OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

Size: px
Start display at page:

Download "OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis"

Transcription

1 OCR (A) Chemistry A-level Module 6: Organic Chemistry and Analysis Organic Synthesis Notes by Adam Robertson

2 DEFINITIONS Heterolytic fission: The breaking of a covalent bond when one of the bonded atoms takes both of the electrons. Homolytic fission: The breaking of a covalent bond when each of the bonded atoms takes one electron. Addition reaction: Two reactants join together to form one product. Substitution reaction: Two reactants where one atom or group of atoms replaces another set of atoms. Elimination reaction: A reaction which involves the removal or a small molecule from a larger one Electrophile: An atom or compound that are electron pair acceptors Nucleophile: An atom or compound that are electron pair donors REACTIONS COMBUSTION Requires heat For complete combustion there must be adequate levels of oxygen Complete: C 6 H O 6CO H O Incomplete: C 6 H O 6CO + 7H 2 O C H O 6C + 7H 2 O 2 1 2

3 RADICAL SUBSTITUTION In presence of ultraviolet light Three steps : initiation, propagation and termination Since the reaction is uncontrollable and can be very unstable, it is typically not used in synthesis. In addition several products are made rather than just desired products In this scenario CHLOROMETHANE can go on to react with another chlorine radical which will substitute another hydrogen atom creating DICHLOROMETHANE. Further substitution can occur to form TRICHLOROMETHANE and TETRACHLOROMETHANE substitution can also happen at any point on the carbon chain, leading to a low yield of a specific product HYDROGENATION At 423K Nickel catalyst

4 HALOGENATION How alkenes decolourise bromine water (orange-brown colourless) Occurs at room temperature an electrophilic addition reaction HYDRATION an alkene is reacted with steam phosphoric acid catalyst (H 3 PO 4 ) if the alkene is unsymmetrical, a mixture of products is formed Addition reactions of alkenes with hydrogen halides conditions: room temperature reactant: hydrogen halide if the alkene is a gas, the two gases are mixed. If the alkene is a liquid, the hydrogen halide is bubbled through electrophilic substitution reaction if the alkene is unsymmetrical, a mixture of products will be formed alkene + hydrogen halide haloalkane

5 ELECTROPHILIC ADDITION As with all of the reactions on this page, if the reactants allow it then two potential products can be formed. In order to find the major product we employ MARKOWNIKOFF S RULE which states that the higher yield product is the more stable product with the larger amount of R groups, e.g. a primary product will be less stable than a secondary product therefore there will be less of that primary product ADDITION POLYMERISATION (YR1) Nickel catalyst Very high temperatures and pressure OXIDATION OF ALCOHOLS Both reactions require acidified potassium dichromate (works as an oxidising agent) Gentle heating Primary alcohols oxidise to form aldehydes and carboxylic acids: o under distillation + gentle heating: alcohol + [O] aldehyde + H 2 O

6 o under reflux + strong heat, excess K 2 Cr 2 O 7 : alcohol + 2[O] carboxylic acid + H 2 O Secondary alcohols oxidise to form ketones: o alcohol + [O] ketone + H 2 O DEHYDRATION OF ALCOHOLS Heated under reflux Requires sulfuric or phosphoric acid H 2 O SUBSTITUTION OF ALCOHOLS Heat under reflux in the presence of sulfuric acid Reactants: sulfuric acid + sodium halide (forms hydrogen halide in situ e.g. NaBr + H 2 SO 4 NaHSO 4 + HBr) N abr + H 2 SO 4 NaHSO 4 + H Br C 3 H 7 OH + HBr C3H7 Br + H 2 O alcohol + HBr bromoalkane + H 2 O

7 NUCLEOPHILIC SUBSTITUTION OF HALOALKANES/HYDROLYSIS Requires a source of OH ions (usually from NaOH) nucleophilic substitution reaction heated under reflux to get a good yield reaction: o bromoalkane + NaOH alcohol + NaBr + - o bromoalkane + H 2 O alcohol + H + Br Speed of hydrolysis is relevant to bond strength of C X e.g: C Cl reacts slower than C I because C Cl has the stronger bond (more bond enthalpy RADICAL SUBSTITUTION OF OZONE LAYER INITIATION: CF 2 Cl 2 CF 2 Cl + C l PROPAGATION: C L + O 3 CLO + O 2 C lo + O Cl + O 2 overall: O 3 + O 2O 2 NITRATION OF BENZENE Reaction happens at 50 with a concentrated sulfuric acid catalyst to form nitrobenzene Above 50 the product formed will be 1,3 dinitrobenzene electrophilic substitution reaction

8 The reactant is concentrated nitric acid SO NO SO O HNO 3 + H H 4 + H 2 H + + HSO H SO HALOGENATION OF BENZENE conditions: room temperature + pressure Requires a halogen carrier since benzene is too stable Halogen carriers are either FeX or AlX electrophilic substitution reaction H + + F ebr4 F ebr3 + H Br ALKYLATION OF BENZENE Benzene is reacted with a haloalkane Requires an aluminium chloride (AlCl 3 ) catalyst electrophilic substitution reaction

9 ACYLATION OF BENZENE benzene is reacted with an acyl chloride Requires an aluminium chloride (AlCl 3 ) catalyst Electrophilic substitution reaction NEUTRALISATION OF PHENOL Phenol is more electronegative than benzene Phenol acts as a weak acid only reacting with the stronger bases HALOGENATION OF PHENOL Room temperature Electrophilic substitution reaction white ppt is formed and bromine is decolourised NITRATION OF PHENOL At room temperature Reactant is dilute HNO 3 electrophilic substitution reaction a mixture of 2 products is formed

