LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES

Size: px
Start display at page:

Download "LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES"

Transcription

1 Geology 316 (Petrology) (03/26/2012) Name LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES INTRODUCTION Ultramafic rocks are igneous rocks containing less than 10% felsic minerals (quartz + feldspars + feldspathoids) and more than 90% mafic minerals such as olivine, pyroxenes and hornblende. Chemically, ultramafic rocks are very poor in silica (< 45 wt. % SiO 2 ) corresponding to their ultramafic mineralogy. Ultramafic rocks are much denser than most crustal rocks with a density of about 3.3 g/cm 3 (granite is about 2.7 g/cm 3 ). You can simply feel it when you compare an ultramafic hand sample to a granite. Ultramafic rocks sometimes represent the petrologic composition of mantle and can be found in exposed mantle sections, or ophiolites, in a number of places on the Earth. Ultramafic intrusive rocks also can be found in the bottom part of layered intrusions, in which mafic minerals recrystallize first and sink down to the bottom of the magma chamber forming layers of cumulated ultramafic minerals. In the later case, we call such ultramafic rocks cumulates. Cumulates sometimes are associated with ore deposits (such as chromium and platinum group elements) and thus are economically important. Ultramafic extrusive rocks are much less common than their intrusive counterparts. Kimberlites are K- rich hybrid ultramafic extrusive rocks that occur in ancient cratons. They usually contain diamond xenocrysts when the ultramafic magma rises from the deep mantle. Another type of ultramafic extrusive rocks is komatiite. In this lab, you will practice how to use the IUGS classification to name ultramafic rocks. Several hand samples and thin sections are also available for you to explore. Finally, we will use a computer program to study the genesis of two types of basaltic magmas. PART I: Naming an ultramafic rock The following Ol-Opx-Cpx triangle (Fig 1.) is recommended by the IUGS for the classification and nomenclature of the ultramafic rocks with phanaritic textures. This method works for intrusive rocks in which modal percentages of minerals can be estimated. For extrusive rocks of fine-grained/glassy textures, the classification is based on their chemistry compositions and normative mineralogy. We won t deal with them in this lab. Question 1 In the Table 1, I list modal percentages of minerals of a few igneous rocks. Some of them are ultramafic rocks and some of them are not. Please (1) identify the ultramafic ones by circling the sample number; (2) only plot the ultramafic ones in Fig 1 and give them appropriate names. 1

2 Number Volcanic/ Plutonic Modal percentages Quartz Plag K-spar Nepheline Olivine Opx Cpx Hbl Others 1 Plutonic Plutonic Plutonic Plutonic Plutonic Plutonic Tab. 1 Fig. 1 2

3 PART II: Hand samples and thin sections In this part of the lab, you will look at several hand samples and thin sections. You need to identify the mineralogy and textures of the rocks, give them their proper names and answer related questions. Question 2: You will look at 2 hand samples in this part. Please (1) estimate modal percentages of each mineral and name it according to the IUGS systematics; (2) describe the textures of the sample. (3) Both of them have thin sections. If you are not sure about the mineralogy, check the thin sections. Sample 316-5D: Name Minerals and modal percentages: Texture: Sample 316-5A: Name Minerals and modal percentages: Texture: 3

4 Question 3: You will look at 3 thin sections in this part. Answer questions related to each thin section. The thin sections below are generally in the sequence from most primitive to more evolved. Primitive means the rock has not undergone differentiation and evolved means that the rock has been produced by differentiation from a primitive composition. When you look at thin sections, however, you don t have to follow such sequence. Thin section: Meteorite. Here is our guest thin section of meteorite! This one is called a chondrite, which means a meteorite containing chondrules, nearly spherical silicate inclusions between 0.1 and 3 mm in diameter. The chondrules are considered to be droplets of liquid/glass that have subsequentially crystallized into silicate minerals. These droplets still keep their spherical shape because they are not modified by later melting and differentiation. In this sense, they are the most primitive things having the compositions closest to the original solar nebular! People think the composition of such meteorites represent the bulk composition of the Earth. Even mantle has more evolved composition compare to the chondrite. How cool! What mineral makes up the chondrules? Please draw a sketch of one of them. Thin section: 316-5D. This is probably the most mafic rock in the whole collection! (1) What is the dominant mineral? Is there any other minerals besides the dominant mineral? Give modal percentages of the minerals and name it according to the IUGS systematics. Compare your mode estimation in thin section to the one you made based on hand sample. Do the two results match? (2) What is the overall texture of the rock? (3) Based on the mineralogy of the thin section. Which part of the Earth do you think it comes from? 4

