6 Catalyst Shapes and Production of Heterogeneous Catalysts

Size: px
Start display at page:

Download "6 Catalyst Shapes and Production of Heterogeneous Catalysts"

Transcription

1 223 6 Catalyst Shapes and Production of Heterogeneous Catalysts 6.1 Catalyst Production [1, T41] Industrial catalysts are generally shaped bodies of various forms, e. g., rings, spheres, tablets, pellets (Fig. 6-1). Honeycomb catalysts, similar to those in automobile catalytic converters, are also used. The production of heterogeneous catalysts consists of numerous physical and chemical steps. The conditions in each step have a decisive influence on the catalyst properties. Catalysts must therefore be manufactured under precisely defined and carefully controlled conditions [14]. Since even trace impurities can affect catalyst performance, strict quality specifications apply for the starting materials. Successful catalyst production is still more Fig. 6-1 Various shaped catalyst bodies (BASF, Ludwigshafen, Germany) Industrial Catalysis: A Practical Approach, Second Edition. Jens Hagen Copyright # 2006 WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim ISBN:

2 224 6 Catalyst Shapes and Production of Heterogeneous Catalysts of an art than a precise science, and much company know-how is required to obtain catalysts with the desired activity, selectivity, and lifetime. Depending on their structure and method of production, catalysts can be divided into three main groups [8]: Bulk catalysts Impregnated catalysts Shell catalysts Bulk catalysts are mainly produced when the active components are cheap. Since the preferred method of production is precipitation, they are also known as precipitated catalysts. Precipitation is mainly used for the production of oxidic catalysts and also for the manufacture of pure support materials. ne or more components in the form of aqueous solutions are mixed and then coprecipitated as hydroxides or carbonates. An amorphous or crystalline precipitate or a gel is obtained, which is washed thoroughly until salt free. This is then followed by further steps: drying, shaping, calcination, and activation (Scheme 6-1) Solutions of two or more salts Mixing + NaH (Na C ) 2 3 Precipitation Amorphous or cryst. solid or gel Washing Drying Grinding Shaping Calcination Activation Scheme 6-1 Production of a precipitated catalyst [7] Precipitated catalyst The production conditions can influence catalyst properties such as crystallinity, particle size, porosity, and composition. In the shaping step, the catalyst powder is plastified by kneading and pelletized by extrusion or pressed into tablets after addition of auxiliary materials (Fig. 6-2). The influence of the shaping process on the mechanical strength and durability of the catalyst should not be underestimated. When reactors are filled with catalyst, a dropping height of 6 8 m is usual, and bed heights of up to 10 m are possible. Furthermore, industrial catalysts are subject to high temperatures and also often to changing temperatures.

3 6.1 Catalyst Production 225 Fig. 6-2 Production of noble metal catalysts at the company Degussa, Hanau Wolfgang, Germany Typical examples of precipitated catalysts are: Iron oxide catalysts for high-temperature C conversion (Fe 2 3 with addition of Cr 2 3 ) Catalysts for the dehydrogenation of ethylbenzene to styrene (Fe 3 4 ) Highly homogeneous catalysts can be obtained by using mixed salts or mixed crystals as starting materials, since in this case the ions are already present in atomically distributed form. Readily decomposible anions such as formate, oxalate, or carbonate are advantageous here. Examples: Cu(H)NH 4 Cr 4 as a precursor for copper chromite (Adkins catalyst) Ni 6 Al 2 (H) 16 C 3 7 4H 2 decomposes to give a supported Ni/Al 2 3 catalyst ne of the best known methods for producing catalysts is the impregnation of porous support materials with solutions of active components [9,10]. Especially catalysts with expensive active components such as noble metals are employed as supported catalysts. A widely used support is Al 2 3. After impregnation the catalyst particles are dried, and the metal salts are decomposed to the corresponding oxides by heating. The process is shown schematically in Scheme 6-2. In the impregnation process, active components with thermally unstable anions (e. g., nitrates, acetates, carbonates, hydroxides) are used. The support is immersed

4 226 6 Catalyst Shapes and Production of Heterogeneous Catalysts Precipitation of support, e.g., Al 2 3 Washing and drying Shaping of support Impregnation with solutions of the active components Drying Decomposition (calcination) Activation (reduction) Supported metal catalyst Scheme 6-2 Production of supported metal catalysts by impregnation in a solution of the active component under precisely defined conditions (concentration, mixing, temperature, time). Depending on the production conditions, selective adsorption of the active component occurs on the surface or in the interior of the support. The result is nonuniform distribution. To achieve the best possible impregnation, the air in the pores of the support is removed by evacuation, or the support is treated with gases such as C 2 or NH 3 prior to impregnation. After impregnation, the catalyst is dried and calcined. For large-scale manufacture the so-called incipient wetness impregnation (also called pore volume, or dry or capillary impregnation) is the most advantageous method. In this approach the support is brought into contact with a solution the volume of which corresponds to the total pore volume of the solid and which contains the appropriate amount of precursor compound. The principle of this method is shown in Figure 6-3. If catalysts with high loadings of the active compounds are to be made, limited solubility of the precursor compound may cause problems, and multiple impregnations may have to be applied. With incipient wetness impregnation, even precursor compounds which do not interact with the support can be deposited when the solvent is removed during a subsequent drying procedure. This can be illustrated with Figure 6-4. The rate of drying depends on the temperature and the gas throughput. From Figure 6-4 it can be seen that the rate of drying strongly affects the metal distribution of the catalyst particles. There can be obtained catalysts with egg-yolk, egg-shell, and homogeneous metal distributions. Calcination is heat treatment in an oxidizing atmosphere at a temperature slightly higher than the intended operating temperature of the catalyst. In calcina-

5 6.1 Catalyst Production 227 Fig. 6-3 Principle of catalyst preparation by incipient wetness impregnation Fig. 6-4 Influence of the rate of drying on the profile of pores and particles tion numerous processes can occur that alter the catalyst, such as formation of new components by solid-state reactions, transformation of amorphous regions into crystalline regions, and modification of the pore structure and the mechanical properties. In the case of supported metal catalysts, calcination leads to metal oxides as catalyst precursors, and these must subsequently be reduced to the metals. This reduction can be performed with hydrogen (diluted with nitrogen), C, or milder reducing agents such as alcohol vapor. In some cases reduction can be carried out in the production reactor prior to process start-up. Here temperature control is a problem.