10 BROMINATION OF PHENYLAMINE rapid reaction speed, because NH 2 group activates the ring phenylamine + 3Br 2 2,4,6-tribromophenylamine + 3HBr BROMINATION OF NITROBENZENE a slow reaction because the NO 2 group deactivates the ring requires a halogen carrier and a high temperature nitrobenzene + Br 2 3-bromo,1-nitrobenzene + HBr REDUCTION OF THE CARBONYL WITH NABH 4 (NUCLEOPHILIC ADDITION) NaBH 4 is used as the reducing agent The reducing agent and the carbonyl are warmed in aqueous solution aldehyde reaction: aldehyde + 2[H] primary alcohol ketone reaction: ketone + 2[H] secondary alcohol

11 REDUCTION OF CARBONYL COMPOUNDS WITH HCN Hydrogen cyanide is very toxic, therefore sodium cyanide and sulfuric acid are used to provide the hydrogen cyanide safely for the reaction in the lab It is useful for increasing the length of the carbon chain to establish different properties of a material The mechanism is the same as above however the H(-) ion is replaced with a CN(-) ion In this reaction water can be protonated or the O(-) can bond with a H(+) ion aldehyde/ketone + HCN hydroxynitrile (don t have to name these) OXIDATION OF ALDEHYDES ketones do not undergo oxidation 2- + aldehydes are heated under reflux with Cr 2 O 7 /H ions (usually from potassium dichromate and dilute sulfuric acid) aldehyde + [O] carboxylic acid this is the same as the reaction that takes place during the Tollen s Reagent test. The fact ketones don t undergo oxidation means that the Tollens test works. REDOX/NEUTRALISATION OF CARBOXYLIC ACIDS React in the same manner as other acids however they form a carboxylate salt reaction with metals: observations: metal disappears, effervescence of H 2 reaction with metal oxides or alkalis: H 2 O produced reaction with carbonates: H 2 O and CO 2 produced PREPARATION OF ACYL CHLORIDES Because of the toxic nature of the gas by-products, this reaction takes place in a fume cupboard + SOCl SO 2 + HCl

12 ESTERIFICATION OF CARBOXYLIC ACIDS The alcohol is warmed with a small amount of concentrated sulfuric acid ESTERIFICATION OF ACYL CHLORIDES The main difference here is that this form of esterification is irreversible and has the by-product of HCl instead of H 2 O reaction: acyl chloride + alcohol ester + HCl ACYL CHLORIDE AND PHENOL Unlike carboxylic acids, acyl chlorides and acid anhydrides are much more reactive which means they can form an ester with phenol ACID ANHYDRIDES AND PHENOL Acid anhydrides react in the same way as acyl chlorides however do not produce as toxic products and the reactions are typically more controlled, hence why they are preferred in the lab. They are formed from two carboxylic acids ACYL CHLORIDE TO CARBOXYLIC ACID acyl chlorides are reacted with water to produce a carboxylic acid

13 A violentreaction that takes place in a fume cupboard due to the HCl gas ACYL CHLORIDES TO FORM PRIMARY AMIDES Both ammonia and amines can act as nucleophiles by donating their lone pair of electrons from the nitrogen atom For a primary amide to be formed the reaction must take place with ammonia acyl chloride + 2NH 3 primary amide + NH 4 Cl FORM SECONDARY AMIDES In this reaction a primary amine replaces ammonia to form a secondary amide acyl chloride + primary amine secondary amide - + CH 3 NH 3 + Cl HYDROLYSIS OF ESTERS ACID Ester is heated under reflux with water and a dilute acid This reaction is reversible

14 ALKALINE Ester is heated under reflux but with hydroxide ions instead This reaction is irreversible AMINES AS BASES The lone pair of electrons on the nitrogen atom can accept a proton When a reaction takes place a dative covalent bond is formed 2- e.g. 2CH 3 NH 2 + H 2 SO 4 (CH 3 NH 3 + ) 2 SO 4 PREPARATION OF PRIMARY AMINES (NS) Reaction takes place with excess ammonia, which acts as the nucleophile due to its lone pair of electrons, and it also prevents further substitution into secondary and tertiary amines Ethanol is used as the solvent - CH 3 Cl + NH 3 CH 3 NH 3 + Cl haloalkane + NH 3 alkylammonium chloride - CH 3 NH 3 + Cl + NaOH CH 3 NH 2 + NaCl + H 2 O alkylammonium chloride + NaOH amine + NaCl + H 2 O PREPARATION OF SECONDARY AMINES - CH 3 Cl + CH 3 NH 2 (CH 3 ) 2 NH 2 + Cl haloalkane + primary amine dialkylammonium chloride - (CH 3 ) 2 NH 2 + Cl + NaOH (CH 3 ) 2 NH + NaCl + H 2 O dialkylammonium chloride + NaOH secondary amine + NaCl + H 2 O Further substitutions can take place to create tertiary and quaternary amines by reacting the secondary and tertiary amines in the same manner respectively

15 PREPARATION OF PHENYLAMINE Nitrobenzene is heated under reflux with tin and hydrochloric acid to form phenylammonium salt, which is then reacted with excess sodium hydroxide AMINO ACID PLUS ACID Reacts to form a salt ALKALI AMINO ACID PLUS Reacts to form a salt with the carboxylic acid group (e.g. COO-Na+) and water ESTERIFICATION OF AMINO ACIDS conditions: heat and concentrated sulfuric acid catalyst + amino acid + alcohol + H ester + H 2 O CONDENSATION POLYMERISATION Form a polyester or polyamide by removal of a water molecule or HCl Forms an ester or amide linkage respectively For polyesters either a monomer with a carboxylic acid group and an alcohol group is required or two different monomers, one a diol (2 hydroxyl groups) and the other a dicarboxylic acid (2 carboxylic acids) For polyamides either a monomer with a carboxylic acid/acyl chloride group and an amine group is required or two different monomers, a dicarboxylic acid/acyl chloride and the other a diamine

