EPSC 233. Compositional variation in minerals. Recommended reading: PERKINS, p. 286, 41 (Box 2-4).

Size: px
Start display at page:

Download "EPSC 233. Compositional variation in minerals. Recommended reading: PERKINS, p. 286, 41 (Box 2-4)."

Transcription

1 EPSC 233 Compositional variation in minerals Recommended reading: PERKINS, p. 286, 41 (Box 2-4). Some minerals are nearly pure elements. These are grouped under the category of native elements. This includes natural alloys, especially among metallic elements that have similar electronic structures and are not too different in their radii. Alloys tend to include metallic elements with similar electronic structures. Gold (Au) and silver (Ag) occur commonly as alloys. A natural Au-Ag alloy is called electrum. Cu, Ag, Au belong to same family. Ag, Au are most similar in size and form alloys.

2 Other native elements are not metallic but display covalent bonding. These are elements with relatively high electronegativity values. A structure dominated by covalent bonding is less tolerant of compositional variation. Atoms must be replaced by others that are not too different in size and in the type of orbitals containing the valence electrons. native carbon: natural diamond (above) & graphite (below) are remarkably pure. This is because the bonding involves sharing of electrons, and occurs along specific directions controlled by the shape and size of orbitals. Most minerals are chemical compounds. Their composition is described by definite proportions of two or more chemical elements. In some cases, the composition of minerals varies very little from an ideal formula. Analyses of minerals such as quartz (SiO 2 ), aluminosilicate polymorphs (Al 2 SiO 5 ), corundum (Al 2 O 3 ), show deviations of less than 0.5% from their exact formula. Other minerals are far more variable The overall proportions of certain types of elements are respected, but some elements may be nearly interchangeable. This is noted, in the chemical formulas of some minerals, by grouping these interchangeable elements within parentheses. (Mg, Fe) 2 SiO 4 olivine

3 The name olivine refers to a group which includes many members of intermediate composition. Minerals like forsterite (Mg 2 SiO 4 ) are part of solid solutions. Ternary diagram: includes 3 end-member compositions. The chemical variations found within specific solid solutions can be displayed graphically. The example below is a binary solid solution. Possible compositions include intermediate values between 2 end-members (pure compounds) forsterite and fayalite: The main method of analyses of single minerals in electron probe microanalysis (EPMA). The chemical analyses obtained by the electron microprobe are given in weight % oxides. It is necessary to recalculate the amounts to figure out how they fit the proportions expected from the formula unit. Your next assignment will be a recalculation of a chemical analysis into a mineral formula. Pure diopside In this example, the corners of the triangles are the formula of pure minerals. Shading indicates the range of compositional variation.

4 In most cases, a 50:50 rule applies to naming members of a solid solution. For example, the name forsterite is used for compositions going from Mg 2 SiO 4 up to MgFeSiO 4. The name fayalite is used for compositions that are more Fe-rich than MgFeSiO 4, and up to Fe 2 SiO 4. Feldspars have names for much narrower ranges of composition. Most cannot be identified in hand specimens, because the composition does not affect noticeably their physical properties. Why are some minerals more variable in composition than others? During crystal growth, the environment contains some chemical elements in forms than are fairly interchangeable. Some ions are so similar in size and charge that they can fit in the same atomic pattern. Mg 2+ and Fe 2+ are the most common example. Their ionic radii, when they are surrounded by 6 oxygen ions (C.N. VI) are 0.72 and 0.78 Å. Substitution can lead to complete solid solution. For small differences in ionic radii 100% x (Radius large ion -Radius smaller ion )/Radius large ion In principle, if this difference < 15% complete solid solution is common = 15-30% limited solid solution is possible > 30% substitution is very limited Other factors may play...

5 What properties of the mineral structure are affected by ionic substitutions? Hardness? Specific Gravity? Colour? Melting Point? Ease of weathering? (solubility in acidic water) (Think of forsterite-fayalite) What properties of the mineral structure are affected by ionic substitutions? Hardness? Sometimes, if bond strength changes. Specific Gravity? Often, if elements have different atomic masses. Colour? Often. Even small amounts of transition elements may influence colour. Melting Point? Sometimes, if bond strength changes. Ease of weathering (solubility in acidic water)? Sometimes, this tends to increase with the ionic character and bond length. Effect of compositional variation on colour in garnet Degree of ionic character of the bond changes from Mg-O to Fe-O Look at the electronegativity values of Mg, Fe: Mg: 1.31 Fe : 1.83 O : 3.44 radius vi Mg 2+ :0.72 angstroms radius vi Fe 2+ : 0.78 angstroms A= Ca 2+, Mg 2+, B= Al 3+, Si 4+ Fe 2+, Fe 3+, Mn 3+, Cr 3+,... Garnet structure A 3 viii B 2 vi (Si iv O 4 ) 3 Does Mg-O or Fe-O have more ionic character? Mg-O, and it will also be more soluble in water. Is Mg-O or Fe-O the shorter bond? Mg-O, and it will have the higher melting point.

