Magnetic Silica Particles for Catalysis

Size: px
Start display at page:

Download "Magnetic Silica Particles for Catalysis"

Transcription

1 4 Magnetic Silica Particles for atalysis Abstract Monodisperse magnetizable colloidal silica particles in a stable dispersion have been functionalized with a homogeneous catalyst: a PP-pincer Pd-complex. In a proof-of-principle experiment we demonstrate the catalytic activity of the colloids in a - bond formation reaction. Advantages of the magnetic silica carriers are the large surface-to-volume ratio and the easy recovery by magnetic separation. After magnetic separation, the catalyst-loaded particles are readily redispersed for further use.

2 48 4. Magnetic Silica Particles for atalysis 4.1. Introduction olloidal silica is widely used in industrial applications as well as for fundamental research purposes. The preparation of monodisperse silica particles and the silica coating of other inorganic colloids are well-documented and the silica particle surface is well suitable for chemical surface modification (see for instance [3, 48, 50]). atalysis is an indispensable process in the chemical industry both from an economical and an environmental point of view. Production of various chemicals ranging from pharmaceuticals to polymers involves the use of transition metal catalysts [88, 89]. These catalytic systems are generally divided into two groups: homogeneous (catalyst in the same phase as the reactants) and heterogeneous (catalyst on a solid support) catalysts. Heterogeneous catalytic systems have the advantage that the catalyst can be recovered after completion of the reaction. On the other hand, a homogeneous catalytic system has a higher reactivity and selectivity. To combine these advantages, homogeneous catalysts are usually immobilized on supports such as mesoporous silica [90 93]. Silica has the advantage that it is inert and hence chemically and thermally stable under most of the conditions under which catalysts are operating, and it can be readily separated from the reaction mixture. Depending on the surface area and pore size of the silica, it can have a restricted approach of the reactant molecules to the catalyst, thereby reducing the reactivity and altering the selectivity. By using colloidal particles (which have a high surface-to-volume ratio) as a support, homogeneous catalysts can be dispersed in a reaction mixture and at the same time be separated from a solution by sedimentation [94, 95]. By introducing support particles with induced magnetic properties, the separation can be improved and the magnetic support particles can be fixed at the wall of the reaction vessel while the solution is decanted by applying a magnetic field [26,33]. For efficient recycling of the catalyst, the support particles should be magnetic enough to be collected with a small permanent magnet and easily be redispersed in the reaction medium after removing the magnet so that the catalysis can be continued. Moreover, the support particles must be chemically inert under the conditions where the catalysis takes place. Magnetic particles have previously been immobilized on mesoporous silica structures for catalytic purposes [96]. Single magnetic particles with a silica shell have also been reported on as support particles in catalysis [26,95], but such particles require high fields for efficient magnetic separation from solution, which is a severe drawback. Here we report on the preparation of magnetic silica particles (150 nm radius) consisting of monodisperse silica cores covered with maghemite nanoparticles and an outer silica shell (see Figure 4.1), grafted with a modified organometallic catalyst based on a PP-pincer palladium complex [97, 98]. This complex is known to catalyze the aldol condensation reaction between benzaldehyde and methyl isocyanoacetate to produce oxazolines (see Figure 4.5) [99].

3 4.2. Experimental 49 HS HS A B HS HS D Figure Left: The stepwise synthesis of magnetic silica: Thiolfunctionalized Stöber silica (A) is mixed with maghemite (B) to obtain silica cores with magnetic particles () onto which silica can be precipitated to form magnetic core-shell particles with an outer silica shell (D). Right: The particles in dispersion after surface modification with the PP-Pd complex (top) and collected with a magnet during the purification from unreacted PP-Pd complex (bottom) Experimental Synthesis of magnetic silica colloids The magnetic silica particles used in this work were prepared according to the scheme in Figure 4.1, following the procedure which was described in more detail in hapter 2 [46]. Silica cores (R TEM = 135 nm, R SLS = 152 nm) were prepared by hydrolysis and condensation polymerization of tetraethoxysilane [1] and grafted with a thiol-containing silane coupling agent [48]. Maghemite particles were prepared according to the classic coprecipitation method of Massart et al. [42, 43] and added to the dispersion of thiol-functionalized silica particles, leaving the mixture gently shaken overnight. Excess maghemite was removed by repeated centrifugation. The silica cores covered with maghemite particles were coated with a thin outer silica layer by applying the same seeded-growth synthesis method as for the silica cores, now using the magnetic coreshell particles as seeds. Small aliquots of tetraethoxysilane were added to the reaction mixture while using ultrasonication to prevent aggregation of particles during the silica growth. The silica-coated magnetic core-shell particles were purified by repeated centrifugation and redispersion in ethanol.