16 HYDROLYSIS OF POLYESTERS Hot acid HYDROLYSIS OF POLYAMIDES Hot acid HALOALKANE TO NITRILE Used to lengthen the carbon chain It s a nucleophilic substitution reaction with either sodium/potassium cyanide as hydrogen cyanide is very poisonous the reaction occurs in ethanol

17 REDUCTION OF NITRILES Reduced to an amine with a nickel catalyst and hydrogen HYDROLYSIS OF NITRILES Form carboxylic acids when heated with dilute acid and water

Mechanisms. . CCl2 F + Cl.

Mechanisms. . CCl2 F + Cl. Mechanisms 1) Free radical substitution Alkane à halogenoalkane Initiation: Propagation: Termination: Overall: 2) Ozone depletion UV light breaks the C Cl bond releasing chlorine radical CFCl 3 F à. CCl2

More information

Organic Chemistry Review: Topic 10 & Topic 20

Organic Chemistry Review: Topic 10 & Topic 20 Organic Structure Alkanes C C σ bond Mechanism Substitution (Incoming atom or group will displace an existing atom or group in a molecule) Examples Occurs with exposure to ultraviolet light or sunlight,

More information

Summary of mechanisms. Type of reaction: Nucleophilic subsitution/hydrolysis

Summary of mechanisms. Type of reaction: Nucleophilic subsitution/hydrolysis S Summary of mechanisms S Summary of mechanisms electrophilic addition Electrophiles: H δ in H (Ni catalyst needed), H δ in H-X; X δ in X ; H δ in H O (g) (conc H 3 PO 4 cat needed); H δ in NH 3 ; H δ

More information

Topic 4.10 ORGANIC SYNTHESIS AND ANALYSIS. Organic analysis Organic synthesis

Topic 4.10 ORGANIC SYNTHESIS AND ANALYSIS. Organic analysis Organic synthesis Topic 4.10 ORGANIC SYNTHESIS AND ANALYSIS Organic analysis Organic synthesis DISTINGUISHING BETWEEN DIFFERENT ORGANIC COMPOUNDS Many of the organic compounds prepared in AS Unit 2 and in A2 Unit 4 can

More information

Organic Chemistry SL IB CHEMISTRY SL

Organic Chemistry SL IB CHEMISTRY SL Organic Chemistry SL IB CHEMISTRY SL 10.1 Fundamentals of organic chemistry Understandings: A homologous series is a series of compounds of the same family, with the same general formula, which differ

More information

Name/CG: 2012 Term 2 Organic Chemistry Revision (Session II) Deductive Question

Name/CG: 2012 Term 2 Organic Chemistry Revision (Session II) Deductive Question Name/G: 2012 Term 2 rganic hemistry Revision (Session II) Deductive Question 1(a) A yellow liquid A, 7 7 N 2, reacts with alkaline potassium manganate (VII) and on acidification gives a yellow solid B,

More information

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See Option G: Further organic chemistry (15/22 hours) SL students study the core of these options and HL students study the whole option (the core and the extension material). TOK: The relationship between

More information

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons Chapter 1 Reactions of Organic Compounds Reactions Involving Hydrocarbons Reactions of Alkanes Single bonds (C-C) are strong and very hard to break, therefore these compounds are relatively unreactive

More information

Option G: Further organic chemistry (15/22 hours)

Option G: Further organic chemistry (15/22 hours) Option G: Further organic chemistry (15/) TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See 16... Core material: G1 G8 are core material

More information

UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry

UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry Topic 4.1 Kinetics a) Define the terms: rate of a reaction, rate constant, order of reaction and overall order of reaction b) Deduce the orders of reaction

More information

Haloalkanes. Isomers: Draw and name the possible isomers for C 5 H 11 Br

Haloalkanes. Isomers: Draw and name the possible isomers for C 5 H 11 Br Haloalkanes The basics: The functional group is a halogen atom: F, Cl, Br or I General formula C n H 2n+1 X Use the prefixes: fluoro, chloro, bromo and iodo. Isomers: Draw and name the possible isomers

More information

Mechanism Summary for A-level AQA Chemistry

Mechanism Summary for A-level AQA Chemistry Mechanism Summary for Alevel AQA hemistry Electrophilic Addition of Alkenes with omine Electrophilic Addition of Alkenes with sulphuric acid 3 S 2 3 3 S 2 S 2 Electrophilic Addition of Alkenes with hydrogen

More information

UNIT 2 REVISION CHECKLIST. a) understand that reactions are either exothermic or endothermic and apply the sign convention

UNIT 2 REVISION CHECKLIST. a) understand that reactions are either exothermic or endothermic and apply the sign convention UNIT 2 REVISION CHECKLIST Topic 2.1 Energetics a) understand that reactions are either exothermic or endothermic and apply the sign convention b) define the term enthalpy change, recall what standard conditions

More information

17 Alcohols H H C C. N Goalby chemrevise.org 1 H H. Bond angles in Alcohols. Boiling points. Different types of alcohols H 2 C CH 2 CH 2

17 Alcohols H H C C. N Goalby chemrevise.org 1 H H. Bond angles in Alcohols. Boiling points. Different types of alcohols H 2 C CH 2 CH 2 17 Alcohols General formula alcohols n 2n+1 Naming Alcohols These have the ending -ol and if necessary the position number for the group is added between the name stem and the ol If the compound has an