6 228 6 Catalyst Shapes and Production of Heterogeneous Catalysts Impregnated catalysts have many advantages compared to precipitated catalysts. Their pore structure and specific surface area are largely determined by the support. Since support materials are available in all desired ranges of surface area, porosity, shape, size, and mechanical stability, impregnated catalysts can be tailor-made with respect to mass transport properties [9]. In individual cases it is possible to achieve almost molecular distribution of the active components in the pores. As a rule, however, the active substance is distributed in the form of crystallites with a diameter of nm. This fine distribution on the support not only ensures a particularly favorable surface to volume ratio and hence makes good use of the active components, some of which are expensive, it also reduces the risk of sintering. In general, with increasing loading, catalyst activity eventually reaches a limiting value. Therefore, for economic reasons the catalyst loading is % for noble metals, and 5 15 % for other metals. Examples of industrial impregnated catalysts are: Ethylene oxide catalysts in which a solution of a silver salt is applied to Al 2 3 Catalysts in the primary reformer of ammonia synthesis, with % Ni on a-al 2 3 Catalysts for the synthesis of vinyl chloride from acetylene and HCl: HgCl 2 / activated carbon; HgCl 2 is applied from aqueous solution Catalysts in which the active component is a finely divided metal are often pyrophoric. The catalyst can be better handled after surface oxidation of the active component (passivation). Reactivation is then carried out in the start-up phase under process conditions. Shell catalysts consist of an compact inert support, usually in sphere or ring form, and a thin active shell that encloses it [4]. Since the active shell has a thickness of only mm, the diffusion paths for the reactants are short. There are many heterogeneously catalyzed reactions in which it would be advantageous to eliminate the role of pore diffusion. This is particularly important in selective oxidation reactions, in which further reactions of intermediate products can drastically lower the selectivity. An example is acrolein synthesis: two catalysts with the same active mass but different shell thicknesses differed greatly in selectivity at the high conversions desired in industry (Fig. 6-5). Therefore, if acrolein synthesis is to be operated economically, the shell thickness must be optimized. The best known method for producing shell catalysts is the controlled short-term immersion of strongly adsorbing support materials. A well-known example is the platinum shell catalyst, which can easily be prepared with low loading and a high degree of dispersion. The support is immersed in solution of hexachloroplatinic acid (H 2 PtCl 6 ), and an outer layer of adsorbed PtCl 27 4 ions is formed. The adsorption of the hexachloroplatinic acid is so fast that diffusion of the solution into the pores is rate-determining. The treated catalyst particles are then dried without washing and calcined to generate the metal [T35]. Figure 6-6 shows how different impregnation techniques can be used to obtain supported catalysts with special distributions of the metal.

7 6.1 Catalyst Production 229 Fig. 6-5 Cross section of a shell catalyst (magnification 186). Influence of the shell thickness on the selectivity of acrolein synthesis (BASF, Ludwigshafen, Germany): Shell thickness [µm] Selectivity [%] at 99% conversion a b c d e Fig. 6-6 Different metal distributions in pellets of diameter 6 mm consisting of a metal on a support (Degussa, Hanau-Wolfgang, Germany) a) Shell catalyst with normal shell thickness b) Shell catalyst with an extremely thin shell c) Shell catalyst with a thick shell d) Impregnated catalyst e) Catalyst with ring distribution

8 230 6 Catalyst Shapes and Production of Heterogeneous Catalysts The advantages of shell catalysts are short transport or diffusion paths, a pore structure independent of the support, and better heat transport in the catalyst layer. Examples of industrial applications of shell catalysts are: Selective oxidation reactions, e. g., production of acrolein from propene and of phthalic anhydride from o-xylene Purification of automobile exhaust gases Selective oxidation of benzene to maleic anhydride: vanadium molybdenum oxide on fused corundum (catalytically inactive support without pores) Autothermal decomposition of liquid hydrocarbons on Ni/a-Al 2 3 shell catalysts (high selectivity for lower alkenes [4] In this chapter we have seen how the different steps of catalyst production can affect the functional properties of catalysts, such as activity and selectivity, and their morphology (Fig. 6-7). Fig. 6-7 Modern catalyst production plant (BASF, Ludwigshafen, Germany) Because of the numerous influencing parameters, prediction of the catalytic properties is not possible. They can only be determnined by measurement of the reaction kinetics. This makes it clear why catalyst production is based on special company know-how and that not all details are publicized.

9 6.2 Immobilization of Homogeneous Catalysts Immobilization of Homogeneous Catalysts As we have seen in Chapter 3, the industrial use of homogeneous catalysts often leads to problems with catalyst separation and recycling, recovery of the often valuable metal, and short catalyst lifetimes. Therefore, in the last twenty years or so, extensive studies have been carried out on the development of heterogenized homogeneous catalysts, which are intended to combine the advantages of homogeneous catalysts, in particular high selectivity and activity, with those of heterogeneous catalysts (ease of separation and metal recovery). Hence attempts are made to convert organometallic complex catalysts to a form that is insoluble in the reaction medium. This is generally achieved by anchoring a suitable molecule on an organic or inorganic polymer support. In the following, we will discuss such methods for obtaining immobilized homogeneous catalysts, which are also known as fixed catalysts or hybrid catalysts, and the potential applications of this intersting class of catalysts [3]. To come to the most important point first: the ideal immobilized metal complex for industrial appplications has not yet been found, as is shown by weighing up the advantages and disadvantages of this type of catalyst. Advantages: 1) Separation and recovery of the catalyst from the product stream is straightforward. This is the main advantage of heterogenization. 2) Mutifunctional catalysts can be obtained in which more than one active component is bound to a carrier. 3) Highly reactive, coordinatively unsaturated species that can not exist in solution can be stabilized by heterogenization. Disadvantages: 1) The immobilized homogeneous catalysts are not sufficiently stable. The valuable metal is continuously leached and carried away with the product stream. 2) The problems of homogeneous catalysts, such as corrosion, catalyst recovery, and catalyst recycling, have so far not been satisfactorily solved. 3) Lower catalytic activity than homogeneous catalysts because of: poor accessibility of the active sites for the substrate, steric effects of the matrix, incompatibility of solvent and polymer, deactivation of active centers. 4) Inhomogeneity due to different linkages between support matrix and complex. Particularly intensive investigations have been carried out on catalysts for reactions with C or alkenes. These reactions, which are typical transition metal catalyzed conversions, provide the best possibility for assessing the properties of heterogenized catalysts. Examples are given in the following overview (Table 6-1). All the examples show that the reaction mechanisms with homogeneous and heterogeneous catalysis are in many respects similar. However, care must be taken in