5 Thin section: 316-5A. You have looked at this hand sample. Now it s time to check it under microscope. (1) Give modal percentages of the minerals you can find and name it according to the IUGS systematics. Be sure you know how to identify two types of pyroxenes. Compare your mode estimation in thin section to the one you made based on hand sample. Do the two results match? (2) What is the overall texture of the rock? (3) Some of the pyroxene grains have the exsolution lamellae. Recall your mineralogy knowledge, low-ca orthopyroxene (Opx) separates from high-ca clinopyroxene (Cpx) as the unmixing occurs when temperature decreases (Figure 2). What are the compositions (Cpx or Opx) of exsolution lamellae and host crystals in this thin section? What does another common mineral usually have the exsolusion texture? Fig. 2. When pigeonite (Mg-Fe-pyroxene, Opx) or augite (Ca-Mg-Fe-pyroxene,Cpx) exsolve they may form exsolution lamellae that form parallel to the (001) plane. At lower temperature the exsolution of Opx or augite result in exsolution lamellae that are parallel to the (100) plane. (Modify from 5

6 PART III: Generate basaltic magmas from a mantle peridotite In this part, we will use a computer program named PhasePlot (Figure 3) to explore the genesis of basaltic magma generated from a mantle rock. Recall we have two types of basalts: alkaline and tholeiitic basalts. Both can be derived from a chemically uniform mantle of the same composition. Melting depths (thus the pressures) and the degrees of partial melting are two important factors controlling the types of basalt generated. We will test several melting scenarios using the PhasePlot. PhasePlot PhasePlot ( is a computational thermodynamics software package for visualizing equilibrium phase relations in application to the Earth and other silicate planetary bodies. It is a free Mac application only run on Mac OS. It can be downloaded from the Mac App Store: However, it only runs on the newest Mac OS (version 10.7 Lion); so make sure your computer can install this. In the lab, let s do this part together as a group. You may want to take some notes about the data generated by the program. Fig 3. Screenshot of PhasePlot. A: Start/Stop. B: Composition popup menu. C: Composition popover. D: Clear the display. E: Popup the phase selection dialog. F: Button for full screen mode. G: Configure phase color palette. H: Invoke grid overlay diaplays. I: Configure temperature and pressure grid. J: Current database display. More info: 6

7 Modal Setup Since we are going to melt a mantle rock, we need to tell the program the chemical composition of the rock and the P-T ranges we are interested in. We will use the mantle peridotite as our initial mantle composition. We will do the following steps to setup the modal: (1) Launch the PhasePlot. Click the PhasePlot at the meun. Choose Preferences (2) In the General setting window, choose pmelt for the calculation database. The pmelt database allows us to do an equilibrium calculation under a high pressure. (3) Click composition drop-down list. Choose Mantle peridotite (MM3). (4) Click the Mantle Peridotite to the right of composition drop-down list. A list of major oxides will pop up. You can enter your own values. But here, we will use the default setting as it shows. (5) At lower right corner of the window, there are places for you to enter the pressures and temperatures. Temperature is in the unit of degree Celsius; and pressure is in the unit of Mega Pascal (MPa). Let s enter 1200 (min)-1600(max) ºC for temperature and 1000 (min)-3000(max) MPa for pressure. (6) You should realize that by setting the maximum pressure at 3000 MPa, we are dealing with quite deep depth in mantle (~100 km). (7) Click start button on upper left. Individual pie chart corresponding to a P-T condition will be calculated one by one. The color palette on the right ride tells you that which color in the pie chart represent which mineral. The result is shown in Figure 4. You can click the pie chart to show more detailed information about the equilibrium phase. Fig. 4 7

8 Question 4 In the T=1200 ºC column, temperature is constant while pressure changes from 3000 MPa to 1000 MPa. Does the mineralogy of the mantle change with pressure? What is the typical high-p mineralogy of the solid-phase mantle and what is the typical low-p mineralogy of the solid-phase mantle? What causes the increasing percentage of liquid phase in the T=1400 ºC column? Question 5 What is the chemical compositions (major oxides) of liquid phase in the pie charts at 1400 ºC-1000 MPa (A liquid) and 1600 ºC-3000 MPa (B liquid)? Both liquids are ultra-basaltic to basaltic in terms of silica content. Which one is alkaline liquid and which one is tholeiitic? Please use Figure 5 and 6 to discriminate between them (ignore the existing dots on the diagrams) and plot A and B on diagrams. re F Mg ks o l Calc-alkaline Fig. 5. Total alkalis vs. silica diagram for the alkaline and sub- alkaline rocks. A M Fig. 6. AFM diagram. A=K2O+Na2O, F=FeO+Fe2O3 or FeO*. M= MgO. 8