6 The fact that complete solid solution is possible can be verified in the laboratory. Nature does not always produces all the possible range of composition. One can cook up in the lab forsterite, fayalite and their intermediates: Melt MgO + SiO 2 + FeO and let it cool slowly... Yet, in nature, all intermediate compositions are rare Most olivine is close to forsterite because Fe is taken up by other minerals which precipitate from the silicate magma as it cools down. An example of very limited solid solution: Hematite and corundum share exactly the same type of structure. In the first case, Fe 3+ is the cation, in the other, Al 3+. Their coordination number is 6 in each structure. According to your table of ionic radii: Fe 3+ : 0.64 (VI) Al 3+ : 0.51 (VI) Is any solid solution expected? To answer, see if the radii differ by more than 15% or 30%. Corundum (Al 2 O 3 ) and hematite (Fe 2 O 3 ) share the same structure. Note the edge sharing and face sharing among MeO 6 octahedra. This limits the flexibility of the structure towards substitution among ions of different radii. Polyhedra that share edges are commonly less tolerant of substitution than polyhedra that share corners. Nature of bonding is also different for Al-O and Fe-O Unpaired electrons are present in dorbitals, in ions of Fe (and many other transition metals), but absent in Al 3+. Despite a larger radius difference, Al 3+ and Si 4+ substitute for each other in the tetrahedral polyhedra of several tectosilicates (e.g., the feldspars). These tetrahedra share only corners.

7 When a substitution takes place, in a mineral structure, electrical neutrality must be maintained. In feldspars, this is illustrated by members of the plagioclase series: Na Al Si 3 O 8 CaAl 2 Si 2 O 8 Na + is replaced by Ca 2+ Si 4+ is replaced by Al 3+ When three or more ions are involved in the substitution to preserve electrical neutrality, we deal with a coupled substitution. Any substitution can be expressed as an equation: In the case of Na Al Si 3 O 8 -CaAl 2 Si 2 O 8 Na + +Si 4+ = Ca 2+ + Al 3+ Na + +Si 4+ = Ca 2+ + Al 3+ In some high-temperature polymorphs of SiO 2, small amounts of Al3+ and Na+ can be found. Si 4+ = Na + + Al 3+ Which ion, Na + or Al 3+, is substituting for Si 4+? (Hint: Which one is closest in size and charge? Where does the extra ion go, in the quartz structure? Interstitial substitution: There are many polymorphs of SiO 2, stable at different ranges of temperature and pressure. Those stable at highest temperature have the lowest density. Their SiO 4 groups form networks with the most open space. They are more likely to accept impurities (small amounts of Al 3+ and Na + for Si +4 ). - an extra ion must be added in the structure to respect charge balance: A x = B y + C z This type of substitution occurs in very small amounts in any structure, and is limited to structure with channels or cages.

8 Be 3 Al 2 Si 6 O 18 (beryl) has space within channels formed by the Si 6 O 18 rings. The charge balance can be met by a coupled substitution which introduces new ions within the channels. Aquamarine (blue) : Fe 2+ Heliodor (golden) : Fe 3+ Green beryl : mixtures of Fe 2+ and Fe 3+ Morganite : Mn 2+ is pink Red beryl : Mn 3+ is red Emerald: Cr 3+ is emerald green! Where do these ions go in the structure of Be 3 iv Al 2 vi Si 6 O 18? Why are they often accompanied by Li +, Na + or K +? Where does the other ion go? Some minerals have more space than other, in their structure, to accommodate the extra ions involved in a coupled substitution. The high-temperature polymorphs of quartz, minerals like cristobalite and tridymite, are less pure than quartz formed at lower temperature. Cyclosilicates, like beryl, contain large channels and can accept large impurities. Omission substitution: charge balance requires that a site normally occupied by an ion becomes empty (vacant). A x + B y = C z + [empty site] The structure and formula of pyrrhotite) are related to those of troilite, FeS, by omission substitution: Troilite Fe 2+ S 2- (found mostly in meteorites) On Earth, even low oxygen levels oxidize some Fe 2+ to Fe 3+. As pyrrhotite forms, this happens: 3 Fe 2+ = 2 Fe 3+ + [empty site]

9 Overall, pyrrhotite is Fe 1-x S because (Fe 2+ ) 1-3x (Fe 3+ ) 2x [ ] x S 2- Charge balance is satisfied: positive charges 2*(1-3x)+3*(2x) = 2 negative charges Note: the value of x (proportion of empty sites per formula unit) in natural pyrrhotite is quite small. You cannot have extensive omission solid solution and preserve a stable structure. Are we more likely to see substitution among ions located in the same family, within the periodic table? Why (or why not)? Ion Radius C.N. = 4 Radius C.N. = 8 Li Na K Rb Cs Yes, but they will occur most often between the elements that show the smallest relative differences in ionic radii. In feldspars, there is complete solid solution between NaAlSi 3 O 8 (albite) and KAlSi 3 O 8. In micas, this solid solution is far more limited. There is no Na- equivalent to biotite K(Mg, Fe) AlSi 3 O 20 (OH) 2 but a small amount (1%) of Na is common in the structure. Rb is a much rarer element, and it has a radioactive isotope which decays to Sr. Small amounts of Rb substitute for K in mica and feldspar, where it is analyzed to date rocks. Are we likely to see substitution among elements located in the same row of the periodic table? Why (or why not)? Ion Radius Radius C.N. 4 C.N. 6 Na M g Al Si P S S Cl

10 Substitutions among elements in the same row do not lead to complete solid solution as often as do substitutions among elements in the same family. This is because they are different both in charge and in ionic radius. The structure must solve the charge balance problem by another (coupled) substitution. Plagioclase feldspars are an example where Al 3+ and Si 4+ may substitute for each other if Ca 2+ and Na + ions do the same in the structure.