10 232 6 Catalyst Shapes and Production of Heterogeneous Catalysts comparing soluble and matrix-bound catalysts, since the matrix can be regarded as a ligand. Thus at least one coordination site of the complex catalyst is no longer available for the catalytic cycle. It is difficult to find the corresponding ligands required for a comparison. For example, a monodentate phosphine ligand like PPh 3 is not directly comparable to a polystyrene matrix with phosphine groups. For meaningful comparisons, the less common multidentate ligands must be used in solution. Table 6-1. Comparison of homogeneous and heterogenized catalysts in industrial reactions Reaction Homogeneous catalyst Heterogenized catalyst Hydroformylation of olefins (oxo synthesis) xidation of olefins (Wacker process) Carbonylation of methanol to acetic acid Co or Rh complex [PdCl 4 ] 2 [Rh(C) 2 I 2 ] + HI Co or Rh complex on polymer or Si 2 support matrix PdCl 2 on support matrix RhCl 3 on activated carbon or [RhCl(C)PR n ] on modified polystyrene Hydrogenation of olefins [Rh(PPh 3 ) 3 Cl] [Rh(PPh 3 ) n Cl] on polymer support There are four basic ways of fixing transition metal complexes on a matrix: 1) Chemical bonding on inorganic or organic supports 2) Production of highly dispersed supported metal catalysts 3) Physisorption on the surface of oxidic supports (supported solid phase catalysts, SSPC) 4) Dissolution in a high-boiling liquid that is adsorbed on a porous support (supported liquid phase catalysts, SLPC) The immobilization of organometallic complexes on inorganic or organic supports is the most widely used method. Basically the supports act as high molecular mass ligands and are obtained by controlled synthesis. The bonding can be ionic or coordinative. The main aim of the process is to bind the complexes on the solid surface in such a manner that its chemical structure is retained as far as posssible. A common method is the replacement of a ligand by a bond to the surface of the solid matrix. This means that a reactive group must be incorporated in the surface during production of the support. Numerous polymer syntheses and orgamometallic syntheses are available for the construction of functionalized supports; Equation 6-1 gives just one example.

11 6.2 Immobilization of Homogeneous Catalysts 233 PCl 3 /AlCl 3 PCl 2 (6-1) Polymer chain (polystyrene) 2 RLi PR 2 Here triphenylphosphine, the most important ligand in organometallic catalysis, is coupled to the benzene rings of cross-linked polystyrene. An anchored catalyst is then formed by coordination of the phosphine group to the metal center of a rhodium complex (Eq. 6-2). PPh 2 RhL x Ph P Ph (6-2) RhL x The degree of swelling of this copolymer in organic solvents is controlled by means of the amount of divinylbenzene. Hard copolymers of this type take up metal complexes only on the surface. The physical properties of the support can be varied by means of the polymerization method; the metal loading can also be controlled well. There are many reactions available for applying the organometallic complexes to the surface. Two examples are shown in Equations 6-3 and 6-4. CH +RuH 2 (PPh 3 ) 4 C RuH(PPh 3 ) 3 (6-3) CH 2 Cl + NaMn(C) 5 CH ΝaCl 2 Mn(C) 5 (6-4) Disadvantages of the organic polymer supports are low mechanical durability (e. g., in stirred tank reactors), poor heat-transfer properties, and limited thermal stability (up to max. 1508C).

12 234 6 Catalyst Shapes and Production of Heterogeneous Catalysts There are also several methods available for producing inorganic supports. Here we will discuss a few basic methods. The most important method is the reaction of inorganic supports having surface hydroxyl groups with metal alkyls (Eq. 6-5). H CH 2 C 6 H 5 Ti(CH 2 C 6 H 5 ) Mg 4 Mg Ti (6-5) H CH 2 C 6 H 5 Alkoxides and halides can also be attached to surfaces. Subsequent hydrolysis and dehydration lead to terminal metal oxo structures (Eq. 6-6). Si H H H MoCl 5-3HCl Si 180 C -H 2 Cl Mo Cl Si +2 H 2-2HCl M Si Mo H H (6-6) Such immobilized molybdenum oxide catalysts are active in selective oxidation reactions. For example, methanol can be oxidized with air to methyl formate at ca. 500 K with % selectivity [T22]. The catalyst obtained from g-al 2 3 and tetrakis(z 3 -allyl)dimolybdenum (Eq. 6-7) is considerably more active in ethylene hydrogenation and olefin metathesis than the catalysts prepared by conventional fixation of [Mo(C) 6 ] followed by calcination. Al H H H H 3 ( -C 3 H 5 ) 4 Mo 2 0 C Al C 3 H 5 Mo C 3 H 5 C 3 H 5 Mo C 3 H 5 2 Mo Al 0 C Mo C H C Al Mo Al Mo Mo Mo (6-7) rganofunctional polysiloxanes are a versatile group of catalysts developed by the company Degussa [13]. These are solids with a silicate framework obtained by hydrolysis and polycondensation of organosilicon compounds (Eq. 6-8).

13 6.2 Immobilization of Homogeneous Catalysts 235 X X (CH 2 ) 3 (CH 2 ) 3 +H 2 (CH 2 ) 3 (CH 2 ) 3 Si(R) 3 Si(R) 3 +RH Si(H) Si(H) 3 3 X (6-8) - H 2 + H 2 (CH 2 ) 3 (CH 2 ) 3 Si Si X = functional group: sulfane, phosphine, amine This class of substances is characterized by broad chemical modifiability, a high capacity for functional groups, high temperature and ageing resistance, and insolubility in water and organic solvents. The heterogenized organopolysiloxane catalysts are marketed as abrasion-resistant spheres of various particle sizes. In particular the phosphine complexes of Ru, Pd, Ir, and Pt are interesting catalysts for hydrogenation, hydroformylation, carbonylation, and hydrosilylation Highly Dispersed Supported Metal Catalysts [T22] This method is used to obtain a very fine distribution of metal on a support by decomposition of organometallic compounds (so-called grafted catalysts). For example, by treating Ti 2 with Z 3 -allyl complexes of rhodium followed by decomposition, highly active hydrogenation and hydrogenolysis catalysts are obtained (Eq. 6-9). Similar catalysts based on polysiloxanes are produced by Degussa; Pd, Rh, and Pt systems are available. Rh(C 3 H 5 ) 3 + H Ti H C 3 H 5 Rh 273 K 293 K Ti H 2 H Rh Ti (6-9) K H 2 (Rh) n Ti (Rh) n = small aggregates of 25 or more Rh atoms with particle diameters of ca. 1.4 nm SSP Catalysts [6, 11] In this group of catalysts, organometallic complexes are anchored on the inner surface of porous supports, mainly by physisorption. These catalysts can be used as catalyst beds through which the reaction medium flows. For example, the complex