9 Question 6 In the P=1571 MPa row, pressure is constant while temperature changes from 1200 to 1600 ºC. With the increasing temperature, the percentage of liquid phase is also increasing. Compare the chemical compositions of the liquid phases at 1571 MPa-1400 ºC (C liquid ) and 1571 MPa-1600 ºC (D liquid). Which liquid is more alkaline and which is more tholeiitic? Plot C and D on Figure 5 and 6. How does the composition relate to the degree of melting? Question 7 If the liquid phase is extracted from the source region, we call what is left as residuum (pl. residua). What is the typical mineralogy of the residua in this modal if more than 25% of the liquid phase is extracted? 9

Classification of Igneous Rocks

Classification of Igneous Rocks Classification of Igneous Rocks Textures: Glassy- no crystals formed Aphanitic- crystals too small to see by eye Phaneritic- can see the constituent minerals Fine grained- < 1 mm diameter Medium grained-

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

Student Name: College: Grade:

Student Name: College: Grade: Student Name: College: Grade: Physical Geology Laboratory IGNEOUS MINERALS AND ROCKS IDENTIFICATION - INTRODUCTION & PURPOSE: In this lab you will learn to identify igneous rocks in hand samples from their

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

Rocks: Materials of the Solid Earth

Rocks: Materials of the Solid Earth 1 Rocks: Materials of the Solid Earth Presentation modified from: Instructor Resource Center on CD-ROM, Foundations of Earth Science,, 4 th Edition, Lutgens/Tarbuck, Rock Cycle Igneous Rocks Today 2 Rock

More information

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks?

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks? Date Period Name IGNEOUS ROCKS SECTION.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

How 2 nd half labs will work

How 2 nd half labs will work How 2 nd half labs will work Continue to use your mineral identification skills Learn to describe, classify, interpret rock hand samples: Igneous sedimentary metamorphic volcanic plutonic (1 week) (1 wk)

More information

GY303 Igneous & Metamorphic Petrology. Lecture 7: Magma Sources and Tectonic Environments

GY303 Igneous & Metamorphic Petrology. Lecture 7: Magma Sources and Tectonic Environments GY303 Igneous & Metamorphic Petrology Lecture 7: Magma Sources and Tectonic Environments Factors controlling Magma production Source rock composition Amount of fluids, especially H 2 O Pressure (Depth)

More information

AMHERST COLLEGE Department of Geology Geology 41: Environmental and Solid Earth Geophysics

AMHERST COLLEGE Department of Geology Geology 41: Environmental and Solid Earth Geophysics AMHERST COLLEGE Department of Geology Geology 41: Environmental and Solid Earth Geophysics Lab 1: Meteorites EQUIPMENT: notebook and pen only In this lab, we will examine thin sections and hand samples

More information

GLY 155 Introduction to Physical Geology, W. Altermann

GLY 155 Introduction to Physical Geology, W. Altermann Earth Materials Systematic subdivision of magmatic rocks Subdivision of magmatic rocks according to their mineral components: Content of quartz SiO 2 ( free quartz presence) Quartz with conchoidal breakage

More information

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Name: EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Introduction In the previous lab, we learned about mineral characteristics, properties and identities as well as the three basic rock

More information

Lecture 36. Igneous geochemistry

Lecture 36. Igneous geochemistry Lecture 36 Igneous geochemistry Reading - White Chapter 7 Today 1. Overview 2. solid-melt distribution coefficients Igneous geochemistry The chemistry of igneous systems provides clues to a number of important

More information

amphibole PART 3 Pyroxene: augite CHAIN SILICATES

amphibole PART 3 Pyroxene: augite CHAIN SILICATES amphibole PART 3 Pyroxene: augite CHAIN SILICATES CHAIN SILICATES = INOSILICATES inos = chains Basic structural group: Si 2 O 6 (each tetrahedra shared two corners) Simple or double chains linked by cations

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10 GEOL 2312 Igneous and Metamorphic Petrology Name KEY Spring 2016 Score / 58 Midterm 1 Chapters 1-10 1) Name two things that petrologists want to know about magmas (1 pt) Formation, source, composition,

More information

Block: Igneous Rocks. From this list, select the terms which answer the following questions.