4 50 4. Magnetic Silica Particles for atalysis a b c d Figure 4.2. TEM (top, scale bar represents 200 nm) and SEM (bottom, scale bar represents 500 nm) pictures of maghemite-covered silica cores before (a,c) and after (b,d) silica coating. The size as well as the internal morphology of the particles was monitored throughout the stepwise preparation using transmission (TEM) and scanning (SEM) electron microscopy (Figure 4.2). As a complement, static light scattering (SLS) contrast variation experiments were used for size determination (Figure 4.3) [71]. Light scattering measurements are performed directly in dispersion whereas conventional TEM is performed on a substrate with dry particles, which consequently yields an underestimate of the particle size. The intersection point of the angular intensity profiles in Figure 4.3 gives the total radius of the particles from km R = as known from scattering theory of concentric inhomogeneous particles [71] as discussed in more detail in hapter 7. Additionally, such a well-defined intersection point confirms the presence of non-aggregated particles in dispersion with a low polydispersity. This is valuable information, which cannot always be obtained from TEM due to drying effects. Finally, magnetization measurements were performed on a sample of dried magnetic silica. The absence of hysteresis confirms that the particles are superparamagnetic.

5 4.2. Experimental 51 n= n= n= n= ln(i/n s 2 ) x x x x x10 7 k 3.0x10 7 m Scattering vector, k (m -1 ) Figure 4.3. Results from static light scattering measurements performed on magnetic silica particles, applying optical contrast variation. From the sharp intersection point at k m = m 1 a total particle radius of 162 nm is obtained in good agreement with the radius obtained from TEM (153 nm). The sharpness of the intersection point and the agreement with the TEM-radius of the particles indicates monodisperse non-aggregated particles (see hapter 7). Immobilization of the PP-pincer Pd-complex onto magnetic silica particles PP-pincer palladium complexes are known for their catalytic activity in - bond formation reactions [99]. A modified version of this complex (1, see Figure 4.4), which has a triethoxy-silane group useful for tethering it to the silica, was prepared previously [100]. This complex was immobilized onto the magnetic silica by a standard process in which a mixture of the magnetic silica and complex 1 was heated at 90 in toluene for 20 h. The modified silica was separated from the solution by using a small permanent magnet as shown in Figure 4.1. The supernatant was removed and the silica was washed with dichloromethane to remove non-immobilized complex 1. In each washing step, the silica was separated with a magnet. The functionalized silica was then suspended in hexane and treated with 1,1,1,3,3,3-hexamethyldisilazane (HMDS) to cap remaining unreacted surface silanol groups with a trimethylsilyl functionality. The resulting magnetic silica particles, loaded with PP-Pd complex, will be denoted here as MagSi3. Elemental (IP) analysis of MagSi3 showed palladium content was 0.14 wt%, which corresponds to mmol PP-pincer Pd-complex 1 per gram MagSi3. The molar ratio of phosphorus to palladium was found to be about 2.7. It should be noted that the presence of these elements was analyzed after thoroughly rinsing the magnetic silica particles, which would have removed any free molecules. Based on the palladium content, the surface coverage was estimated to be 1.1 PP-pincer Pd-complex molecules per nm 2 MagSi3 surface. However, this is likely to be an overestimate, since it was