14 236 6 Catalyst Shapes and Production of Heterogeneous Catalysts [Rh(Z 3 -C 3 H 5 )(C)(PPh 3 ) 2 ] is adsorbed on g-al 2 3 and used as a hydrogenation catalyst. The fixed complexes often exhibit considerably lower activity and selectivity than in the homogeneous phase, and this limits their range of applications. The SLP catalysts are a better alternative SLP Catalysts [11, 15] In this process a solution of the complex in a high-boiling solvent spreads out on the inner surface of a porous support, which generally consists of an inorganic material such as silica gel or chromosorb. The reaction takes place in the liquid film, which the starting materials reach by diffusion. The products are also transported away by diffusion out of the film, which is retained on the support. The use of SLP catalysts is generally restricted to the synthesis of low-boiling compounds. xo synthesis with SLP catalysts has been the subject of much interest. An example is the hydroformylation of propene with [RhH(C)(PPh 3 ) 3 ] in liquid triphenylphosphine on g-al 2 3. The starting material and the C 4 aldehyde are present in the gas phase. In a pilot plant at DSM, low selectivity was found and diffusion problems were encountered. Further examples are the oxidation of ethylene to acetaldehyde with aqueous solutions of PdCl 2 and CuCl 2 on kieselguhr, and the oxychlorination of alkenes with a CuCl 2 /CuCl/KCl/rare earth halide melt on silica gel [T22]. From these examples, most of which are based on laboratory investigations, it becomes clear that heterogenization is not a general method for solving problems in catalysis. It is, however, an interesting addition to the spectrum of catalytic methods. Finally we shall discuss some examples in which heterogenized catalysts have been successfully used in industrial processes. Chromium complexes on the basis of chromocene or chromium salts on Si 2 are used for the polymerization of a-olefins and for the production of linear polyethylene in the Phillips process. The structure of the active surface species is unknown. Heterogenized titanium complexes are used for the polymerization of propylene and give high yields of isotactic polypropylene [T31]. Another example for the use of a multifunctional solid catalyst is the Aldox process for the production of 2-ethylhexanol (Eq. 6-10). CH 3 CH CH 2 +C+H 2 CH 3 CH 2 CH 2 CH 1 2 2x H 2 CH 3CH 2 CH 2 CH C CH CH 2 CH H 2 CH 3 CH 2 CH 2 CH 2 CH CH 2 H CH 2 CH 3 (6-10) In industry the hydroformylation (reaction 1) is catalyzed by Rh or Co complexes in solution. The aldol condensation (reaction 2) is acid or base catalyzed, and the hydrogenation of the unsaturated aldehyde (reaction 3) is catalyzed by metals such

15 Exercises for Chapter C CH 2 P Rh P CH 2 Cl CH 2 N H C 2 H 5 Fig. 6-8 Multifunctional, polymer-fixed solid catalyst for the Aldox process [16] as nickel. n this basis a catalyst with a metal function (Rh) and a base function (amine) was developed (Fig. 6-8), and is active for the formation of 2-ethylhexanol. The rhodium center catalyzes the hydroformylation and the partial hydrogenation of the aldol product, in which the aldehyde group is retained, while the amino group catalzes the aldol condensation [16]. These examples show that the area of heterogenization of catalysts represents an enormous potential for research. Some of these catalysts show high activities under mild conditions with interesting and sometimes unexpected selectivities. The processes for the production of these catalysts, the investigation of their precise structures, and the elucidation of their reaction mechanisms are still at an early stage. It would seem that the use of heterogenized catalysts is best suited to small molecules (oxidation, hydrogenation), and that inorganic supports are more promising than organic supports. The field of heterogenization has led to a closer approach between heterogeneous and homogeneous catalysis. " Exercises for Chapter 6 Exercise 6.1 Which are the main physical properties of a catalyst that are influenced by the production conditions? Exercise 6.2 What are the advantages of impregnated catalysts compared with precipitated catalysts?

16 238 6 Catalyst Shapes and Production of Heterogeneous Catalysts Exercise 6.3 Name porous supports with which impregnated catalysts can be manufactured. Exercise 6.4 Which two types of support are preferentially used for oxidation catalysts? Exercise 6.5 For which reactions are supported catalysts impregnated near the surface particularly suitable? Exercise 6.6 a) Why do monolith and honeycomb catalysts have to be coated before they are loaded with catalyst? b) What is this initial coating called? Exercise 6.7 a) What are the advantages of shell catalysts compared to bulk catalysts? b) What is the preferred support material for shell catalysts? Exercise 6.8 Why have numerous dinuclear and multinuclear metal complexes (clusters) been tested in the synthesis of gycol from C/H 2? Exercise 6.9 What are the advantages of heterogenized metal catalysts compared to conventional heterogeneous catalysts? Exercise 6.10 A phosphine-modified plastic matrix is treated with iron pentacarbonyl. What reaction can be expected? PR 2 +Fe(C) 5? Exercise 6.11 What are the disadvantages of organic polymer supports for the production of immobilized homogeneous catalysts? Exercise 6.12 How are SLP catalysts produced?

Catalytic Chemistry. Bruce C. Gates. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore. University of Delaware ^.'-'.

Catalytic Chemistry. Bruce C. Gates. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore. University of Delaware ^.'-'. : s / ; '.... ;. : : ^.'-'. Catalytic Chemistry Bruce C. Gates University of Delaware John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore Contents List of Notation xix 1 INTRODUCTION

More information

CO 2 and CO activation

CO 2 and CO activation 2 and activation Most organic chemicals are currently made commercially from ethylene, a product of oil refining. It is possible that in the next several decades we may have to shift toward other carbon

More information

H Organometallic Catalysis in Industry

H Organometallic Catalysis in Industry H Organometallic Catalysis in Industry Some terminology: Catalytic cycles: a circular path meant to show productive reactions, in order, that lead from the catalytically active species and its reaction

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-10 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. rganometallic hemistry omogeneous atalysis lefin ydrogenation; ydroformylation; Monsanto Acetic acid

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION Catalysis is an important process to improve the production of chemicals. This phenomenon can be employed in a chemical reaction that is favored thermodynamically but is very slow

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 Two types in general use: -packed (stationary phase) -open tubular or capillary determine selectivity and efficiency of the sample. Column Materials Column

More information

Magnetic Silica Particles for Catalysis

Magnetic Silica Particles for Catalysis 4 Magnetic Silica Particles for atalysis Abstract Monodisperse magnetizable colloidal silica particles in a stable dispersion have been functionalized with a homogeneous catalyst: a PP-pincer Pd-complex.