Block: Igneous Rocks. From this list, select the terms which answer the following questions. Geology 12 Name: Mix and Match: Igneous Rocks Refer to the following list. Block: porphyritic volatiles mafic glassy magma mixing concordant discontinuous reaction series igneous vesicular partial melting

More information

Earth Science 11: Earth Materials: Rock Cycle

Earth Science 11: Earth Materials: Rock Cycle Name: Date: Earth Science 11: Earth Materials: Rock Cycle Chapter 2, pages 44 to 46 2.1: Rock Cycle What is a Rock? A solid mass of mineral or mineral-like matter that occurs naturally as part of our planet

More information

Plate tectonics, rock cycle

Plate tectonics, rock cycle Dikes, Antarctica Rock Cycle Plate tectonics, rock cycle The Rock Cycle A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one

More information

6. IGNEOUS ROCKS AND VOLCANIC HAZARDS

6. IGNEOUS ROCKS AND VOLCANIC HAZARDS LAST NAME (ALL IN CAPS): FIRST NAME: 6. IGNEOUS ROCKS AND VOLCANIC HAZARDS Instructions: Refer to Laboratory 5 in your lab book on pages 129-152 to answer the questions in this work sheet. Your work will

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40 GEOL 2312 Igneous and Metamorphic Petrology Name Spring 2009 Sc ore / 40 QUIZ 3 1) Name two geologic features that provide physical evidence for the mineralogy of the earth s mantle (2 pts) Ophiolites,

More information

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks EARTH SCIENCE Geology, the Environment and the Universe Chapter 5: Igneous Rocks CHAPTER 5 Igneous Rocks Section 5.1 What are igneous rocks? Section 5.2 Classification of Igneous Rocks Click a hyperlink

More information

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout)

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout) Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and 20 MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout) Chain silicate eg Diopside Mg and Fe ions link SiO 3 chains The chain runs up and down

More information

Lab 4 - Identification of Igneous Rocks

Lab 4 - Identification of Igneous Rocks Lab 4 - Identification of Igneous Rocks Page - Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly recognize

More information

INTRODUCTION ROCK COLOR

INTRODUCTION ROCK COLOR LAST NAME (ALL IN CAPS): FIRST NAME: 6. IGNEOUS ROCKS Instructions: Some rocks that you would be working with may have sharp edges and corners, therefore, be careful when working with them! When you are

More information

Magmatic Ore Deposits:

Magmatic Ore Deposits: Magmatic Ore Deposits: A number of processes that occur during cooling and crystallization of magmatic bodies can lead to the separation and concentration of minerals. 1- Pegmatites 2- Layered intrusions

More information

Worked Example of Batch Melting: Rb and Sr

Worked Example of Batch Melting: Rb and Sr Worked Example of Batch Melting: Rb and Sr Basalt with the mode: Table 9.2. Conversion from mode to weight percent Mineral Mode Density Wt prop Wt% ol 15 3.6 54 0.18 cpx 33 3.4 112.2 0.37 plag 51 2.7 137.7

More information

Igneous Rocks. Igneous Rocks - 1. Environment of Formation - Magma - Plutonic - rock that formed within the Earth. Intrusive - Earth s crust.

Igneous Rocks. Igneous Rocks - 1. Environment of Formation - Magma - Plutonic - rock that formed within the Earth. Intrusive - Earth s crust. Name: Date: Period: Minerals and Rocks The Physical Setting: Earth Science CLASS NOTES - Methods to classify igneous rocks: 1. Environment of Formation - Magma - Plutonic - rock that formed within the

More information

Notes for Use of the Cpx-Plag-Ol Thermobar Workbook Last Updated:

Notes for Use of the Cpx-Plag-Ol Thermobar Workbook Last Updated: Notes for Use of the Cpx-Plag-Ol Thermobar Workbook Last Updated: 7-22-05 Cpx-Plag-Ol Thermobar is an Excel workbook that can be used to calculate crystallization pressures and temperatures for clinopyroxene-

More information

10/20/2015. How is magma different from lava? Magma is molten rock below the Earth s surface. Lava is magma that flows out onto Earth s surface.

10/20/2015. How is magma different from lava? Magma is molten rock below the Earth s surface. Lava is magma that flows out onto Earth s surface. Chapter 5 What are igneous rocks? How do they form? Igneous rocks are rocks that form when molten material cools and crystallizes. Molten material can be either magma or lava. How is magma different from

More information

Igneous petrology EOSC 321

Igneous petrology EOSC 321 Igneous petrology EOSC 321 Laboratory 2: Determination of plagioclase composition. Mafic and intermediate plutonic rocks Learning Goals. After this Lab, you should be able: Determine plagioclase composition

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 Instructor : Dr. Jehad Hamad 2017-2016 Chapter (3) Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth

More information

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in Chapter - IV PETROGRAPHY 4.1. Introduction Petrographic studies are an integral part of any structural or petrological studies in identifying the mineral assemblages, assigning nomenclature and identifying

More information

Lab 3 - Identification of Igneous Rocks

Lab 3 - Identification of Igneous Rocks Lab 3 - Identification of Igneous Rocks Page - 1 Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly

More information

Earth Science 232 Petrography

Earth Science 232 Petrography Earth Science 232 Petrography Course notes by Shaun Frape and Alec Blyth Winter 2002 1 Petrology - Introduction Some Definitions Petra Greek for rock Logos Greek for disclosure or explanation Petrology

More information

Happy Tuesday. Pull out a ½ sheet of paper

Happy Tuesday. Pull out a ½ sheet of paper Happy Tuesday Pull out a ½ sheet of paper 1. Physical properties of a mineral are predominantly related to 1. the external conditions of temperature, pressure, and amount of space available for growth.