More information

Chapter 17. Reactions of Aromatic Compounds

Chapter 17. Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Although benzene s pi electrons are in a stable aromatic system, they are available to attack a strong electrophile to give

More information

Carbonyl groups react via nucleophilic addition, with the mechanism being represented as follows:

Carbonyl groups react via nucleophilic addition, with the mechanism being represented as follows: Aldehydes and Ketones Introduction Aldehydes and ketones are two similar homologous groups both having the carbonyl group: The Carbon on the carbonyl group is slightly positive wince the Oxygen is pulling

More information

Some Families of Organic Compounds HL

Some Families of Organic Compounds HL Name: Organic Chemistry 22. Types of Reactions in Organic Chemistry Objectives Addition Reactions -explain what is meant by an addition reaction -write balanced equations using structural formula for the

More information

AS Organic Chemistry Revision. Part 1

AS Organic Chemistry Revision. Part 1 AS Organic Chemistry Revision. Part 1 2.2 Nomenclature and isomerism in organic compounds 2.2.1 understand the terms empirical, molecular and structural formulae, homologous series and functional groups;

More information

AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS

AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS 1 1. Consider the following reaction sequence. CH 3 CH 3 CH 3 Step 1

More information

Chemistry 2.5 AS WORKBOOK. Working to Excellence Working to Excellence

Chemistry 2.5 AS WORKBOOK. Working to Excellence Working to Excellence Chemistry 2.5 AS 91165 Demonstrate understanding of the properties of selected organic compounds WORKBOOK Working to Excellence Working to Excellence CONTENTS 1. Writing Excellence answers to Cis-Trans

More information

WJEC Eduqas AS Chemistry - Component 2 THERMOCHEMISTRY

WJEC Eduqas AS Chemistry - Component 2 THERMOCHEMISTRY WJEC Eduqas AS Chemistry - Component 2 THERMOCHEMISTRY enthalpy change of reaction, enthalpy change of combustion and standard molar enthalpy change of formation, Δ fh ϴ Hess s law and energy cycles concept

More information

2A - Amines. 2 H atoms replaced: 2 attached C's to N. 3 H atom replaced: 3 attached C's to N Ammonia, NH3 Primary amine Secondary amine Tertiary amine

2A - Amines. 2 H atoms replaced: 2 attached C's to N. 3 H atom replaced: 3 attached C's to N Ammonia, NH3 Primary amine Secondary amine Tertiary amine 2A - Amines Something fishy about amines: Have an NH 2, amine group. Amines are derivatives of ammonia: 3 H atoms 1 H atom replaced: 1 attached C to N 2 H atoms replaced: 2 attached C's to N 3 H atom replaced:

More information

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds 2010, Prentice Hall Electrophilic Aromatic Substitution Although h benzene s pi electrons are in a stable aromatic

More information

Instructions: Cut individually and fold/glue. Can be either laminated or folded around cardboard.

Instructions: Cut individually and fold/glue. Can be either laminated or folded around cardboard. NCEA Chemistry 3.5 Flash Cards Instructions: Cut individually and fold/glue. Can be either laminated or folded around cardboard. Ideas for Use: 1. Group reactants (or products) into functional groups 2.

More information

H H O C C O H Carboxylic Acids and Derivatives C CH 2 C. N Goalby chemrevise.org. Strength of carboxylic acids.

H H O C C O H Carboxylic Acids and Derivatives C CH 2 C. N Goalby chemrevise.org. Strength of carboxylic acids. 19 arboxylic Acids and Derivatives Naming arboxylic acids These have the ending -oic acid but no number is necessary for the acid group as it must always be at the end of the chain. The numbering always

More information

7 Benzene and aromatic compounds Answers

7 Benzene and aromatic compounds Answers Practice: pages 161 163 1 Answer is D. Methyl takes precedence over nitro and, therefore, automatically takes position 1, which doesn t have to be included in the name. [1] 2 Answer is C. If Kekulé was

More information

TOPIC 25 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 SINGLE STAGE ALIPHATIC SYNTHESES NOT INVOLVING NITROGEN COMPOUNDS SO 4 / H 3 PO 4

TOPIC 25 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 SINGLE STAGE ALIPHATIC SYNTHESES NOT INVOLVING NITROGEN COMPOUNDS SO 4 / H 3 PO 4 QUESTIONSHEET 1 SINGLE STAGE ALIPHATIC SYNTHESES NOT INVOLVING NITROGEN COMPOUNDS a) (i) Reagent Br 2 Conditions uv light / heat > 400 0 C (ii) Reagent HBr Conditions Gas (allow Concentrated HBr(aq) (½)

More information

Organic Chemistry. Unit 10

Organic Chemistry. Unit 10 Organic Chemistry Unit 10 Halides Primary Carbons Secondary Carbons Tertiary Carbons IMPORTANCE?? REACTIONS!! Benzene C6H6 Aromatic functional group - C6H5 (IUPAC name - phenyl) Substitution Reactions

More information

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Boomer Publications

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Boomer Publications R AS hemistry A 032 for first assessment in 2016 omplete Tutor Notes www.boomerchemistry.com Section: 4.2.1 Alcohols 4.2.2 aloalkanes 2015 Boomer Publications page 145 page 152 40 Alcohols Page 155 Ethanol

More information

TOPIC 13 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 ALKANES

TOPIC 13 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 ALKANES QUESTIONSHEET 1 ALKANES a) (i) UV light / temperatures > 500 ºC (ii) CH 4 (g) + Cl 2 (g) Cl(g) + HCl(g) Cl(g) + Cl 2 (g) Cl 2 (l) + HCl(g) Cl 2 (l) + Cl 2 (g) CHCl 3 (l) + HCl(g) CHCl 3 (l) + Cl 2 (g)

More information

A drug is designed to simulate one of the following molecules that adsorbs onto the active site of an enzyme.