Earth and Planetary Materials

Earth and Planetary Materials Earth and Planetary Materials Spring 2013 Lecture 4 2013.01.16 Example Beryl Be 3 Al 2 (SiO 3 ) 6 Goshenite Aquamarine Emerald Heliodor Red beryl Morganite pure Fe 2+ & Fe 3+ Cr 3+ Fe 3+ Mn 3+ Mn 2+ Rules

More information

CHAPTER 4. Crystal Structure

CHAPTER 4. Crystal Structure CHAPTER 4 Crystal Structure We can assume minerals to be made of orderly packing of atoms or rather ions or molecules. Many mineral properties like symmetry, density etc are dependent on how the atoms

More information

EPSC501 Crystal Chemistry WEEK 5

EPSC501 Crystal Chemistry WEEK 5 EPSC501 Crystal Chemistry WEEK 5 Oxidation states of transition elements (many more in aqueous solutions than in the common rock-forming minerals) Notice that almost every transition metal has a +2 oxidation

More information

Ionic Coordination and Silicate Structures

Ionic Coordination and Silicate Structures Ionic Coordination and Silicate Structures Pauling s Rules A coordination polyhedron of anions forms around a cation Ionic distance determined by radii Coordination number determined by radius ratio. May

More information

Silicates. The most common group of minerals forming the silicate Earth

Silicates. The most common group of minerals forming the silicate Earth Silicates The most common group of minerals forming the silicate Earth 25% of all minerals (~1000) 40% of rock forming minerals 90% of earth s crust i.e those minerals you are likely to find ~100 of earth

More information

Silicate Structures. Silicate Minerals: Pauling s s Rules and. Elemental Abundance in Crust. Elemental Abundance in Crust: Pauling s s Rules

Silicate Structures. Silicate Minerals: Pauling s s Rules and. Elemental Abundance in Crust. Elemental Abundance in Crust: Pauling s s Rules Silicate Minerals: Pauling s s Rules and Silicate Structures February 6, 2007 Elemental Abundance in Crust Fe Ion O 2- Si 4+ Al 3+, 3+ Ca Na + K + Mg mol % 2.6 1.4 mol% x charge 4.8 3.8 2.6 1.4 3.8 Sum

More information

How many molecules? Pyrite FeS 2. Would there be any other elements in there???

How many molecules? Pyrite FeS 2. Would there be any other elements in there??? How many molecules? Pyrite FeS 2 Would there be any other elements in there??? Goldschmidt s rules of Substitution 1. The ions of one element can extensively replace those of another in ionic crystals

More information

Earth Materials I Crystal Structures

Earth Materials I Crystal Structures Earth Materials I Crystal Structures Isotopes same atomic number, different numbers of neutrons, different atomic mass. Ta ble 1-1. Su mmar y of quantu m num bers Name Symbol Values Principal n 1, 2,

More information

Topic 5 : Crystal chemistry

Topic 5 : Crystal chemistry GEOL360 LECTURE NOTES: T5 : CRYSTAL CHEMISTRY 1/15 GEOL360 Topic 5 : Crystal chemistry 5.1 Introduction what is a crystal? A crystal is a homogeneous, solid body of a chemical element, compound, or isomorphous

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... Bonding and structure of ceramic materials as compared with metals Chapter 12-1 Atomic Bonding in Ceramics Bonding: -- Can be ionic

More information

About Earth Materials

About Earth Materials Grotzinger Jordan Understanding Earth Sixth Edition Chapter 3: EARTH MATERIALS Minerals and Rocks 2011 by W. H. Freeman and Company About Earth Materials All Earth materials are composed of atoms bound

More information

Chapter 3. Atoms and Minerals. Earth Materials

Chapter 3. Atoms and Minerals. Earth Materials Chapter 3 Atoms and Minerals Earth Materials Atoms and Elements: Isotopes and Ions A Review of Chemistry Atoms Atoms are composed of Protons, Neutrons and Electrons A proton has an electric charge of +1

More information

Atoms and Elements. Chemical Composition of the Earth s Crust Crystallinity. Chemical Activity Ions. The Silicon-Oxygen Tetrahedron

Atoms and Elements. Chemical Composition of the Earth s Crust Crystallinity. Chemical Activity Ions. The Silicon-Oxygen Tetrahedron Atoms and Elements Chemical Activity Ions Chemical Composition of the Earth s Crust Crystallinity The Silicon-Oxygen Tetrahedron Minerals Crystalline Solids Natural and Inorganic Substances Definite Chemical

More information

10/8/15. Earth Materials Minerals and Rocks. I) Minerals. Minerals. (A) Definition: Topics: -- naturally occurring What are minerals?

10/8/15. Earth Materials Minerals and Rocks. I) Minerals. Minerals. (A) Definition: Topics: -- naturally occurring What are minerals? minerals Earth Materials Minerals and Rocks I) Minerals Minerals Topics: What are minerals? Basic Chemistry Amethysts in geode: minerals Characteristics of Minerals Types of Minerals -- orderly arrangement

More information

Atoms, Molecules and Minerals

Atoms, Molecules and Minerals Atoms, Molecules and Minerals Atoms Matter The smallest unit of an element that retain its properties Molecules - a small orderly group of atoms that possess specific properties - H 2 O Small nucleus surrounded

More information

WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY

WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY Brandon E. Schwab Department of Geology Humboldt State University

