am, Wednesday, Dec. 14, 2005 in Room 310, White Hall will be available to answer questions on Monday, Dec. 12, and

More information

Ionic Coordination and Silicate Structures

Ionic Coordination and Silicate Structures Ionic Coordination and Silicate Structures Pauling s Rules A coordination polyhedron of anions forms around a cation Ionic distance determined by radii Coordination number determined by radius ratio. May

More information

Shortcuts to mineral formulae

Shortcuts to mineral formulae Silicates JD Price Silicate Structure Silicate Structure (SiO2) Shortcuts to mineral formulae W cations with 8- (Ca 2+, Fe 2+, Mn 2+, Na + ) to 12-fold coordination (K +, Ba 2+ ) X divalent cations in

More information

DATA REPOSITORY ITEM: METAMORPHIC-AGE DATA AND TEXTURES

DATA REPOSITORY ITEM: METAMORPHIC-AGE DATA AND TEXTURES Berman et al. - page 1 DATA REPOSITORY ITEM: METAMORPHIC-AGE DATA AND TEXTURES This data repository contains details of pressure (P) - temperature (T) and age methods and data (Tables DR1, DR2, DR3). Figures

More information

Hadean diamonds in zircon from Jack Hills, Western Australia

Hadean diamonds in zircon from Jack Hills, Western Australia Hadean diamonds in zircon from Jack Hills, Western Australia Martina Menneken 1, Alexander A. Nemchin 2, Thorsten Geisler 1, Robert T. Pidgeon 2 & Simon A. Wilde 2 1 Institut fur Mineralogie, WestfalischeWilhelms-Universitat,

More information

Soil Mechanics/Geotechnical Engineering I Prof. Dilip Kumar Baidya Department of Civil Engineering Indian Institute of Technology, Kharagpur

Soil Mechanics/Geotechnical Engineering I Prof. Dilip Kumar Baidya Department of Civil Engineering Indian Institute of Technology, Kharagpur Soil Mechanics/Geotechnical Engineering I Prof. Dilip Kumar Baidya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 01 Rock Cycle Good morning. I welcome you to this

More information