A drug is designed to simulate one of the following molecules that adsorbs onto the active site of an enzyme. 1 drug is designed to simulate one of the following molecules that adsorbs onto the active site of an enzyme. Which molecule requires the design of an optically active drug? 2 Which one of the following

More information

Organic Chemistry. REACTIONS Grade 12 Physical Science Mrs KL Faling

Organic Chemistry. REACTIONS Grade 12 Physical Science Mrs KL Faling Organic Chemistry REACTIONS Grade 12 Physical Science Mrs KL Faling SUBSTITUTION REACTIONS This is a reaction where an atom or group of atoms is replaced by another atom or group of atoms Substitution

More information

Pearson Edexcel Level 3 GCE Chemistry Advanced Paper 2: Advanced Organic and Physical Chemistry

Pearson Edexcel Level 3 GCE Chemistry Advanced Paper 2: Advanced Organic and Physical Chemistry Write your name here Surname Other names Pearson Edexcel Level 3 GCE Centre Number Candidate Number Chemistry Advanced Paper 2: Advanced Organic and Physical Chemistry Specimen Paper for first teaching

More information

3.2.8 Haloalkanes. Nucleophilic Substitution. 267 minutes. 264 marks. Page 1 of 36

3.2.8 Haloalkanes. Nucleophilic Substitution. 267 minutes. 264 marks. Page 1 of 36 3.2.8 Haloalkanes Nucleophilic Substitution 267 minutes 264 marks Page 1 of 36 Q1. (a) The equation below shows the reaction of 2-bromopropane with an excess of ammonia. CH 3 CHBrCH 3 + 2NH 3 CH 3 CH(NH

More information

dihalogenoalkane H 2, Nickel Catalyst KOH alcoholic HBr, HCl Br Cl Elimination KOH aqueous heat under reflux Nucleophilic substitution

dihalogenoalkane H 2, Nickel Catalyst KOH alcoholic HBr, HCl Br Cl Elimination KOH aqueous heat under reflux Nucleophilic substitution 7 AS mechanisms dihalogenoalkane poly(alkene) Br 2, 2 KO aqueous room temp Electrophilic addition heat under reflux Nucleophilic substitution high pressure atalyst polymerization alkene KMnO 4 oxidation

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information

Class XII: Chemistry Chapter 13: Amines Top concepts

Class XII: Chemistry Chapter 13: Amines Top concepts Class XII: Chemistry Chapter 13: Amines Top concepts 1. Amines are regarded as derivatives of ammonia in which one, two or all three hydrogen atoms are replaced by alkyl or aryl group 2. Classification

More information

Chemical tests to distinguish carbonyl compounds

Chemical tests to distinguish carbonyl compounds R hemistry A 432 arbonyl ompounds arbonyl hemistry arbonyl compounds are those which contain >= - aldehydes - ketones - carboxylic acids - esters You should recall how to name aldehydes and ketones: 3

More information

Acyl chloride/ acid anhydride

Acyl chloride/ acid anhydride 3.14 Synthetic routes poly(alkene) dihalogenoalkane KH aqueous under reflux Nu Sub diol high pressure catalyst Step 1 H 2 S 4 EAdd Step 2 H 2 warm hydrolysis alcohol alkene conc. H 2 S 4 or conc. H 3 P

More information

Chapter 7: Alcohols, Phenols and Thiols

Chapter 7: Alcohols, Phenols and Thiols Chapter 7: Alcohols, Phenols and Thiols 45 -Alcohols have the general formula R-OH and are characterized by the presence of a hydroxyl group, -OH. -Phenols have a hydroxyl group attached directly to an

More information

Lesmahagow High School CfE Advanced Higher Chemistry

Lesmahagow High School CfE Advanced Higher Chemistry Lesmahagow High School AHChemistry Organic Chemistry& Instrumental Analysis Lesmahagow High School CfE Advanced Higher Chemistry Unit 2 Organic Chemistry and Instrumental Analysis Alkanes, Alkenes and

More information

voltmeter salt bridge

voltmeter salt bridge 2012 H2 Chemistry Preliminary Examination Paper 3 Solutions 1 1 (a) (i) 4FeCr 2 O 4 + 8Na 2 CO 3 + 7O 2 2Fe 2 O 3 + 8Na 2 CrO 4 + 8CO 2 a = 8, b = 7, c = 2, d = 8, e = 8 Any dilute acid e.g. dilute H 2

More information

Organic Reactions. Alcohols and Esterification

Organic Reactions. Alcohols and Esterification Organic Reactions Alcohols and Esterification Alcohols Ex: Ethanol (alcohol in alcoholic beverages) Ethanol production: Fermentation of glucose sugar by yeast cells - C 6 H 12 O 6 (aq) 2C 2 H 5 OH(aq)

More information

NANYANG TECHNOLOGICAL UNIVERSITY ENTRANCE EXAMINATION SYLLABUS FOR INTERNATIONAL STUDENTS CHEMISTRY

NANYANG TECHNOLOGICAL UNIVERSITY ENTRANCE EXAMINATION SYLLABUS FOR INTERNATIONAL STUDENTS CHEMISTRY NANYANG TECHNOLOGICAL UNIVERSITY ENTRANCE EXAMINATION SYLLABUS FOR INTERNATIONAL STUDENTS OAFA/01/07 STRUCTURE OF EXAMINATION PAPER CHEMISTRY 1. There will be one 2-hour paper consisting of two sections.