6 52 4. Magnetic Silica Particles for atalysis + magnetic silica Toluene, 90 o Hexane, 20 o Figure 4.4. Scheme of the immobilization of catalytic PP-pincer Pdcomplex 1 onto magnetic silica particles (D). The resulting catalytic magnetic particles will be denoted here as MagSi3. assumed that the particles are spherical and that the catalyst molecules form a single monolayer on the particle surface. Subsequently, the MagSi3 particles were tested in catalysis. As a test reaction, the aldol condensation reaction between benzaldehyde and methyl isocyanoacetate (see Figure 4.5) was chosen. Ph O H + N O OMe MagSi3, 10%iPr 2 EtN H 2 l 2, 20 RT o O N Ph O 2 Me cis/trans oxazoline Figure 4.5. Aldol condensation reaction between benzaldehyde and methyl isocyanoacetate to oxazoline catalyzed by MagSi3. In this experiment, 1.6 mmol of each benzaldehyde and methyl isocyanoacetate were reacted in the presence of the base N,N-diisopropylethylamine, ipr2etn (10%, 0.16 mmol). The amount of MagSi3 catalyst used was 100 mg, which corresponds to about 1.35 mol of palladium and which gives a catalyst concentration of 0.08 mol%. For comparison, a blank reaction was performed using all the above reagents at the same concentration but without the MagSi3 catalyst. Results of the catalysis and blank reactions are shown in Figure 4.6. It is clear that the reaction with MagSi3 has the higher activity (TOF = 16 h 1 at 40 % conversion) over the background reaction. When the silica was sedimented using a magnet, the progress of the reaction decreased to

7 4.3. onclusions 53 approximately that of the background reaction, whereas the reaction after redispersing the magnetic silica proceeded with the same reaction rate as before removal of the catalyst With MagSi3 Blank (without MagSi3 ) Reaction Product (%) Time (h) Figure 4.6. Kinetic profiles of the aldol reaction catalyzed by MagSi3 and the corresponding blank reaction. These experiments indicate that the observed acceleration is due to the PP-Pd based activity and that this is associated with the magnetic silica. These results demonstrate the heterogeneous nature of the catalyst. Here the effect on the reaction rate is rather modest and mainly serves as a proof-of-principle. The catalytic activity can be improved by increasing the amount of catalytic particles and/or by decreasing the size of the magnetic silica particles to provide more surface area onclusions In summary, monodisperse magnetic silica particles have been prepared and grafted with a homogeneous catalyst, in this case a PP-pincer Pd-complex. In this way the catalyst can be separated from a reaction mixture in the relatively low magnetic field gradient from a small laboratory magnet. Furthermore, we have provided a proof-ofprinciple of how these catalyst loaded magnetic silica particles can be used in a versatile - bond formation reaction. Moreover, after magnetic recovery, the magnetic silica particles with immobilized catalyst can readily be redispersed for further use. The small size of the support particles provides a large surface-to-volume ratio, which makes a large amount of immobilized catalyst available for catalysis per volume magnetic silica. The results presented here are promising for future work on particle-supported catalysts. The silica chemistry gives the possibility to attach a large variety of catalytic compounds to these magnetic particles and provides interesting possibilities for use in

8 54 4. Magnetic Silica Particles for atalysis cascade reactions [33] in which several reaction steps can be catalyzed by immobilizing several different catalysts onto the magnetic silica. In a more detailed study of the catalytic properties, the particles should be employed in catalysis several times and the structure of the PP-Pd complex should be investigated prior to and after catalysis to ensure the stability of the catalyst. Acknowledgements This work presented in this chapter was performed in cooperation with Nilesh Mehendale, Prof. Dr. Bert Gebbink and Prof. Dr. Gerard van Koten at the Department of Organic hemistry and atalysis, Utrecht University. The research was partially financially supported by STW.

2 Preparation of hollow spheres, microcapsules and microballoons by surfactant free emulsion templating

2 Preparation of hollow spheres, microcapsules and microballoons by surfactant free emulsion templating 2 Preparation of hollow spheres, microcapsules and microballoons by surfactant free emulsion templating We report on the synthesis of new types of monodisperse, micrometer-sized hollow particles obtained

More information

Report on Preparation of Nanotemplates for mab Crystallization

Report on Preparation of Nanotemplates for mab Crystallization Deliverable number D2.1 Due date 30/09/2017 Deliverable title Report on Preparation of Nanotemplates for mab Crystallization Issue date 21/09/2017 WP number WP2 Author(s) J. Heng, W. Chen, H. Yang Lead

More information

Supporting Information

Supporting Information Supporting Information Highly Cross-Linked Imidazolium Salts Entrapped Magnetic Particles Preparation and Applications Paola Agrigento, a Matthias Josef Beier, b Jesper T. N. Knijnenburg, c Alfons Baiker