More information

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands Organometallic Reaction and Catalysis 14-1 Reactions Involving Gain or Loss of Ligands 14-2 Reactions Involving Modification of Ligands 14-3 Organometallic Catalysts 14-4 Heterogeneous Catalysts Inorganic

More information

CO 2 and CO activation

CO 2 and CO activation 2 and activation Most organic chemicals are currently made commercially from ethylene, a product of oil refining. Itispossiblethatinthenextseveraldecadeswemayhavetoshifttowardothercarbonsources for these

More information

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate 1 Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate ME Zeynali Petrochemical Synthesis Group, Petrochemical Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O.

More information

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry Chemistry: The Central Science Chapter 25: The Chemistry of Life: Organic and Biological Chemistry The study of carbon compounds constitutes a separate branch of chemistry known as organic chemistry The

More information

Lecture 25: Manufacture of Maleic Anhydride and DDT

Lecture 25: Manufacture of Maleic Anhydride and DDT Lecture 25: Manufacture of Maleic Anhydride and DDT 25.1 Introduction - In this last lecture for the petrochemicals module, we demonstrate the process technology for Maleic anhydride and DDT. - Maleic

More information

Name Date Class. aryl halides substitution reaction

Name Date Class. aryl halides substitution reaction 23.1 INTRODUCTION TO FUNCTIONAL GROUPS Section Review Objectives Explain how organic compounds are classified Identify the IUPAC rules for naming halocarbons Describe how halocarbons can be prepared Vocabulary

More information

DICP Course - Dalian, 2012 Preparation of solid catalysts Part 5 Supported by the Chinese Academy of Sciences

DICP Course - Dalian, 2012 Preparation of solid catalysts Part 5 Supported by the Chinese Academy of Sciences DICP Course - Dalian, 2012 Preparation of solid catalysts Part 5 Supported by the Chinese Academy of Sciences Charles Kappenstein, Professor Emeritus, University of Poitiers, France Preparation of catalysts

More information

CHAPTER 4. LIQUID PHASE AEROBIC OXIDATION OF ETHYLBENZENE OVER PrAlPO-5

CHAPTER 4. LIQUID PHASE AEROBIC OXIDATION OF ETHYLBENZENE OVER PrAlPO-5 106 CHAPTER 4 LIQUID PHASE AEROBIC OXIDATION OF ETHYLBENZENE OVER PrAlPO-5 4.1 INTRODUCTION Selective catalytic oxidation of alkyl aromatics is a viable technology to functionalize saturated and unsaturated

More information

HANDBOOK SECOND EDITION. Edited by

HANDBOOK SECOND EDITION. Edited by HANDBOOK SECOND EDITION Edited by Martyn V. Twigg BSc, PhD, CChem., FRSC Catalytic Systems Division Johnson Matthey Plc. Formerly at the Catalysis Centre ICI Chemicals & Polymers Ltd MANSON PUBLISHING

More information

14.11 Alkane Synthesis Using Organocopper Reagents

14.11 Alkane Synthesis Using Organocopper Reagents 14.11 Alkane Synthesis Using Organocopper Reagents Lithium Dialkylcuprates Lithium dialkylcuprates are useful synthetic reagents. They are prepared from alkyllithiums and a copper(i) halide. 2RLi + CuX

More information

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ Repeated insertion ultiple insertion leads to dimerization, oligomerization or polymerization. k prop Et Key factor: k CT / k prop = κ κ 1: mainly dimerization κ 0.1-1.0: oligomerization (always mixtures)

More information

Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction

Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction Center for Sustainable Technologies Indian Institute of Science Bangalore IDF presentation

More information

Transition Metal Chemistry

Transition Metal Chemistry Transition Metal Chemistry 2 2011.12.2 Ⅰ Fundamental Organometallic Reactions Following four reactions are important formal reaction patterns in organotransition metal complexes, which would conveniently

More information

CHEMISTRY. Time : 3 Hrs. Max. Marks : 70

CHEMISTRY. Time : 3 Hrs. Max. Marks : 70 CHEMISTRY Time : 3 Hrs. Max. Marks : 70 General instructions 1. All questions are compulsory. 2. Q.no. 1-5 are very short answer questions & carry 1 marks each Section-A. 3. Q.no. 6-12 are short answer

More information

Review Experiments Formation of Polymers Reduction of Vanillin

Review Experiments Formation of Polymers Reduction of Vanillin Review Experiments Formation of Polymers What is a polymer? What is polymerization? What is the difference between an addition polymerization and a condensation polymerization? Which type of polymerization

More information

Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding.

Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding. Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding. Sigma and Pi Bonds: All single bonds are sigma(σ), that

More information

The Types of Catalysis

The Types of Catalysis The Types of Catalysis Heterogeneous Catalysis: Homogeneous Catalysis: Enzyme Catalysis: catalyst and reactants in different phase most common example: solid catalyst, fluid reactants by far the largest

More information

Explanation: They do this by providing an alternative route or mechanism with a lower activation energy

Explanation: They do this by providing an alternative route or mechanism with a lower activation energy Catalysts Definition: Catalysts increase reaction rates without getting used up. Explanation: They do this by providing an alternative route or mechanism with a lower Comparison of the activation energies

More information

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons Chapter 1 Reactions of Organic Compounds Reactions Involving Hydrocarbons Reactions of Alkanes Single bonds (C-C) are strong and very hard to break, therefore these compounds are relatively unreactive

More information

Resins and solid phase anchors in the organic chemistry

Resins and solid phase anchors in the organic chemistry Resins and solid phase anchors in the organic chemistry Overview 1963: 1. Resins Merrifield used chloromethylated-nitrated copolymer of styrene and divinylbenene 1 st cross-linked polystyrene resinds bead

More information

AQA A2 CHEMISTRY TOPIC 5.4 TRANSITION METALS PART 2 REDOX REACTIONS AND CATALYSIS BOOKLET OF PAST EXAMINATION QUESTIONS

AQA A2 CHEMISTRY TOPIC 5.4 TRANSITION METALS PART 2 REDOX REACTIONS AND CATALYSIS BOOKLET OF PAST EXAMINATION QUESTIONS AQA A2 CHEMISTRY TOPIC 5.4 TRANSITION METALS PART 2 REDOX REACTIONS AND CATALYSIS BOOKLET OF PAST EXAMINATION QUESTIONS 1. Chemical reactions can be affected by homogeneous or by heterogeneous catalysts.