More information

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium 18.8 Oxidation Oxidation by silver ion requires an alkaline medium Test for detecting aldehydes Tollens reagent to prevent precipitation of the insoluble silver oxide, a complexing agent is added: ammonia

More information

Module 4 revision guide: Compounds with C=O group

Module 4 revision guide: Compounds with C=O group opyright N Goalby Bancroft's School Module 4 revision guide: ompounds with = group arbonyls: Aldehydes and Ketones arbonyls are compounds with a = bond, they can be either aldehydes or ketones. 3 ethanal

More information

Organic Chemistry HL IB CHEMISTRY HL

Organic Chemistry HL IB CHEMISTRY HL Organic Chemistry HL IB CHEMISTRY HL Understandings: Nucleophilic Substitution Reactions: SN1 represents a nucleophilic unimolecular substitution reaction and SN2 represents a nucleophilic bimolecular

More information

Page 2. Q1.Which one of the following is not a correct general formula for the non-cyclic compounds listed? alcohols C nh 2n+2O. aldehydes C nh 2n+1O

Page 2. Q1.Which one of the following is not a correct general formula for the non-cyclic compounds listed? alcohols C nh 2n+2O. aldehydes C nh 2n+1O Q1.Which one of the following is not a correct general formula for the non-cyclic compounds listed? A B alcohols C nh 2n+2O aldehydes C nh 2n+1O C esters C nh 2nO 2 C primary amines C nh 2n+3N (Total 1

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

15.1: Hydrocarbon Reactions

15.1: Hydrocarbon Reactions 15.1: Hydrocarbon Reactions Halogenation An alkane will react with a halogen to produce a halalkane and the corresponding hydrogen halide. The catalyst is ultraviolet radiation. Reaction 1 methane chlorine

More information

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone.

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone. Aldehydes, Ketones and Carboxylic Acids Nomenclature of aldehydes and ketones Aldehydes: Often called by their common names instead of IUPAC names. Ketones: Derived by naming two alkyl or aryl groups bonded

More information

Organic Chemistry. Chapter 10

Organic Chemistry. Chapter 10 Organic Chemistry Chapter 10 10.1 Homologous Series Overview We Are Here Organic Chemistry Organic chemistry is the chemistry of carbon containing compounds. From the very simple: methane To the very complex:

More information

Ch 20 Carboxylic Acids and Nitriles

Ch 20 Carboxylic Acids and Nitriles Ch 20 Carboxylic Acids and Nitriles Carboxylic Acids (RCO 2 H) are compounds with an OH attached to a carbonyl. Nitriles (RC N) are compounds a carbon-nitrogen triple bond. Naming Carboxylic Acids 1. Replace

More information

dihalogenoalkane H 2, KOH alcoholic heat under reflux Elimination PCl 5, PBr 3, PI 3 Heat under reflux substitution KOH aqueous heat under reflux

dihalogenoalkane H 2, KOH alcoholic heat under reflux Elimination PCl 5, PBr 3, PI 3 Heat under reflux substitution KOH aqueous heat under reflux 7. AS mechanisms dihalogenoalkane poly(alkene) 2, l 2 room temp Electrophilic addition KO aqueous heat under reflux Nucleophilic substitution high pressure atalyst polymerization alkene KMnO 4 oxidation

More information

AMINES HYDROXYNITRILES

AMINES HYDROXYNITRILES AMINES ACYL CHLORIDES HYDROXYNITRILES ALDEHYDE/KETONE REDUCTION Amines are nitrogen- containing organic compounds derived from ammonia, where one or more of the hydrogen atoms has been replaced by an alkyl

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

General A haloalkane is a compound in which one or more H atoms of an alkane are replaced by halogen atoms.

General A haloalkane is a compound in which one or more H atoms of an alkane are replaced by halogen atoms. aloalkanes General A haloalkane is a compound in which one or more atoms of an alkane are replaced by halogen atoms. If one hydrogen atom is replaced, the general formula is n 2n+1 X where X = F, l, Br

More information

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids.

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids. 21.1 Introduction Carboxylic Acids Carboxylic acids are abundant in nature and in pharmaceuticals. 21.1 Introduction Carboxylic Acids The US produces over 2.5 million tons of acetic acid per year, which

More information

Chemistry of Benzene: Electrophilic Aromatic Substitution

Chemistry of Benzene: Electrophilic Aromatic Substitution Chemistry of Benzene: Electrophilic Aromatic Substitution Why this Chapter? Continuation of coverage of aromatic compounds in preceding chapter focus shift to understanding reactions Examine relationship

More information

Q1. Pentanenitrile can be made by reaction of 1-bromobutane with potassium cyanide.

Q1. Pentanenitrile can be made by reaction of 1-bromobutane with potassium cyanide. Q1. Pentanenitrile can be made by reaction of 1-bromobutane with potassium cyanide. Which of these is the correct name for the mechanism of this reaction? A B C D Electrophilic addition Electrophilic substitution

More information

EXTRA QUESTIONS FOR 2.8 HALOALKANES. 1. Methylbenzene is converted into (chloromethyl)benzene in a free radical substitution reaction....