More information

Thursday, October 4 th

Thursday, October 4 th Thursday, October 4 th Objective: We will use and define the different ways to classify igneous rocks. Warm-up: 1. Which type of lava is most viscous? 2. Which type of lava has the least amount of silicate?

More information

Earth Science 11: Minerals

Earth Science 11: Minerals lname: Date: Earth Science 11: Minerals Purpose: Text Pages: I can identify and classify minerals using their physical and chemical properties 90-111 *This is recommended reading! Matter and Atoms (5.1)

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Igneous Rocks and Intrusive Activity Chapter 3 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Characteristics

More information

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Geol 2312 Igneous and Metamorphic Petrology Spring 2009 Name DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Objective: This exercise is intended to improve understanding

More information

Name Petrology Spring 2006 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7

Name Petrology Spring 2006 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7 1. Use the color index and density of the rock to establish whether it is felsic, intermediate, mafic, or ultramafic. 2. Determine

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011

More information

MACRORYTHMIC GABBRO TO GRANITE CYCLES OF CLAM COVE VINALHAVEN INTRUSION, MAINE

MACRORYTHMIC GABBRO TO GRANITE CYCLES OF CLAM COVE VINALHAVEN INTRUSION, MAINE MACRORYTHMIC GABBRO TO GRANITE CYCLES OF CLAM COVE VINALHAVEN INTRUSION, MAINE NICK CUBA Amherst College Sponsor: Peter Crowley INTRODUCTION The rocks of the layered gabbro-diorite unit of the Silurian

More information

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS GEOLOGY 17.01: Mineralogy LAB 6: COMMON MINERALS IN IGNEOUS ROCKS Part 2: Minerals in Gabbroic Rocks Learning Objectives: Students will be able to identify the most common silicate minerals in gabbroic

More information

Igneous Rocks. Igneous Rocks. Genetic Classification of

Igneous Rocks. Igneous Rocks. Genetic Classification of Igneous Rocks Fig. 5.1 Genetic Classification of Igneous Rocks Intrusive: crystallized from slowly cooling magma intruded within the Earth s crust; e.g. granite, gabbro 1 Fig. 5.2 Genetic Classification

More information

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar Rocks A naturally occurring aggregate of one or more minerals (e.g., granite), or a body of non-crystalline material (e.g., obsidian glass), or of solid organic material (e.g., coal). Rock Cycle A sequence

More information

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements.

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. CHAPTER 5 Igneous Rocks SECTION 5.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

Trace Elements. Today s lecture

Trace Elements. Today s lecture Trace Elements 300 Ni 200 ppm 100 0 300 Zr 200 100 0 40 50 60 70 80 SiO 2 wt. % Updates: M&M due date: Tuesday Today s lecture Topics: Trace element compositions Trace element behavior Partitioning Spider(

More information

Lecture 6 - Igneous Rocks and Volcanoes

Lecture 6 - Igneous Rocks and Volcanoes Lecture 6 - Igneous Rocks and Volcanoes Learning objectives Understand and be able to predict where and why magma will be forming at different tectonic settings Understand the factors controlling magma

More information

GEOLOGY. Subject : GEOLOGY (For under graduate student.) Paper No. : Paper 02 Introduction to Geology 02

GEOLOGY. Subject : GEOLOGY (For under graduate student.) Paper No. : Paper 02 Introduction to Geology 02 GEOLOGY Subject : GEOLOGY (For under graduate student.) Paper No. : Paper 02 Introduction to Geology 02 Topic No. & Title : 37 Magma Bowen Series (Part 01) Academic Script What is Igneous Petrology? Igneous

More information

Sphene (Titanite) Plane polarized light. Honey brown/orange Wedge-shaped crystals

Sphene (Titanite) Plane polarized light. Honey brown/orange Wedge-shaped crystals Sphene (Titanite) Plane polarized light Honey brown/orange Wedge-shaped crystals Sphene (Titanite) Crossed nicols High-order, washedout interference colors (light orange) #1 Rule for (Heavy) Radiogenic

More information

Partial melting of mantle peridotite

Partial melting of mantle peridotite Partial melting of mantle peridotite 1100 1200 1300 1400 1500 (TºC) Depth (km) 50 100 150 Plag lherzolite (ol-opx-cpx-pl) Spinel lherzolite (Ol-opx-cpx-sp) Garnet lherzolite (Ol-opx-cpx-gar) Graphite Diamond