More information

Chapter 7 - Alkenes and Alkynes I

Chapter 7 - Alkenes and Alkynes I Andrew Rosen Chapter 7 - Alkenes and Alkynes I 7.1 - Introduction - The simplest member of the alkenes has the common name of ethylene while the simplest member of the alkyne family has the common name

More information

Inorganic Material chemistry

Inorganic Material chemistry Inorganic Material chemistry Silicone -Inorganic Polymer Polymer poly + mer many units Basic unit is called repeat unit (monomer) A polymer is a large molecule (macro molecule) composed of repeating structural

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

NANYANG TECHNOLOGICAL UNIVERSITY ENTRANCE EXAMINATION SYLLABUS FOR INTERNATIONAL STUDENTS CHEMISTRY

NANYANG TECHNOLOGICAL UNIVERSITY ENTRANCE EXAMINATION SYLLABUS FOR INTERNATIONAL STUDENTS CHEMISTRY NANYANG TECHNOLOGICAL UNIVERSITY ENTRANCE EXAMINATION SYLLABUS FOR INTERNATIONAL STUDENTS OAFA/01/07 STRUCTURE OF EXAMINATION PAPER CHEMISTRY 1. There will be one 2-hour paper consisting of two sections.

More information

4.1 Atomic structure and the periodic table. GCSE Chemistry

4.1 Atomic structure and the periodic table. GCSE Chemistry 4.1 Atomic structure and the periodic table GCSE Chemistry All substances are made of atoms this is cannot be chemically broken down it is the smallest part of an element. Elements are made of only one

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 6 Dr Ali El-Agamey 1 Oxidation States Easy for inorganic salts: CrO 4 2- reduced to Cr 2 O 3. KMnO 4 reduced to MnO 2. Oxidation: Gain of O,

More information

Chemicals and petroleum industries account for 50% of industrial energy usage.

Chemicals and petroleum industries account for 50% of industrial energy usage. Chemicals and petroleum industries account for 50% of industrial energy usage. ~1/4 of the energy used is consumed in distillation and drying processes. 15 Biomaterials [Carbohydrates, Proteins, Lipids]

More information

Sol-Gel Methods. Hydrolysis Condensation Gelation Ageing Drying Densification

Sol-Gel Methods. Hydrolysis Condensation Gelation Ageing Drying Densification Sol-Gel Methods Sol-gel process: Hydrolysis Condensation Gelation Ageing Drying Densification Powders: microcrystalline, nanocrystalline, amorphous Monoliths, Coatings, Films, Fibers Aerogels Glasses,

More information

MAHESH TUTORIALS I.C.S.E.

MAHESH TUTORIALS I.C.S.E. MAHESH TUTORIALS I.C.S.E. GRADE - X (2017-2018) Exam No. : MT/ICSE/SEMI PRELIM - I-SET -B 008 Sulphuric acid, Ammonia, Analytical Chemistry, Organic Chemistry HCl, Nitric acid, Metallurgy Chemistry SCIENCE

More information

ICSE Board Class IX Chemistry Paper 5 Solution

ICSE Board Class IX Chemistry Paper 5 Solution ICSE Board Class IX Chemistry Paper 5 Solution SECTION I Answer 1 i. Dalton used the symbol for oxygen and the symbol for hydrogen. Symbol represents gram atom(s) of an element. i Symbolic expression for

More information

Chapter 9 Aldehydes and Ketones Excluded Sections:

Chapter 9 Aldehydes and Ketones Excluded Sections: Chapter 9 Aldehydes and Ketones Excluded Sections: 9.14-9.19 Aldehydes and ketones are found in many fragrant odors of many fruits, fine perfumes, hormones etc. some examples are listed below. Aldehydes

More information

Polymer Reaction Engineering

Polymer Reaction Engineering Polymer Reaction Engineering Polymerization Techniques Bulk Solution Suspension Emulsion Interfacial Polymerization Solid-State Gas-Phase Plasma Polymerization in Supercritical Fluids Bulk Polymerization

More information

CHEMISTRY. SCIENCE Paper 2

CHEMISTRY. SCIENCE Paper 2 CHEMISTRY SCIENCE Paper 2 (Two hours) Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is to be spent in reading

More information

Chapter 2. Atomic Structure

Chapter 2. Atomic Structure Chapter 2 Atomic Structure 2 6 (a) Aluminum foil used for storing food weighs about 0. g per square cm. How many atoms of aluminum are contained in one 6.25 cm 2 size of foil? (b) Using the densities and

More information

Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions

Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions Prof. Can Li's Laboratory Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions Chiral catalysis is of great industrial interest for the production of enantiomerically pure compounds.

More information

HYDROCARBON CHEMISTRY

HYDROCARBON CHEMISTRY HYDROCARBON CHEMISTRY George A. Olah Loker Hydrocarbon Research Institute and Department of Chemistry University of Southern California Los Angeles, California Ärpäd Molnär Department of Organic Chemistry

More information

Supports, Zeolites, Mesoporous Materials - Chapter 9

Supports, Zeolites, Mesoporous Materials - Chapter 9 Supports, Zeolites, Mesoporous Materials - Chapter 9 Krijn P. de Jong Inorganic Chemistry and Catalysis Utrecht University NIOK CAIA Course, Schiermonnikoog, December 4 th, 2009 1 Overview of lecture Introduction

More information

Organometallic Catalysis

Organometallic Catalysis Organometallic Catalysis The catalysts we will study are termed homogeneous catalysts as they are dissolved in th e same solvent as the substrate. In contrast, heterogeneous catalysts, such as palladium

More information

10.5 Catalytic reactions Catalyzed reactions. Out-class extensive reading: Levine, p Catalysis Enzyme catalysis

10.5 Catalytic reactions Catalyzed reactions. Out-class extensive reading: Levine, p Catalysis Enzyme catalysis 10.5 Catalytic reactions Catalyzed reactions Out-class extensive reading: Levine, p.577 17.16 Catalysis 17.17 Enzyme catalysis 5.1 Catalysts and catalysis Catalyst A substance of small amount that can

More information

ORGANIC CHEMISTRY II 3. CARBONYL COMPOUNDS PREVIOUS EAMCET BITS.