EXTRA QUESTIONS FOR 2.8 HALOALKANES. 1. Methylbenzene is converted into (chloromethyl)benzene in a free radical substitution reaction.... EXTRA QUESTIONS FOR 2.8 HALOALKANES 1. Methylbenzene is converted into (chloromethyl)benzene in a free radical substitution reaction. C 6 H 5 3 + Cl 2 C 6 H 5 2 Cl + HCl Write an equation for the initiation

More information

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Electrophile substitutes for a hydrogen on the benzene ring. Chapter 17: Aromatics 2-Reactions Slide 17-2 1 Mechanism Step

More information

Organic Mechanisms 1

Organic Mechanisms 1 Organic Mechanisms 1 Concepts The key ideas required to understand this section are: Concept Book page Chemical properties of alkanes 314 Chemical properties of alkenes 318 Bonding in alkenes 320 Bonding

More information

6.10 Amines. Naming. N Goalby chemrevise.org 1 CH2 CH2

6.10 Amines. Naming. N Goalby chemrevise.org 1 CH2 CH2 6.10 Amines aming Amines These end in amine. There is, however, rather confusingly two ways of using this suffix. The exam board tend to use the common version where the name stem ends in -yl propylamine.

More information

Worksheet Chapter 10: Organic chemistry glossary

Worksheet Chapter 10: Organic chemistry glossary Worksheet 10.1 Chapter 10: Organic chemistry glossary Addition elimination reaction A reaction in which two molecules combine with the release of a small molecule, often water. This type of reaction is

More information

Q1. Ammonia is used in the production of fertilisers. The flow diagram shows the main stages in the manufacture of ammonia.

Q1. Ammonia is used in the production of fertilisers. The flow diagram shows the main stages in the manufacture of ammonia. Q1. Ammonia is used in the production of fertilisers. The flow diagram shows the main stages in the manufacture of ammonia. Study the flow diagram and then answer the questions. (a) What is the purpose

More information

Page 2. M1.(a) P 3,3 dimethylbut 1 ene OR accept 3,3 dimethylbutene Ignore absence of commas, hyphens and gaps Require correct spelling Q OR

Page 2. M1.(a) P 3,3 dimethylbut 1 ene OR accept 3,3 dimethylbutene Ignore absence of commas, hyphens and gaps Require correct spelling Q OR M.(a) P 3,3 dimethylbut ene OR accept 3,3 dimethylbutene Ignore absence of commas, hyphens and gaps Require correct spelling Q OR 3 chloro 2,2 dimethylbutane accept 2 chloro 3,3 dimethylbutane In Q, chloro

More information

Chapter 19: Amines. Introduction

Chapter 19: Amines. Introduction Chapter 19: Amines Chap 19 HW: (be able to name amines); 37, 39, 41, 42, 44, 46, 47, 48, 53-55, 57, 58 Introduction Organic derivatives of ammonia. Many are biologically active. Chap 19: Amines Slide 19-2

More information

dihalogenoalkane H 2, Nickel Catalyst addition/reduction HBr, HCl room temp KOH alcoholic heat under reflux Elimination

dihalogenoalkane H 2, Nickel Catalyst addition/reduction HBr, HCl room temp KOH alcoholic heat under reflux Elimination Synthetic Routes dihalogenoalkane K aqueous heat under reflux Nucleophilic substitution poly(alkene) high pressure atalyst polymerization LiAl 4 Reduction 2 (g) atalyst: onc 3 P 4 LiAl 4 Reduction alkene

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

GRADE 11F: Chemistry 6. UNIT 11FC.6 10 hours. Some functional groups. Resources. About this unit. Previous learning. Expectations

GRADE 11F: Chemistry 6. UNIT 11FC.6 10 hours. Some functional groups. Resources. About this unit. Previous learning. Expectations GRADE 11F: Chemistry 6 Some functional groups UNIT 11FC.6 10 hours About this unit This unit is the sixth of six units on for Grade 11 foundation. The unit is designed to guide your planning and teaching

More information

Electrophilic substitution Both words needed Ignore minor misspellings 1

Electrophilic substitution Both words needed Ignore minor misspellings 1 M.(a) Electrophilic substitution Both words needed Ignore minor misspellings (b) (i) Sn / HCl OR H 2 / Ni OR H 2 / Pt OR Fe / HCl OR Zn / HCl OR SnCl 2 / HCl Ignore conc or dil with HCl, Allow (dil) H

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Module 2A Alcohols and halogenoalkanes

Module 2A Alcohols and halogenoalkanes Module 2A Alcohols and halogenoalkanes Making ethanol Ethanol is made in 1 of 2 ways: 1) Hydration of ethene: This is a reversible reaction and only about 5% of ethene is converted to ethanol. Unreacted

More information

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution Nomenclature: In carboxylic acid chlorides, anhydrides, esters and amides, the parent is the carboxylic acid. In each case be sure

More information

Carboxylic Acids and Nitriles

Carboxylic Acids and Nitriles Carboxylic Acids and Nitriles Why this Chapter? Carboxylic acids present in many industrial processes and most biological processes They are the starting materials from which other acyl derivatives are

More information

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition Chapter 24. Amines Based on McMurry s Organic Chemistry, 7 th edition Amines Organic Nitrogen Compounds Organic derivatives of ammonia, NH 3, Nitrogen atom with a lone pair of electrons, making amines

More information

ALCOHOLS AND PHENOLS

ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS Alcohols contain an OH group connected to a a saturated C (sp3) They are important solvents and synthesis intermediates Phenols contain an OH group connected to

More information

OCR Chemistry A H432. Amines are described as primary, secondary or tertiary depending on how many carbons are bonded to the N atom.