More information

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks Chapter 3.0: Weathering & soils Chapter 4.0: Geological

More information

Examining Minerals and Rocks

Examining Minerals and Rocks Examining Minerals and Rocks What is a mineral? A mineral is homogenous, naturally occurring substance formed through geological processes that has a characteristic chemical composition, a highly ordered

More information

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava Introduction Chapter 4 Igneous rocks form by the cooling of magma (or lava). Large parts of the continents and all the oceanic crust are composed of. and Intrusive Igneous Activity The Properties and Behavior

More information

Igneous, Metamorphic & Sedimentary. Chapter 5 & Chapter 6

Igneous, Metamorphic & Sedimentary. Chapter 5 & Chapter 6 Igneous, Metamorphic & Sedimentary Chapter 5 & Chapter 6 Section 5.1 What are Igneous Rocks? Compare and contrast intrusive and extrusive igneous rocks. Describe the composition of magma Discuss the factors

More information

A Rock is A group of minerals that have been put together in several different ways.

A Rock is A group of minerals that have been put together in several different ways. A Rock is A group of minerals that have been put together in several different ways. Depending on how they are put together, rocks are classified as: 1. Sedimentary 2. Igneous 3. Metamorphic Sedimentary

More information

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg 11 Olivine Structure Olivine is a common green or brown rock forming minerals which consists of a solid-solution series between Forsterite (Fo) and Fayalite (Fa). It is an orthorhombic orthosilicate with

More information

Chapter 3: Igneous Rocks 3.2 IGNEOUS ROCK ORIGIN

Chapter 3: Igneous Rocks 3.2 IGNEOUS ROCK ORIGIN Chapter 3: Igneous Rocks Adapted by Lyndsay R. Hauber & Michael B. Cuggy (2018) University of Saskatchewan from Deline B, Harris R & Tefend K. (2015) "Laboratory Manual for Introductory Geology". First

More information

Differentiation 2: mantle, crust OUTLINE

Differentiation 2: mantle, crust OUTLINE Differentiation 2: mantle, crust OUTLINE Reading this week: Should have been White Ch 10 and 11!! 7- Nov Differentiation of the Earth, Core formation W 10.6.6, 11.4 9- Nov Moon, crust, mantle, atmosphere

More information

Occurrence of mafic-ultramafic rocks

Occurrence of mafic-ultramafic rocks Occurrence of mafic-ultramafic rocks Mantle-derived magmas Oceanic Lithospheric mantle Continental lithospheric mantle Ultramafic xenoliths Oman ophiolite harzburgite upper mantle both from: http://www.bris.ac.uk/depts/geol/vft/oman.html

More information

Igneous petrology EOSC 321 Laboratory 8: Intermediate and Felsic Volcanic Rocks. Pyroclastic Rocks

Igneous petrology EOSC 321 Laboratory 8: Intermediate and Felsic Volcanic Rocks. Pyroclastic Rocks 321 Lab 8 Instructor: L. Porritt - 1 - Igneous petrology EOSC 321 Laboratory 8: Intermediate and Felsic Volcanic Rocks. Pyroclastic Rocks Learning Goals. After this Lab, you should be able: Identify fine-grained

More information

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification:

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks

More information

The mantle metasomatism: diversity and impact What the mantle xenoliths tell us?

The mantle metasomatism: diversity and impact What the mantle xenoliths tell us? The mantle metasomatism: diversity and impact What the mantle xenoliths tell us? Mantle metasomatism Physical and chemical processes that are implemented during the flow of magmas and / or fluids within

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011 by W. H. Freeman and Company Chapter 4: Igneous Rocks: Solids from Melts 1 About Igneous Rocks Igneous

More information

To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle

To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle Bell Ringer Name the 3 types of rock. Is one type of rock able to change into a different

More information

Geos 306, Mineralogy Final Exam, Dec 12, pts

Geos 306, Mineralogy Final Exam, Dec 12, pts Name: Geos 306, Mineralogy Final Exam, Dec 12, 2014 200 pts 1. (9 pts) What are the 4 most abundant elements found in the Earth and what are their atomic abundances? Create a reasonable hypothetical charge-balanced

More information

The Nature of Igneous Rocks

The Nature of Igneous Rocks The Nature of Igneous Rocks Form from Magma Hot, partially molten mixture of solid liquid and gas Mineral crystals form in the magma making a crystal slush Gases - H 2 O, CO 2, etc. - are dissolved in

More information

Topic Page: Peridotite

Topic Page: Peridotite Topic Page: Peridotite Definition: peridotite from The Hutchinson Unabridged Encyclopedia with Atlas and Weather Guide Rock consisting largely of the mineral olivine; pyroxene and other minerals may also