More information

Supporting Information

Supporting Information Supporting Information Study of molecular conformation and activity-related properties of lipase immobilized onto core-shell structured polyacrylic acid-coated magnetic silica nanocomposite particles Parvaneh

More information

Fast Nucleation for Silica Nanoparticle Synthesis in. Sol-Gel Method

Fast Nucleation for Silica Nanoparticle Synthesis in. Sol-Gel Method Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Fast Nucleation for lica Nanoparticle Synthesis in Sol-Gel Method Chandra K. Dixit*, Snehasis

More information

Supplementary Information

Supplementary Information Supplementary Information Self-assembly of Metal-Polymer Analogues of Amphiphilic Triblock Copolymers 1 Zhihong Nie, 1 Daniele Fava, 1, 2, 3 Eugenia Kumacheva 1 Department of Chemistry, University of Toronto,

More information

Supplementary Information

Supplementary Information Supplementary Information 1. Experimental 1.1.1 Synthesis of hollow silica nanoparticles NPs. The precursor of sol-gel silica is fresh made 1.0 M Si(OH) 4 solution which was made by adding tetramethyl

More information

SYNTHESIS AND PROCESSING OF METALLIC NANOMATERIALS USING CO 2 EXPANDED LIQUIDS AS A GREEN SOLVENT MEDIUM

SYNTHESIS AND PROCESSING OF METALLIC NANOMATERIALS USING CO 2 EXPANDED LIQUIDS AS A GREEN SOLVENT MEDIUM SYNTHESIS AND PROCESSING OF METALLIC NANOMATERIALS USING CO 2 EXPANDED LIQUIDS AS A GREEN SOLVENT MEDIUM Christopher Kitchens Dept. of Chemical and Biomolecular Engineering Clemson University, SC ENGINEERED

More information

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions 2015 2 nd International Conference on Material Engineering and Application (ICMEA 2015) ISBN: 978-1-60595-323-6 Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different

More information

Optical properties of spherical and anisotropic gold shell colloids

Optical properties of spherical and anisotropic gold shell colloids 8 Optical properties of spherical and anisotropic gold shell colloids Core/shell colloids consisting of a metal shell and a dielectric core are known for their special optical properties. The surface plasmon

More information

Kleitz et al. ELECTRONIC SUPPLEMENTARY INFORMATION. Insights into Pore Surface Modification of Mesoporous Polymer-Silica

Kleitz et al. ELECTRONIC SUPPLEMENTARY INFORMATION. Insights into Pore Surface Modification of Mesoporous Polymer-Silica ELECTRONIC SUPPLEMENTARY INFORMATION Insights into Pore Surface Modification of Mesoporous Polymer-Silica Composites: Introduction of Reactive Amines Rémy Guillet-Nicolas, Louis Marcoux and Freddy Kleitz*

More information

Jahresbericht 2003 der Arbeitsgruppe Experimentalphysik Prof. Dr. Michael Farle

Jahresbericht 2003 der Arbeitsgruppe Experimentalphysik Prof. Dr. Michael Farle olloidal Synthesis of Magnetic Nanoparticles V. Salgueirino Maceira and M. Farle 1 Institut für Physik, Universität Duisburg-Essen, Lotharstr. 1, 47048 Duisburg 1. Introduction 1 The synthesis of monodisperse

More information

Electronic supplementary information

Electronic supplementary information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic supplementary information Heterogeneous nucleation and growth of highly crystalline

More information

Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution.

Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution. Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution. Supplementary Figure 2. 1 H nuclear magnetic resonance (NMR) spectra (a) and

More information

Light Scattering from Silica-Iron Oxide Core-Shell Colloids

Light Scattering from Silica-Iron Oxide Core-Shell Colloids 7 Light Scattering from Silica-Iron Oxide Core-Shell Colloids Abstract Static light scattering measurements have been performed on colloidal dispersions of silica particles with two concentric shells one

More information

Supporting Information. for. Advanced Materials, adma Wiley-VCH 2006

Supporting Information. for. Advanced Materials, adma Wiley-VCH 2006 Supporting Information for Advanced Materials, adma.200601546 Wiley-VCH 2006 69451 Weinheim, Germany Supporting Information Synthesis of Magnetic Microspheres with Immobilized Metal Ions for Enrichment

More information

Chapter 6 Magnetic nanoparticles

Chapter 6 Magnetic nanoparticles Chapter 6 Magnetic nanoparticles Magnetic nanoparticles (MNPs) are a class of nanoparticle which can be manipulated using magnetic field gradients. Such particles commonly consist of magnetic elements

More information

Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions

Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions Prof. Can Li's Laboratory Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions Chiral catalysis is of great industrial interest for the production of enantiomerically pure compounds.