OCR Chemistry A H432. Amines are described as primary, secondary or tertiary depending on how many carbons are bonded to the N atom. OCR Chemistry A 432 About amines: can be considered as derivatives of ammonia, with one or more of the atoms replaced by alkyl groups. They are noted for their unpleasant, often fishy odours. We classify

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

Topic-1 Lowry - Bronsted and Lewis theory of acids and bases with examples and applications

Topic-1 Lowry - Bronsted and Lewis theory of acids and bases with examples and applications Topic-1 Lowry - Bronsted and Lewis theory of acids and bases with examples and applications VERY SHORT ANSWER QUESTIONS 1. What is bronsted acid and base give one example? Strength of bronsted acids and

More information

QUESTIONSHEETS ORGANIC REACTION MECHANISMS I FREE RADICAL SUBSTITUTION I FREE RADICAL SUBSTITUTION II ELECTROPHILIC ADDITION TO SYMMETRICAL ALKENES

QUESTIONSHEETS ORGANIC REACTION MECHANISMS I FREE RADICAL SUBSTITUTION I FREE RADICAL SUBSTITUTION II ELECTROPHILIC ADDITION TO SYMMETRICAL ALKENES CHEMISTRY QUESTIONSHEETS AS Level AS TOPIC 14 ORGANIC REACTION MECHANISMS I Questionsheet 1 Questionsheet 2 Questionsheet 3 Questionsheet 4 Questionsheet 5 Questionsheet 6 Questionsheet 7 Questionsheet

More information

3.2.5 Group VII. Trends in oxidising abilities. 167 minutes. 167 marks. Page 1 of 19

3.2.5 Group VII. Trends in oxidising abilities. 167 minutes. 167 marks. Page 1 of 19 3..5 Group VII Trends in oxidising abilities 167 minutes 167 marks Page 1 of 19 Q1. (a) Samples of solid sodium fluoride, sodium chloride, sodium bromide and sodium iodide are each warmed separately with

More information

ORGANIC REACTIONS 11 MARCH 2014

ORGANIC REACTIONS 11 MARCH 2014 ORGANIC REACTIONS 11 MARCH 2014 In this lesson we: Lesson Description Look at the chemical reactions of organic molecules Summary Organic molecules can undergo several important chemical reactions. 1.

More information

Topic 1: Quantitative chemistry

Topic 1: Quantitative chemistry covered by A-Level Chemistry products Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant 1.1.1 Apply the mole concept to substances. Moles and Formulae 1.1.2 Determine the number

More information

Top concepts Chapter: Amines 1. Amines are regarded as derivatives of ammonia in which one, two or all three hydrogen atoms are replaced by alkyl or aryl group 2. Classification of amines: 3. Preparation

More information

Synthesis and Sustainable Chemistry

Synthesis and Sustainable Chemistry Synthesis and Sustainable Chemistry Considering % yield and % Atom Economy: high % yield means very efficient conversion from reactants to products increasing % yield means more efficient use of starting

More information

Downloaded from

Downloaded from 1 Class XII Chemistry Chapter: Alcohols, Phenols And Ethers Top concepts: 1. Structure of alcohols, phenols and ethers: 2. Preparation of alcohols: 3. Preparation of phenols: 2 4. Physical properties of

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

Ammonia Primary Secondary Tertiary Quarternary Ammonium Ion

Ammonia Primary Secondary Tertiary Quarternary Ammonium Ion 1 Chapter 19: Amines I. Introduction: Classification: NH 3 RNH 2 R 2 NH R 3 N R 4 N + Ammonia Primary Secondary Tertiary Quarternary Ammonium Ion Amines are a very common functional group in organic chemistry,

More information

Carbonyls. Aldehydes and Ketones N Goalby chemrevise.org. chemrevise.org

Carbonyls. Aldehydes and Ketones N Goalby chemrevise.org. chemrevise.org arbonyls Aldehydes and Ketones N Goalby chemrevise.org arbonyls are compounds with a = bond, they can be either aldehydes or ketones. 3 ethanal 3 3 propanone If the = is on the end of the chain with an

More information

# Ans Workings / Remarks

# Ans Workings / Remarks # Ans Workings / Remarks 1 B Atomic mass and temperature affects the rate of diffusion of gas. The lower the atomic mass, the lighter the substance. The higher the temperature, the higher the rate of collision

More information

Question 13.1: Classify the following amines as primary, secondary or tertiary: (i) (ii) (iii) (C 2 H 5 ) 2 CHNH 2 (iv) (C 2 H 5 ) 2 NH Primary: (i) and (iii) Secondary: (iv) Tertiary: (ii) Question 13.2:

More information

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 5 Dr Ali El-Agamey 1 Energy Diagram of One-Step Exothermic Reaction The vertical axis in this graph represents the potential energy. The transition

More information

Fluorine Gas. Chlorine Gas. Bromine Liquid. Iodine Solid

Fluorine Gas. Chlorine Gas. Bromine Liquid. Iodine Solid Halogens Fluorine (F 2 ): very pale yellow gas. It is highly reactive Chlorine : ( ) greenish, reactive gas, poisonous in high concentrations Bromine ( ) : red liquid, that gives off dense brown/orange

More information

3.8 Aldehydes and ketones

3.8 Aldehydes and ketones 3.8 Aldehydes and ketones Introduction: p's to p's Like the alkenes, the carbonyl group consists of a s bond and a p bond between the carbon and oxygen: Oxygen is more electronegative than carbon meaning

More information

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides: I. Nitriles Nitriles consist of the CN functional group, and are linear with sp hybridization on C and N. Nitriles are non-basic at nitrogen, since the lone pair exists in an sp orbital (50% s character

More information

GCE A level 1094/01 CHEMISTRY CH4

GCE A level 1094/01 CHEMISTRY CH4 Surname ther Names Centre 2 Candidate GCE A level 1094/01 CHEMISTRY CH4 P.M. MNDAY, 14 January 2013 1¾ hours ADDITINAL MATERIALS In addition to this examination paper, you will need: Data Sheet Periodic

More information