More information

Environments of Mineral Formation. Stability Diagrams

Environments of Mineral Formation. Stability Diagrams Environments of Mineral Formation Unary, Binary, and Ternary Mineral Stability Diagrams Minerals of differing composition (or polymorphs of the same mineral) that coexist at a set of pressure (P) temperature

More information

Sorosilicates, Colors in Minerals (cont), and Deep Earth Minerals. ESS212 January 20, 2006

Sorosilicates, Colors in Minerals (cont), and Deep Earth Minerals. ESS212 January 20, 2006 Sorosilicates, Colors in Minerals (cont), and Deep Earth Minerals ESS212 January 20, 2006 Double tetrahedron Sorosilicate is defined by the Si 2 O 7 group. Three groups of minerals, commonly, Epidote Zoisite

More information

Topic 5 : Crystal chemistry

Topic 5 : Crystal chemistry GEOL360 LECTURE NOTES: T5 : CRYSTAL CHEMISTRY 1/16 GEOL360 Topic 5 : Crystal chemistry (read p. 239-275; 280-290) 5.1 Introduction what is a crystal? Lecture #1 A crystal is a homogeneous, solid body of

More information

Lecture 36. Igneous geochemistry

Lecture 36. Igneous geochemistry Lecture 36 Igneous geochemistry Reading - White Chapter 7 Today 1. Overview 2. solid-melt distribution coefficients Igneous geochemistry The chemistry of igneous systems provides clues to a number of important

More information

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden )

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden ) Course KGP003 Ch. 12 High Temperature Materials By Docent. N. Menad Dept. of Chemical Engineering and Geosciences Div. Of process metallurgy Luleå University of Technology ( Sweden ) Ceramic materials

More information

A Rock is a solid aggregate of minerals.

A Rock is a solid aggregate of minerals. Quartz A Rock is a solid aggregate of minerals. Orthoclase Feldspar Plagioclase Feldspar Biotite Four different minerals are obvious in this piece of Granite. The average automobile contains: Minerals

More information

Earth Materials II Review Optical Mineralogy and Igneous Minerals

Earth Materials II Review Optical Mineralogy and Igneous Minerals Earth Materials II Review Optical Mineralogy and Igneous Minerals Refractive Index and Angle of Refraction Refractive Index(R. I. ) = velocity of light in a vacuum velocity of light in a medium The refractive

More information

MINERALS Smith and Pun Chapter 2 ATOMIC STRUCTURE

MINERALS Smith and Pun Chapter 2 ATOMIC STRUCTURE MINERALS Smith and Pun Chapter 2 1 ATOMIC STRUCTURE 2 1 ATOMIC STRUCTURE (2) (See Smith and Pun, pages 29-35) ELEMENT: Substance that cannot be broken down into other substances by ordinary chemical methods

More information

Crystal Structure and Chemistry

Crystal Structure and Chemistry Crystal Structure and Chemistry Controls on Crystal Structure Metallic bonding closest packing Covalent bonding depends on orbital overlap and geometry Ionic bonding Pauling s Rules Coordination Principle

More information

CHAPTER 5: CRYSTAL DEFECTS AND TWINNING. Sarah Lambart

CHAPTER 5: CRYSTAL DEFECTS AND TWINNING. Sarah Lambart CHAPTER 5: CRYSTAL DEFECTS AND TWINNING Sarah Lambart RECAP CHAP. 4 Hermann-Mauguin symbols 32 crystal classes Miller indices Crystal forms RECAP CHAP. 4 Crystal System Crystal Class Symmetry Name of Class

More information

CHEM1902/ N-2 November 2014

CHEM1902/ N-2 November 2014 CHEM1902/4 2014-N-2 November 2014 The cubic form of boron nitride (borazon) is the second-hardest material after diamond and it crystallizes with the structure shown below. The large spheres represent

More information

Minerals: Minerals: Building blocks of rocks. Atomic Structure of Matter. Building Blocks of Rocks Chapter 3 Outline

Minerals: Minerals: Building blocks of rocks. Atomic Structure of Matter. Building Blocks of Rocks Chapter 3 Outline Minerals: Building Blocks of Rocks Chapter 3 Outline Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Minerals: Building blocks of rocks Definition

More information

Chemistry primer. Atom = the smallest unit of an element. Element determined by the number of protons in the nucleus

Chemistry primer. Atom = the smallest unit of an element. Element determined by the number of protons in the nucleus Chemistry primer Atom = the smallest unit of an element Element determined by the number of protons in the nucleus E- is an electron, P+ is a proton, N is a neutron Carbon atom Electron cloud Nucleus Carbon

More information

Matter and Minerals Earth: Chapter Pearson Education, Inc.

Matter and Minerals Earth: Chapter Pearson Education, Inc. Matter and Minerals Earth: Chapter 3 Minerals: Building Blocks of Rocks By definition a mineral is: Naturally occurring An inorganic solid Ordered internal molecular structure Definite chemical composition

More information

Chemical bonds. In some minerals, other (less important) bond types include:

Chemical bonds. In some minerals, other (less important) bond types include: Chemical bonds Chemical bond: force of attraction between two or more atoms/ions Types of bonds in crystals: Ionic bond: electrostatic attraction between two oppositely charged ions. This type of bond

More information

Minerals: Building Blocks of Rocks Chapter 2. Based on: Earth Science, 10e

Minerals: Building Blocks of Rocks Chapter 2. Based on: Earth Science, 10e Minerals: Building Blocks of Rocks Chapter 2 Based on: Earth Science, 10e Minerals: the building blocks of rocks Definition of a mineral Solid Inorganic Natural Crystalline Structure - Possess an orderly