More information

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT Sources: University of Washington, Texas A&M University, University of Southern Alabama What is an igneous rock (a

More information

CHAPTER ROCK WERE FORMED

CHAPTER ROCK WERE FORMED HOW CHAPTER 5 ROCK WERE FORMED 1 I. Modern geology- 1795 A. James Hutton- 1. uniformitarianism- "the present is the key to the past" a. b. the geologic processes now at work were also active in the past

More information

Igneous petrology EOSC 321

Igneous petrology EOSC 321 Igneous petrology EOSC 321 Laboratory 1: Review of optical properties of minerals. Ultramafic plutonic and volcanic rocks Material Needed: a) Microscope, b) Glossary of rock names and textures (see Pages

More information

Rocks Rock- A group of minerals, glass, mineroid bound together in some way.

Rocks Rock- A group of minerals, glass, mineroid bound together in some way. Rocks Rock- A group of minerals, glass, mineroid bound together in some way. All rocks fit into one of three categories: Igneous- formed by the cooling and hardening of hot molten rock Sedimentary- formed

More information

Differentiation 1: core formation OUTLINE

Differentiation 1: core formation OUTLINE Differentiation 1: core formation Reading this week: White Ch 12 OUTLINE Today 1.Finish some slides 2.Layers 3.Core formation 1 Goldschmidt Classification/Geochemical Periodic Chart Elements can be assigned

More information

Geology 1 st Semester Exam YSBAT

Geology 1 st Semester Exam YSBAT 1. What is the role of a geologist? Geology 1 st Semester Exam YSBAT 2016-2017 2. Earth is subdivided into three main layers based on what? 3. What features do you find at divergent boundaries? 4. Rock

More information

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith Ultramafic rocks Definition: Color Index > 90, i.e., less than 10% felsic minerals. Not to be confused with Ultrabasic Rocks which are rocks with

More information

Chapter: Earth Materials

Chapter: Earth Materials Table of Contents Chapter: Earth Materials Section 1: Minerals Section 2: Igneous Rocks Section 3: Sedimentary Rocks Section 4: Metamorphic Rocks and the Rock Cycle 1 Minerals Common Elements Composition

More information

Igneous petrology EOSC 321 Laboratory 1: Ultramafic plutonic and volcanic rocks

Igneous petrology EOSC 321 Laboratory 1: Ultramafic plutonic and volcanic rocks 1 Igneous petrology EOSC 321 Laboratory 1: Ultramafic plutonic and volcanic rocks Material Needed: a) Microscope, b) Glossary of rock names and textures (see Pages 24-25 and 43 of Winter); c) Lab1 Manual

More information

PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE

PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE DANIEL HAWKINS Western Kentucky University Research Advisor: Andrew Wulff INTRODUCTION Round Point, in the

More information

Name. GEOL.3250 Geology for Engineers Igneous Rocks

Name. GEOL.3250 Geology for Engineers Igneous Rocks Name GEOL.3250 Geology for Engineers Igneous Rocks I. Introduction The bulk of the earth's crust is composed of relatively few minerals. These can be mixed together, however, to give an endless variety

More information

High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools -

High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools - High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools - SZABÓ, Csaba Lithosphere Fluid Research Lab (LRG), Department of Petrology and Geochemistry,

More information

Imagine the first rock and the cycles that it has been through.

Imagine the first rock and the cycles that it has been through. A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one type of rocky material gets transformed into another The Rock Cycle Representation

More information

Lab 3: Igneous Rocks

Lab 3: Igneous Rocks Lab 3: Igneous Rocks The Geology in YOUR life initiative Mount Shinmoedake erupts in Japan (Jan 26, 2010) Volcanic smoke rises from Mount Shinmoedake on 1 February, 2011. Smoke rises from Mount Shinmoedake

More information

Directed Reading. Section: Rocks and the Rock Cycle. made of a. inorganic matter. b. solid organic matter. c. liquid organic matter. d. chemicals.

Directed Reading. Section: Rocks and the Rock Cycle. made of a. inorganic matter. b. solid organic matter. c. liquid organic matter. d. chemicals. Skills Worksheet Directed Reading Section: Rocks and the Rock Cycle 1. The solid part of Earth is made up of material called a. glacial ice. b. lava. c. rock. d. wood. 2. Rock can be a collection of one

More information

OCEAN/ESS 410. Lab 8. Igneous rocks

OCEAN/ESS 410. Lab 8. Igneous rocks Lab 8. Igneous rocks Today s exercise is an introduction to rock identification and the crustal structure of the seafloor. All rocks are composed of two or more minerals, and can be classified based on

More information

Name Class Date. 1. In your own words, write a definition for the term rock cycle.