More information

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles.

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles. Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles. D E Whitehead, M Bardosova and M E Pemble Tyndall National Institute, University College Cork Ireland Introduction:

More information

Tetraethyl orthosilicate (TEOS, 99 %), resorcinol, formalin solution (37 wt. %),

Tetraethyl orthosilicate (TEOS, 99 %), resorcinol, formalin solution (37 wt. %), Supporting Information A Versatile Cooperative Template-Directed Coating Method to Construct Uniform Microporous Carbon Shell for Multifunctional Core-shell Nanocomposites Buyuan Guan, Xue Wang, Yu Xiao,

More information

Polymers 2017; doi: 1. Structural Characterisation of the Prepared Iniferters, BDC and SBDC

Polymers 2017; doi: 1. Structural Characterisation of the Prepared Iniferters, BDC and SBDC S1/S15 Supplementary Materials: Optimisation of surfaceinitiated photoiniferter-mediated polymerisation under confinement, and the formation of block copolymers in mesoporous films Jessica C. Tom 1, Robert

More information

Preparation of Aminated Mesoporous Silica Nanoparticles (MSNs) by Delayed Co-condensation Technique

Preparation of Aminated Mesoporous Silica Nanoparticles (MSNs) by Delayed Co-condensation Technique Extra Supporting Information (ESI) Experimental Procedures General All chemicals were purchased from Sigma-Aldrich and used as received, unless otherwise specified. 2,2',2''-(10-(2-((2,5-dioxopyrrolidin-1-yl)oxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-

More information

Synthesis and characterization of silica titania core shell particles

Synthesis and characterization of silica titania core shell particles PRAMANA c Indian Academy of Sciences Vol. 65, No. 5 journal of November 2005 physics pp. 787 791 Synthesis and characterization of silica titania core shell particles SUCHITA KALELE 1, RAVI DEY 1, NEHA

More information

Double Mesoporous Silica Shelled Spherical/Ellipsoidal Nanostructures: Synthesis and Hydrophilic/Hydrophobic Anticancer Drug Delivery

Double Mesoporous Silica Shelled Spherical/Ellipsoidal Nanostructures: Synthesis and Hydrophilic/Hydrophobic Anticancer Drug Delivery Supporting information for Supplementary Material (ESI) for Journal of Materials Chemistry Double Mesoporous Silica Shelled Spherical/Ellipsoidal Nanostructures: Synthesis and Hydrophilic/Hydrophobic Anticancer

More information

Disproportionation route to monodispersed copper nanoparticles for catalytic synthesis of propygarylamines

Disproportionation route to monodispersed copper nanoparticles for catalytic synthesis of propygarylamines Supplementary Materials for Disproportionation route to monodispersed copper nanoparticles for catalytic synthesis of propygarylamines Huizhang Guo, a Xiang Liu, a Qingshui Xie, a Laisen Wang, a Dong-Liang

More information

Preparation of monodisperse silica particles with controllable size and shape

Preparation of monodisperse silica particles with controllable size and shape Preparation of monodisperse silica particles with controllable size and shape J.H. Zhang, a) P. Zhan, Z.L. Wang, W.Y. Zhang, and N.B. Ming National Laboratory of Solid State Microstructures, Department

More information

O-Allylation of phenols with allylic acetates in aqueous medium using a magnetically separable catalytic system

O-Allylation of phenols with allylic acetates in aqueous medium using a magnetically separable catalytic system Supporting information for -Allylation of phenols with allylic acetates in aqueous medium using a magnetically separable catalytic system Amit Saha, John Leazer* and Rajender S. Varma* Sustainable Technology