More information

Common non-silicate planetary minerals

Common non-silicate planetary minerals Common non-silicate planetary minerals Many of the non-silicate minerals are simple oxides. Corundum Al2O3 Al2+3 O3-2 Rutile Ti2O3 Ti2+3 O3-2 Ilmenite FeTiO3 Fe+3Ti+3O3-2 Hematite Fe2O3 Fe2+3 O3-2 Families

More information

Bonding and Packing: building crystalline solids

Bonding and Packing: building crystalline solids Bonding and Packing: building crystalline solids The major forces of BONDING Gravitational forces: F = G m m 1 2 F = attractive forces between 2 bodies G = universal graviational constant (6.6767 * 10

More information

Earth Materials: Minerals and Rocks Chapter 4

Earth Materials: Minerals and Rocks Chapter 4 Earth Materials: Minerals and Rocks Chapter 4 The French are bred to die for love They delight in fighting duels But I prefer a man who lives And gives expensive jewls A kill on the hand may be quite continental

More information

Minerals. Atoms, Elements, and Chemical Bonding. Definition of a Mineral 2-1

Minerals. Atoms, Elements, and Chemical Bonding. Definition of a Mineral 2-1 Minerals In order to define a what we mean by a mineral we must first make some definitions: 2-1 Most of the Earth s surface is composed of rocky material. An element is a substance which cannot be broken

More information

CHAPTER 3. Crystallography

CHAPTER 3. Crystallography CHAPTER 3 Crystallography Atomic Structure Atoms are made of Protons: mass 1.00728 amu, +1 positive charge Neutrons: mass of 1.00867 amu, neutral Electrons: mass of 0.00055 amu, -1 negative charge (1 amu

More information

Field Trips. Field Trips

Field Trips. Field Trips Field Trips Saturday field trips have been scheduled October 9, October 23 and December 4 Last all day (9:00 AM to 4:00 PM) Bus transportation provided from campus Joint with GG101 laboratory, GG101 Section

More information

muscovite PART 4 SHEET SILICATES

muscovite PART 4 SHEET SILICATES muscovite PART 4 SHEET SILICATES SHEET SILICATES = PHYLLOSILICATES Phyllon = leaf Large group of mineral including many common minerals: muscovite, biotite, serpentine, chlorite, talc, clay minerals Structure:

More information

This is how we classify minerals! Silicates and Non-Silicates

This is how we classify minerals! Silicates and Non-Silicates Why are some minerals harder than others? Their atomic structure and chemical formula. This is how we classify minerals! Silicates and Non-Silicates Part #1 - Silicates: Silicon and Oxygen make up 70%

More information

Geol /19/06 Labs 5 & 6 Crystal Chemistry Ionic Coordination and Mineral Structures

Geol /19/06 Labs 5 & 6 Crystal Chemistry Ionic Coordination and Mineral Structures Geol 2311 9/19/0 Labs 5 & Crystal Chemistry Ionic Coordination and Mineral Structures Handout Oral Mineral Tray Report Samples Ionic Coordination Exercise Investigating Mineral Structures using XtalDraw

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... How do the crystal structures of ceramic materials differ from those for metals? How do point defects in ceramics differ from those

More information

Geos 306, Mineralogy Final Exam, Dec 12, pts

Geos 306, Mineralogy Final Exam, Dec 12, pts Name: Geos 306, Mineralogy Final Exam, Dec 12, 2014 200 pts 1. (9 pts) What are the 4 most abundant elements found in the Earth and what are their atomic abundances? Create a reasonable hypothetical charge-balanced

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... Structures of ceramic materials: How do they differ from those of metals? Point defects: How are they different from those in metals?

More information

PY2N20 Material Properties and Phase Diagrams

PY2N20 Material Properties and Phase Diagrams PY2N20 Material Properties and Phase Diagrams Lecture 10 P. Stamenov, PhD School of Physics, TCD PY2N20-10 Modern CMOS pair structure Photolithographic Process CMOS Processing Steps Cu Damascene Process

More information

The Lithosphere. Definition

The Lithosphere. Definition 10/14/2014 www.komar.de The Lithosphere Ben Sullivan, Assistant Professor NRES 765, Biogeochemistry October 14th, 2014 Contact: bsullivan@cabnr.unr.edu Definition io9.com tedquarters.net Lithos = rocky;

More information

Chapter 3. The structure of crystalline solids 3.1. Crystal structures

Chapter 3. The structure of crystalline solids 3.1. Crystal structures Chapter 3. The structure of crystalline solids 3.1. Crystal structures 3.1.1. Fundamental concepts 3.1.2. Unit cells 3.1.3. Metallic crystal structures 3.1.4. Ceramic crystal structures 3.1.5. Silicate

More information

Lecture 6. Physical Properties. Solid Phase. Particle Composition

Lecture 6. Physical Properties. Solid Phase. Particle Composition Lecture 6 Physical Properties Solid Phase Particle Composition 1 Questions What are tetrahedrons and octahedrons? How do silica tetrahedra bonds affect mineral weathering? Difference between primary and

More information

Atoms>>>Elements>>>Minerals>>>Rocks>>>Continents>>>Planet

Atoms>>>Elements>>>Minerals>>>Rocks>>>Continents>>>Planet Introduction to Minerals It s all about scale: Atoms>>>Elements>>>Minerals>>>Rocks>>>Continents>>>Planet Basic Chem: Atomic Structure Atom: smallest unit of an element that possesses the properties of

More information

Minerals. Gypsum Crystals - Mexico

Minerals. Gypsum Crystals - Mexico Minerals Gypsum Crystals - Mexico Rocks Rocks are Earth materials made from minerals. Most rocks have more than one kind of mineral. Example: Granite Potassium feldspar. Plagioclase Feldspar. Quartz. Hornblende.