Name Class Date. 1. In your own words, write a definition for the term rock cycle. Skills Worksheet Chapter Review USING KEY TERMS 1. In your own words, write a definition for the term rock cycle. Complete each of the following sentences by choosing the correct term from the word bank.

More information

Lecture 25 Subduction Related Magmatism

Lecture 25 Subduction Related Magmatism Lecture 25 Subduction Related Magmatism Monday, May 2 nd 2005 Subduction Related Magmatism Activity along arcuate volcanic chains along subduction zones Distinctly different from the mainly basaltic provinces

More information

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks Name: Date: Igneous Rocks Igneous rocks form from the solidification of magma either below (intrusive igneous rocks) or above (extrusive igneous rocks) the Earth s surface. For example, the igneous rock

More information

Name Petrology Spring 2006

Name Petrology Spring 2006 Igneous rocks lab Part I Due Tuesday 3/7 Igneous rock classification and textures For each of the rocks below, describe the texture, determine whether the rock is plutonic or volcanic, and describe its

More information

Page 1. Name:

Page 1. Name: Name: 1) What is the approximate density of a mineral with a mass of 262.2 grams that displaces 46 cubic centimeters of water? A) 6.1 g/cm 3 C) 1.8 g/cm 3 B) 5.7 g/cm 3 D) 12.2 g/cm 3 2) In which two Earth

More information

CHAPTER ROCK WERE FORMED

CHAPTER ROCK WERE FORMED HOW CHAPTER 3 ROCK WERE FORMED 1 I. Modern geology- 1795 A. James Hutton- 1. uniformitarianism- "the present is the key to the past" a. b. the geologic processes now at work were also active in the past

More information

Archean Terranes. Archean Rocks. Southeastern Africa. West Greenland. Kaapvaal Craton. Ancient Gneiss Complex

Archean Terranes. Archean Rocks. Southeastern Africa. West Greenland. Kaapvaal Craton. Ancient Gneiss Complex Archean Terranes Archean Rocks Chapter 15A >2.5 Gy old Younger supracrustal sequences Greenstone belts Calc-alkaline metavolcanic rocks Older gneiss complexes Quartzo-feldspathic rocks Tonalites and migmatites

More information

Unit 2 Exam: Rocks & Minerals

Unit 2 Exam: Rocks & Minerals Name: Date: 1. Base your answer(s) to the following question(s) on the 2001 edition of the Earth Science Reference Tables, the map and cross section below, and your knowledge of Earth science. The shaded

More information

High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools -

High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools - High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools - SZABÓ, Csaba Lithosphere Fluid Research Lab (LRG), Department of Petrology and Geochemistry,

More information

Most mafic magmas come from the upper mantle and lower crust. This handout will address five questions:

Most mafic magmas come from the upper mantle and lower crust. This handout will address five questions: Geology 101 Origin of Magma From our discussions of the structure of the interior of the Earth, it is clear that the upper parts of the Earth (crust and mantle) are mostly solid because s-waves penetrate

More information

Constitution of Magmas. Magmas. Gas Law. Composition. Atomic Structure of Magma. Structural Model. PV = nrt H 2 O + O -2 = 2(OH) -

Constitution of Magmas. Magmas. Gas Law. Composition. Atomic Structure of Magma. Structural Model. PV = nrt H 2 O + O -2 = 2(OH) - Constitution of Magmas Magmas Best, Ch. 8 Hot molten rock T = 700-1200 degrees C Composed of ions or complexes Phase Homogeneous Separable part of the system With an interface Composition Most components

More information

GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli

GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli Chapter 5: Crystal-Melt phase diagrams Effect of water pressure on feldspar stability Hypersolvus vs.

More information

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks?

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks? Name: 1) Which diagram best shows the grain size of some common sedimentary rocks? 1663-1 - Page 1 5) The flowchart below illustrates the change from melted rock to basalt. 2) Which processes most likely

More information

Quartz. ! Naturally occurring - formed by nature. ! Solid - not liquid or gas. Liquid water is not a mineral

Quartz. ! Naturally occurring - formed by nature. ! Solid - not liquid or gas. Liquid water is not a mineral GEOL 110 - Minerals, Igneous Rocks Minerals Diamond Azurite Quartz Why Study Minerals?! Rocks = aggregates of minerals! Importance to Society?! Importance to Geology? 5 part definition, must satisfy all

More information

Origin of Basaltic Magma. Geology 346- Petrology

Origin of Basaltic Magma. Geology 346- Petrology Origin of Basaltic Magma Geology 346- Petrology 2 principal types of basalt in the ocean basins Tholeiitic Basalt and Alkaline Basalt Table 10-1 Common petrographic differences between tholeiitic and alkaline

More information