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Efficient Bifunctional Nanocatalysts by Simple Postgrafting of Spatially-Isolated Catalytic Groups on Mesoporous Materials By Krishna K. Sharma

More information

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core Chunzheng Wu, ab Zi-Yian Lim, a Chen Zhou, a Wei Guo Wang, a Shenghu Zhou,

More information

Permeable Silica Shell through Surface-Protected Etching

Permeable Silica Shell through Surface-Protected Etching Permeable Silica Shell through Surface-Protected Etching Qiao Zhang, Tierui Zhang, Jianping Ge, Yadong Yin* University of California, Department of Chemistry, Riverside, California 92521 Experimental Chemicals:

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Nanoparticle-to-vesicle and nanoparticle-to-toroid transitions of ph-sensitive

More information

Sacrifical Template-Free Strategy

Sacrifical Template-Free Strategy Supporting Information Core/Shell to Yolk/Shell Nanostructures by a Novel Sacrifical Template-Free Strategy Jie Han, Rong Chen and Rong Guo* School of Chemistry and Chemical Engineering, Yangzhou University,

More information

Presented by : Chloé Maury, Chemistry Master s Claude Daneault, Professor Khalil Jradi, Research associate

Presented by : Chloé Maury, Chemistry Master s Claude Daneault, Professor Khalil Jradi, Research associate Presented by : Chloé Maury, Chemistry Master s Claude Daneault, Professor Khalil Jradi, Research associate 2014 SWST International Convention Tuesday, June 24 th 2014 1 Current context Global economic

More information

-:Vijay Singh(09CEB023)

-:Vijay Singh(09CEB023) Heterogeneous Semiconductor Photocatalyst -:Vijay Singh(09CEB023) Guided by Azrina Abd Aziz Under Dr. Saravanan Pichiah Preparation of TiO 2 Nanoparticle TiO 2 was prepared by hydrolysis and poly-condensation

More information

Pre-seeding -assisted synthesis of high performance polyamide-zeolite nanocomposie membrane for water purification

Pre-seeding -assisted synthesis of high performance polyamide-zeolite nanocomposie membrane for water purification Electronic Supporting Information: Pre-seeding -assisted synthesis of high performance polyamide-zeolite nanocomposie membrane for water purification Chunlong Kong, a Takuji Shintani b and Toshinori Tsuru*

More information

Deposition of Titania Nanoparticles on Spherical Silica

Deposition of Titania Nanoparticles on Spherical Silica Journal of Sol-Gel Science and Technology 26, 489 493, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Deposition of Titania Nanoparticles on Spherical Silica DONG HWAN RYU, SEONG

More information

CONTROL OF THE INTERPHASE INTERACTION AND MORPHOLOGY IN THE ORGANIC-INORGANIC POLYMER NANOCOMPOSITES

CONTROL OF THE INTERPHASE INTERACTION AND MORPHOLOGY IN THE ORGANIC-INORGANIC POLYMER NANOCOMPOSITES CNTL F THE INTEPHASE INTEACTIN AND MPHLGY IN THE GANIC-INGANIC PLYME NANCMPSITES P. Murias, L. Matějka Institute of Macromolecular Chemistry, Academy of Sciences of the Czech epublic, Heyrovsky Sq.2, 162

More information

CHAPTER 6. SOLVENT-FREE SELECTIVE OXIDATION OF -PINENE OVER Co-SBA-15 CATALYST

CHAPTER 6. SOLVENT-FREE SELECTIVE OXIDATION OF -PINENE OVER Co-SBA-15 CATALYST 135 CHAPTER 6 SOLVENT-FREE SELECTIVE OXIDATION OF -PINENE OVER Co-SBA-15 CATALYST 6.1 INTRODUCTION -Pinene is a terpenoid family of organic compound which is inexpensive, readily available and renewable

More information

Supplementary Figure 1. SEM and TEM images of the metal nanoparticles (MNPs) and metal oxide templates.

Supplementary Figure 1. SEM and TEM images of the metal nanoparticles (MNPs) and metal oxide templates. Supplementary Figure 1. SEM and TEM images of the metal nanoparticles (MNPs) and metal oxide templates. (a) 13 nm Au, (b) 60 nm Au, (c) 3.3 nm Pt, (d) ZnO spheres, (e) Al 2O 3 spheres and (f) Cu 2O cubes.