More information

Lecture 3: Earth Materials and their Properties I: Minerals. Introduction to the Earth System EAS 2200

Lecture 3: Earth Materials and their Properties I: Minerals. Introduction to the Earth System EAS 2200 Lecture 3: Earth Materials and their Properties I: Minerals Introduction to the Earth System EAS 2200 Earth Materials Plan of the Why it matters Nature of the Earth/Composition The Solid Earth Mineral

More information

Chapter 12: Structures of Ceramics

Chapter 12: Structures of Ceramics Chapter 12: Structures of Ceramics Outline Introduction Crystal structures Ceramic structure AX-type crystal structures A m X p -type A m B n X p - type Silicate ceramics Carbon Chapter 12 - Ceramics Two

More information

Earth and Planetary Materials

Earth and Planetary Materials Earth and Planetary Materials Spring 2013 Lecture 3 2013.01.14 14 1 Close Packed Anion Arrays Closest Packing Coordination number (C.N.) : number of anions bonded to a cation larger cation, higher C.N.

More information

Differentiaton: Redistribution of mass (elements) and energy by chemical & physical processes. Goal: Quantitative understanding of those processes.

Differentiaton: Redistribution of mass (elements) and energy by chemical & physical processes. Goal: Quantitative understanding of those processes. Differentiaton: Redistribution of mass (elements) and energy by chemical & physical processes. Goal: Quantitative understanding of those processes. 1 2 What controls the periodicity of behavior of the

More information

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg 11 Olivine Structure Olivine is a common green or brown rock forming minerals which consists of a solid-solution series between Forsterite (Fo) and Fayalite (Fa). It is an orthorhombic orthosilicate with

More information

2. Which of the following salts form coloured solutions when dissolved in water? I. Atomic radius II. Melting point III.

2. Which of the following salts form coloured solutions when dissolved in water? I. Atomic radius II. Melting point III. 1. Which pair of elements reacts most readily? A. Li + Br 2 B. Li + Cl 2 C. K + Br 2 D. K + Cl 2 2. Which of the following salts form coloured solutions when dissolved in water? I. ScCl 3 II. FeCl 3 III.

More information

Phase transitions and exsolution phenomena in pyroxenes

Phase transitions and exsolution phenomena in pyroxenes Phase transitions and exsolution phenomena in pyroxenes Cleavage in the pyroxenes 001 100 010 110 110 Optical micrograph showing two cleavages at 90 o Exsolution lamellae in pyroxenes Because exsolution

More information

Bonding. Bringing the atoms together

Bonding. Bringing the atoms together Bonding Bringing the atoms together More than one atom Until now, we have been consumed with describing individual atoms of elements. However, isolating individual atoms in most elements is an arduous

More information

Lab 4: Mineral Identification April 14, 2009

Lab 4: Mineral Identification April 14, 2009 Name: Lab 4: Mineral Identification April 14, 2009 While about 3000 minerals have been recognized as valid species, very few of these are commonly seen. Comprehensive mineralogy texts typically deal with

More information

Matter and Minerals. Earth 9 th edition Chapter 3 Minerals: summary in haiku form "Mineral" defined: natural, inorganic, solid (and two more).

Matter and Minerals. Earth 9 th edition Chapter 3 Minerals: summary in haiku form Mineral defined: natural, inorganic, solid (and two more). 1 2 Matter and Minerals Earth 9 th edition Chapter 3 Minerals: summary in haiku form "Mineral" defined: natural, inorganic, solid (and two more). continued... 3 4 5 6 7 8 9 10 11 12 13 14 Also crystalline,

More information

Chap 10 Part 3a.notebook December 12, 2017

Chap 10 Part 3a.notebook December 12, 2017 Metallic Bonding and Semiconductors Chapter 10 Sect 4 Metallic Bonding positive metal ions surrounded by a "sea of electrons" Bonding is strong and nondirectional Iron, Silver, alloys, Brass, Bronze Forces

More information

1 st shell holds 2 electrons. 2 nd shell holds 8 electrons

1 st shell holds 2 electrons. 2 nd shell holds 8 electrons ATOM INDIVISIBLE ELEMENTS - Nucleus = protons (+ charge) & neutrons (no charge ) - Electrons (- charge) orbit the nucleus in shells of 2, 8, 8 electrons (inner orbit outward) - Atomic number = number of

More information

LAB 2: SILICATE MINERALS

LAB 2: SILICATE MINERALS GEOLOGY 640: Geology through Global Arts and Artifacts LAB 2: SILICATE MINERALS FRAMEWORK SILICATES The framework silicates quartz and feldspar are the most common minerals in Earth s crust. Quartz (SiO

More information

2.2 Acid mine drainage

2.2 Acid mine drainage PROBLEM SOLVING 2. CHEMICAL REACTIONS AND EQUILIBRIA 1 2.2 Acid mine drainage Problem 2.2 The weathering of iron sulphide minerals produces acidified water, leading to major environmental problems from

More information

Minerals. [Most] rocks are [mostly] made of minerals, so identification and interpretation depends on recognizing

Minerals. [Most] rocks are [mostly] made of minerals, so identification and interpretation depends on recognizing Minerals [Most] rocks are [mostly] made of minerals, so identification and interpretation depends on recognizing Over mineral types have been described, but only about account for the bulk of most rocks.