ORGANIC CHEMISTRY II 3. CARBONYL COMPOUNDS PREVIOUS EAMCET BITS. 1 RGANIC EMISTRY II. CARBNYL CMPUNDS PREVIUS EAMCET BITS Cl Cl 1. What are the X and Y in the following reaction sequence : X Y (009 E) 1) 5, ), ), CCl 4) 5Cl, CCl Reaction. Cl HCl X Cl CCl. HCl Y. The

More information

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D Alcohols I eading: Wade chapter 10, sections 10-1- 10-12 Study Problems: 10-35, 10-37, 10-38, 10-39, 10-40, 10-42, 10-43 Key Concepts and Skills: Show how to convert alkenes, alkyl halides, and and carbonyl

More information

materials and their properties

materials and their properties materials and their properties macroscopic properties phase state strength / stiffness electrical conductivity chemical properties color / transparence spectroscopical properties surface properties density

More information

Naming Organic Halides. Properties of Organic Halides

Naming Organic Halides. Properties of Organic Halides Organic Compounds Organic Halides A hydrocarbon in which one or more hydrogen atoms have been replaced by halogen atoms Freons (chlorofluorocarbons) in refrigeration and air conditioning Teflon (polytetrafluoroethane)

More information

1. Reactions can be followed by measuring changes in concentration, mass and volume of reactants and products.

1. Reactions can be followed by measuring changes in concentration, mass and volume of reactants and products. Higher Chemistry - Traffic Lights Unit 1 CHEMICAL CHANGES AND STRUCTURE I know: Controlling the rate Collision theory and relative rates 1. Reactions can be followed by measuring changes in concentration,

More information

In 1807 Davy did an electrolysis experiment to produce potassium. Davy first tried to electrolyse a solid potassium salt to produce potassium

In 1807 Davy did an electrolysis experiment to produce potassium. Davy first tried to electrolyse a solid potassium salt to produce potassium Q1. This question is about potassium. (a) Humphrey Davy was a professor of chemistry. In 1807 Davy did an electrolysis experiment to produce potassium. Davy first tried to electrolyse a solid potassium

More information

Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry

Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry 30 Questions (5 pages); Time limit = 45 minutes Use of books or notes is not permitted. 1. When analyzed with a polarimeter, which of the

More information

Carboxylic Acids and Nitriles

Carboxylic Acids and Nitriles Carboxylic Acids and Nitriles Why this Chapter? Carboxylic acids present in many industrial processes and most biological processes They are the starting materials from which other acyl derivatives are

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry

Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry 1 Structure and Bonding 2 Structure and Bonding Rotation around the C=C bond is restricted 90 rotation The p orbitals are orthogonal

More information

media), except those of aluminum and calcium

media), except those of aluminum and calcium 1- Aspirin occurs as white crystals or as a white crystalline powder. 2- It is slightly soluble in water (1:300), soluble in alcohol (1 :5), chloroform (1:17) & ether (1:15). It dissolves easily in glycerin.

More information

CONTENTS PART I STRUCTURES OF THE TRANSITION-METAL COMPLEXES

CONTENTS PART I STRUCTURES OF THE TRANSITION-METAL COMPLEXES CONTENTS Introduction... 1 1. Organization of the text... 1 2. Frontiers of organometallic chemistry... 2 3. Situation of the book with respect to teaching... 2 4. Reference books and other selected references...

More information

Experiment 2 Solvent-free Aldol Condensation between 3,4-dimethoxybenzaldehyde and 1-indanone

Experiment 2 Solvent-free Aldol Condensation between 3,4-dimethoxybenzaldehyde and 1-indanone Experiment 2 Solvent-free Aldol Condensation between 3,4-dimethoxybenzaldehyde and 1-indanone Chemical Concepts Carbonyl chemistry, base catalyzed aldol reaction, melting point, recrystallization Green

More information

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis OCR (A) Chemistry A-level Module 6: Organic Chemistry and Analysis Organic Synthesis Notes by Adam Robertson DEFINITIONS Heterolytic fission: The breaking of a covalent bond when one of the bonded atoms

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic Chemistry, 7 th edition The

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N6 Kashiwa Campus, November 27, 2009 Group VIB: Cr, Mo, W -Oxidation states from -2 to +6 -While +2 and +3 for Cr are quite

More information

Basic Organic Chemistry

Basic Organic Chemistry Basic rganic hemistry ourse code: EM 12162 (Pre-requisites : EM 11122) hapter 06 hemistry of Aldehydes & Ketones Dr. Dinesh R. Pandithavidana ffice: B1 222/3 Phone: (+94)777-745-720 (Mobile) Email: dinesh@kln.ac.lk

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals F325 1 The aqueous chemistry of cations Hydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become

More information

PETE 203: Properties of oil

PETE 203: Properties of oil PETE 203: Properties of oil Prepared by: Mr. Brosk Frya Ali Koya University, Faculty of Engineering, Petroleum Engineering Department 2013 2014 Lecture no. (2): Crude oil chemistry and composition 5. Crude

More information

Heterogeneous catalysis: the fundamentals

Heterogeneous catalysis: the fundamentals www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Introduction Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis What is Catalysis? a phenomenon in which a small quantity

More information

(a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of

(a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of (a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of reactants or products. g Measuring a change in mass Measuring

More information

ICSE Chemistry Board Paper 2016

ICSE Chemistry Board Paper 2016 2015 Time: 2 hours; Max. Marks: 80 General Instructions: Answers to this Paper must be written on the paper provided separately. You will not be allowed 10 write during the first 15 minutes. This time

More information

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone.

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone. Aldehydes, Ketones and Carboxylic Acids Nomenclature of aldehydes and ketones Aldehydes: Often called by their common names instead of IUPAC names. Ketones: Derived by naming two alkyl or aryl groups bonded

More information

ICSE Board Class IX Chemistry Paper 3 Solution

ICSE Board Class IX Chemistry Paper 3 Solution ICSE Board Class IX Chemistry Paper 3 Solution SECTION I Answer 1 i. The number of electrons, that atom can lose, gain or share during a chemical reaction is called its valency. ii. Solute: A solute is

More information

Anionic Polymerization - Initiation and Propagation

Anionic Polymerization - Initiation and Propagation Anionic Polymerization Initiation and Propagation As in free radical polymerization, there are initiation and propagation steps. NH 2 NaNH 2 Na + + NH 2 + H 2 N CH: Propagation proceeds in the usual manner,

More information

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ. Office Hours: Wenesday, 09:30-10:30 am.