More information

Lecture Outlines PowerPoint. Chapter 2 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 2 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 2 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

305 ATOMS, ELEMENTS, AND MINERALS

305 ATOMS, ELEMENTS, AND MINERALS DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 305 ATOMS, ELEMENTS, AND MINERALS Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC VOCABULARY where APPLICABLE!

More information

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions. OCN 623 Chemical Oceanography

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions. OCN 623 Chemical Oceanography Balancing Reaction Equations Oxidation State Reductionoxidation Reactions OCN 623 Chemical Oceanography Balanced chemical reactions are the math of chemistry They show the relationship between the reactants

More information

300 ATOMS, ELEMENTS, AND MINERALS

300 ATOMS, ELEMENTS, AND MINERALS DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 300 ATOMS, ELEMENTS, AND MINERALS Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC VOCABULARY where APPLICABLE!

More information

Part I: It s Just a Trend

Part I: It s Just a Trend Part I: It s Just a Trend 1. What is the trend with the atomic numbers of the elements as you move from left to right across a period on the Periodic Table? How does this sequence continue to the next

More information

Feldspars. Structure. The feldspars are by far the most abundant group of minerals and are found in igneous, metamorphic and many sedimentary rocks.

Feldspars. Structure. The feldspars are by far the most abundant group of minerals and are found in igneous, metamorphic and many sedimentary rocks. Feldspars The feldspars are by far the most abundant group of minerals and are found in igneous, metamorphic and many sedimentary rocks. Structure Felsdpars are framework silicates where each silica tetrahedra

More information

break

break break Review of periodicity: Periodicity refers to the observed trends of various atomic properties of the elements with respect to their position in the periodic table. An understanding of periodicity

More information

305 ATOMS, ELEMENTS, AND MINERALS

305 ATOMS, ELEMENTS, AND MINERALS DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 305 ATOMS, ELEMENTS, AND MINERALS Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC VOCABULARY where APPLICABLE!

More information

Defects. Defects. Kap. 3 States of aggregation. Perfect Crystal

Defects. Defects. Kap. 3 States of aggregation. Perfect Crystal Kap. 3 States of aggregation Defects Perfect Crystal A A perfect crystal with every atom in the correct position does not exist. Only a hypothetical situation at 0 K Crystals are like people: it is the

More information

CHAPTER 2. Atoms,Elements, Periodic Table

CHAPTER 2. Atoms,Elements, Periodic Table CHAPTER Atoms,Elements, Periodic Table 1 Vocabulary Chemistry Science that describes matter its properties, the changes it undergoes, and the energy changes that accompany those processes Matter Anything

More information

ESS 439 Lab 2 Examine Optical Properties of Minerals

ESS 439 Lab 2 Examine Optical Properties of Minerals ESS 439 Lab 2 Examine Optical Properties of Minerals The optical properties depend on the manner that visible light is transmitted through the crystal, and thus are dependent on mineral s Crystal Structure

More information

Chemical Classification of Minerals Learning goals: Classification of Minerals by Anionic Species. Periodic Table. Anions are Negative Ions

Chemical Classification of Minerals Learning goals: Classification of Minerals by Anionic Species. Periodic Table. Anions are Negative Ions Classification of Minerals by Anionic Species (Anions are negative ions) Chemical Classification of Minerals Learning goals: How are minerals classified by chemistry? Why is this useful? Anions are Negative

More information

Name: Block: Date: Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom.

Name: Block: Date: Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom. Name: Block: Date: Chemistry 11 Trends Activity Assignment Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom. Ionic Radius: the distance from the center

More information

Experiment 7: Understanding Crystal Structures

Experiment 7: Understanding Crystal Structures Experiment 7: Understanding Crystal Structures To do well in this laboratory experiment you need to be familiar with the concepts of lattice, crystal structure, unit cell, coordination number, the different

More information

Funsheet 8.0 [SCIENCE 10 REVIEW] Gu 2015

Funsheet 8.0 [SCIENCE 10 REVIEW] Gu 2015 Funsheet 8.0 [SCIENCE 10 REVIEW] Gu 2015 1. Fill in the following tables. Symbol # # protons electrons # neutrons Atomic number Mass Number Atomic Mass Charge 56 54 83 18 16 32 35 47 1 19 40 1+ 92 241

More information

Remember the purpose of this reading assignment is to prepare you for class. Reading for familiarity not mastery is expected.

Remember the purpose of this reading assignment is to prepare you for class. Reading for familiarity not mastery is expected. Remember the purpose of this reading assignment is to prepare you for class. Reading for familiarity not mastery is expected. After completing this reading assignment and reviewing the intro video you

More information

Periodic Trends. 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy?

Periodic Trends. 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy? Periodic Trends 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy? 4. What periodic trends exist for ionization energy? 5. What

More information

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams Page 1 of 12 EENS 211 Earth Materials Tulane University Prof. Stephen A. Nelson TWO COMPONENT (BINARY) PHASE DIAGRAMS This document last updated on 08-Oct-2003 Experimental Determination of 2-Component

More information

Solids. properties & structure

Solids. properties & structure Solids properties & structure Determining Crystal Structure crystalline solids have a very regular geometric arrangement of their particles the arrangement of the particles and distances between them is

More information

Review for Chapter 4: Structures and Properties of Substances

Review for Chapter 4: Structures and Properties of Substances Review for Chapter 4: Structures and Properties of Substances You are responsible for the following material: 1. Terms: You should be able to write definitions for the following terms. A complete definition

More information

305 ATOMS, ELEMENTS, AND MINERALS

305 ATOMS, ELEMENTS, AND MINERALS DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 305 ATOMS, ELEMENTS, AND MINERALS Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC VOCABULARY where APPLICABLE!

More information

LAB 5: COMMON MINERALS IN IGNEOUS ROCKS

LAB 5: COMMON MINERALS IN IGNEOUS ROCKS EESC 2100: Mineralogy LAB 5: COMMON MINERALS IN IGNEOUS ROCKS Part 1: Minerals in Granitic Rocks Learning Objectives: Students will be able to identify the most common minerals in granitoids Students will

More information

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information Discovery of Elements Development of the Periodic Table Chapter 5 Honors Chemistry 412 At the end of the 1700 s, only 30 elements had been isolated Included most currency metals and some nonmetals New

More information

305 ATOMS, ELEMENTS, AND MINERALS

305 ATOMS, ELEMENTS, AND MINERALS DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 305 ATOMS, ELEMENTS, AND MINERALS Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC VOCABULARY where APPLICABLE!

More information

Chapter 1. I- Fill the following table. Element symbol and the mass no. n p n n n e. number. II - Choose the correct answer for the following: Ca-40

Chapter 1. I- Fill the following table. Element symbol and the mass no. n p n n n e. number. II - Choose the correct answer for the following: Ca-40 Chapter 1 I- Fill the following table. Element symbol and the mass no. Ca-40 Ca 2+ -40 O-17 O 2- -16 C-12 C-13 Atomic number n p n n n e II - Choose the correct answer for the following: 1. Consider the

More information

The Nucleus. Protons. Positive electrical charge The number of protons in the nucleus determines the atomic number

The Nucleus. Protons. Positive electrical charge The number of protons in the nucleus determines the atomic number Matter Atoms The smallest unit of an element that retain its properties Small nucleus surrounded by a cloud of electrons The nucleus contains protons and neutrons The Nucleus Protons Positive electrical

More information

Nihal İKİZOĞLU. MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) kimyaakademi.com 1

Nihal İKİZOĞLU. MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) kimyaakademi.com 1 MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) kimyaakademi.com 1 PERIODS: Period number = Number of basic energy levels = The principal quantum number The horizontal lines

More information

1 What Is a Mineral? Critical Thinking 2. Apply Concepts Glass is made up of silicon and oxygen atoms in a 1:2 ratio. The SiO 2

1 What Is a Mineral? Critical Thinking 2. Apply Concepts Glass is made up of silicon and oxygen atoms in a 1:2 ratio. The SiO 2 CHAPTER 5 1 What Is a Mineral? SECTION Minerals of Earth s Crust KEY IDEAS As you read this section, keep these questions in mind: What is a mineral? What are the two main groups of minerals? What are

More information

CERAMIC GLAZING as an IGNEOUS PROCESS

CERAMIC GLAZING as an IGNEOUS PROCESS GEOL 640: Geology through Global Arts and Artifacts CERAMIC GLAZING as an IGNEOUS PROCESS GLAZE COMPONENTS A glaze is a waterproof silica glass on the surface of a ceramic pot, and was first produced by

More information

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms?

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms? Earth Solid Earth Rocks Minerals Atoms How to make a mineral from the start of atoms? Formation of ions Ions excess or deficit of electrons relative to protons Anions net negative charge Cations net

More information

Bell Work 6-Nov How many valence electrons does magnesium and oxygen have? Draw their Lewis dot structures.

Bell Work 6-Nov How many valence electrons does magnesium and oxygen have? Draw their Lewis dot structures. Bell Work 6-Nov-2012 How many valence electrons does magnesium and oxygen have? Draw their Lewis dot structures. Objective: You will UNDERSTAND how to write a basic chemical formula Ions Some compounds

More information

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca 2. Which of the following influenced your answer to number one the most? a. effective nuclear

More information

Atoms: Building Blocks of Minerals. Why Atoms Bond. Why Atoms Bond. Halite (NaCl) An Example of Ionic Bonding. Composition of Minerals.

Atoms: Building Blocks of Minerals. Why Atoms Bond. Why Atoms Bond. Halite (NaCl) An Example of Ionic Bonding. Composition of Minerals. Matter and Minerals Earth Chapter 3 Minerals: summary in haiku form "Mineral" defined: natural, inorganic, solid (and two more). continued... Also crystalline, chemically specific. There! I fit it in!

More information

MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements)

MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) 1 PERIODS: Period number = Number of basic energy levels = The principal quantum number The horizontal lines in the periodic system

More information

CHAPTER 9: INTRODUCTION TO THERMODYNAMICS. Sarah Lambart

CHAPTER 9: INTRODUCTION TO THERMODYNAMICS. Sarah Lambart CHAPTER 9: INTRODUCTION TO THERMODYNAMICS Sarah Lambart RECAP CHAP. 8: SILICATE MINERALOGY Orthosilicate: islands olivine: solid solution, ie physical properties vary between 2 endmembers: Forsterite (Mg

More information