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ. Office Hours: Wenesday, 09:30-10:30 am. CERAMIC MATERIALS I Office Hours: Wenesday, 09:30-10:30 am. akalemtas@mu.edu.tr, akalemtas@gmail.com, Phone: 211 19 17 Metallurgical and Materials Engineering Department Liquid Phase Synthesis Fine Ceramic

More information

CHEM Chemical Kinetics

CHEM Chemical Kinetics Chemical Kinetics Catalysts A catalyst is a substance that increases the rate of the reaction but is neither created nor destroyed in the process. Catalysts can be divided into two broad categories. Homogeneous

More information

Chemistry Final Exam Sample Items

Chemistry Final Exam Sample Items Chemistry Final Exam Sample Items 1. Which best describes the current atomic theory? a. Atoms consist of electrons circling in definite orbits around a positive nucleus. b. Atoms are composed of electrons

More information

MC 17 C SECTION - I (40 marks) Compulsory : Attempt all questions from this section.

MC 17 C SECTION - I (40 marks) Compulsory : Attempt all questions from this section. Question 1. (a) SECTION - I (40 marks) Compulsory : Attempt all questions from this section. Choose from the following list of substances, as to what matches the description from to given below : [Bronze,

More information

MOLECULAR SIEVES UOP MOLECULAR SIEVES*

MOLECULAR SIEVES UOP MOLECULAR SIEVES* UOP MOLECULAR SIEVES* UOP Molecular Sieves* are synthetically produced, crystalline metal aluminosilicates that have been activated for adsorption by removing their water of hydration. Unlike other adsorbents,

More information

Trickle Column Reactors

Trickle Column Reactors Trickle Column Reactors A TECHNIQUE FOR THE CONTINUOUS PERFORMANCE OF LIQUID-PHASE CATALYSED REACTIONS By G. J. I

More information

ALCOHOLS AND PHENOLS

ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS Alcohols contain an OH group connected to a a saturated C (sp3) They are important solvents and synthesis intermediates Phenols contain an OH group connected to

More information

Organic Chemistry. REACTIONS Grade 12 Physical Science Mrs KL Faling

Organic Chemistry. REACTIONS Grade 12 Physical Science Mrs KL Faling Organic Chemistry REACTIONS Grade 12 Physical Science Mrs KL Faling SUBSTITUTION REACTIONS This is a reaction where an atom or group of atoms is replaced by another atom or group of atoms Substitution

More information

GRAVIMETRIC ANALYSIS

GRAVIMETRIC ANALYSIS GRAVIMETRIC ANALYSIS Gravimetric methods are quantitative methods in which the mass of the analyte or some compound that is chemically related to the analyte is determined. What are the steps in a gravimetric

More information

Chemistry 283g- Experiment 4

Chemistry 283g- Experiment 4 EXPEIMENT 4: Alkenes: Preparations and eactions elevant sections in the text: Fox & Whitesell, 3 rd Ed. Elimination eactions of Alcohols: pg. 426-428, 431-432 Electrophilic Addition to Alkenes: pg. 484-488,

More information

Chemical Reactions. Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions. (ionic equations and solubility rules)

Chemical Reactions. Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions. (ionic equations and solubility rules) Chemical Reactions Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions (ionic equations and solubility rules) Writing Equations REACTANTS PRODUCTS gold (III) sulfide is

More information

ICSE Board Class X Chemistry Board Paper Time: 1½ hrs Total Marks: 80

ICSE Board Class X Chemistry Board Paper Time: 1½ hrs Total Marks: 80 ICSE Board Class X Chemistry Board Paper 2011 Time: 1½ hrs Total Marks: 80 General Instructions: 1. Answers to this paper must be written on the paper provided separately. 2. You will NOT be allowed to

More information

Preparation of Colloidal Sols and Gels

Preparation of Colloidal Sols and Gels Preparation of Colloidal Sols and Gels Objective This laboratory examines the preparation of silica suspensions and gels by the sol-gel processing of silicate solution under hydrolytic conditions using

More information

Aldol Condensation Notes

Aldol Condensation Notes Reminder: These notes are meant to supplement, not replace, the laboratory manual. Aldol Condensation Notes History and Application Condensation reactions are molecular transformations that join together

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

Química Orgânica I. Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1

Química Orgânica I. Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 Química rgânica I Ciências Farmacêuticas Bioquímica Química AFB Q I 2007/08 1 alcohols Adaptado de rganic Chemistry, 6th Edition; Wade rganic Chemistry, 6 th Edition; McMurry AFB Q I 2007/08 2 Typical

More information

Question Bank Organic Chemistry II

Question Bank Organic Chemistry II Question Bank Organic Chemistry II 1. What are saturated and unsaturated hydrocarbons. Classify the following as saturated and unsaturated hydrocarbons. CH 4, C 2 H 2, C 2 H 6, C 3 H 6, C 3 H 4 Ans. Compounds

More information

Polymeric Materials. Sunan Tiptipakorn, D.Eng.

Polymeric Materials. Sunan Tiptipakorn, D.Eng. Polymeric Materials Sunan Tiptipakorn, D.Eng. Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaen Saen Campus, Nakorn Phathom, 73140 Thailand. Introduction Material

More information

ADVANCED CHEMISTRY 2

ADVANCED CHEMISTRY 2 ADVANCED CHEMISTRY 2 Philip Matthews ±m±l CAMBRIDGE UNIVERSITY PRESS Acknowledgements How to use this book INORGANIC CHEMISTRY 88 Periodicity of physical properties 88.1 Periodicity of ionisation energies

More information

Chem 263 March 28, 2006

Chem 263 March 28, 2006 Chem 263 March 28, 2006 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis

Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis Synthesis of Organometallic Complex Hydrides Reaction of MCO with OH -, H -, or CH 2 CHR 2 M(CO) n + OH - = M(CO) n-1 (COOH) - = HM(CO) n-1 -

More information

Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks =

Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks = Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks = 1. Which salt is colorless? (A) KMn 4 (B) BaS 4 (C) Na 2 Cr 4 (D) CoCl 2 2. Which 0.10 M aqueous solution exhibits the lowest

More information

CHEMISTRY PAPER 1999

CHEMISTRY PAPER 1999 CHEMISTRY PAPER 1999 (One and a half hours) Answers to this paper must be written on the paper provided separately. You will NOT be allowed to write during the first 15 minutes. This time is to be spent

More information

2Fe 2 O 3 +3H 2 S FeS+FeS x +S+3H 2 O

2Fe 2 O 3 +3H 2 S FeS+FeS x +S+3H 2 O Elemental analysis of hydrocarbon streams using Dry colorimetry analyzers, a catalyst saviour Bushra Dawood, Application Coordinator C.I. Analytics www.cianalytics.com The Petrochemical industry has refined

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals 2815 1 The aqueous chemistry of cations ydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information