More information

Improvement of cotton properties with silica particles coatings

Improvement of cotton properties with silica particles coatings Improvement of cotton properties with silica particles coatings Marcella Torres Maia; Naiara Cipriano Oliveira; Victor Teixeira Noronha; Yasmine Maria Lima de Oliveira Aquino; Amauri Jardim de Paula Solid-Biological

More information

Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese

Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting information Tuned Depositing Ag clusters on ZrO 2 Nanocrystals from Silver Mirror

More information

Catalytic oxidations: finding the optimum composition of AuPd coreshell nanoparticle catalysts

Catalytic oxidations: finding the optimum composition of AuPd coreshell nanoparticle catalysts Brazilian ChemComm Symposium Chemistry and Sustainable Energy 5 th November 2012, São Paulo, Brazil Catalytic oxidations: finding the optimum composition of AuPd coreshell nanoparticle catalysts Prof.

More information

Supporting Information for. Highly durable Pd metal catalysts for the oxygen. reduction reaction in fuel cells; Coverage of Pd metal with.

Supporting Information for. Highly durable Pd metal catalysts for the oxygen. reduction reaction in fuel cells; Coverage of Pd metal with. Supporting Information for Highly durable Pd metal catalysts for the oxygen reduction reaction in fuel cells; Coverage of Pd metal with silica Sakae Takenaka 1 *, Naoto Susuki 1, Hiroaki Miyamoto 1, Eishi

More information

Supporting Information

Supporting Information Supporting Information Dynamic Nuclear Polarization of Spherical Nanoparticles Ümit Akbey 1 *, Burcu Altin 2, Arne Linden 1, Serdar Özcelik 3, Michael Gradzielski 2, Hartmut Oschkinat 1 1 Leibniz-Institut

More information

In a typical routine, the pristine CNT (purchased from Bill Nanotechnology, Inc.) were

In a typical routine, the pristine CNT (purchased from Bill Nanotechnology, Inc.) were Supplementary Information Pd induced Pt(Ⅳ) reduction to form Pd@Pt/CNT core-shell catalyst for a more complete oxygen reduction Preparation of SH- functionalized CNT In a typical routine, the pristine

More information

Babak Karimi* and Majid Vafaeezadeh

Babak Karimi* and Majid Vafaeezadeh Electronic upplementary Material (EI) for RC Advances This journal is The Royal ociety of Chemistry 2013 BA-15 functionalized sulfonic acid confined hydrophobic and acidic ionic liquid: a highly efficient

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany Expanding the Utility of One-Pot Multi-Step Reaction Networks via Catalyst Compartmentation and Recovery Nam T. S. Phan 1, Christopher S. Gill

More information

Preparation and Characterization of Organic/Inorganic Polymer Nanocomposites

Preparation and Characterization of Organic/Inorganic Polymer Nanocomposites Preparation and Characterization of rganic/inorganic Polymer Nanocomposites Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-20 September 2007 Preparation and Characterization

More information

Multifunctional polyphosphazene-coated multi-walled carbon. nanotubes for the synergistic treatment of redox-responsive

Multifunctional polyphosphazene-coated multi-walled carbon. nanotubes for the synergistic treatment of redox-responsive Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting information for Multifunctional polyphosphazene-coated multi-walled carbon

More information

Magnetic Janus Nanorods for Efficient Capture, Separation. and Elimination of Bacteria

Magnetic Janus Nanorods for Efficient Capture, Separation. and Elimination of Bacteria Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Magnetic Janus Nanorods for Efficient Capture, Separation and Elimination of Bacteria Zhi-min

More information

Supplementary information for:

Supplementary information for: Supplementary information for: Solvent dispersible nanoplatinum-carbon nanotube hybrids for application in homogeneous catalysis Yuhong Chen, Xueyan Zhang and Somenath Mitra* Department of Chemistry and

More information

Catalyst Synthesis. Modern Techniques in Heterogeneous Catalysis Research. Prof. Justin Notestein. Updated

Catalyst Synthesis. Modern Techniques in Heterogeneous Catalysis Research. Prof. Justin Notestein. Updated Catalyst Synthesis Modern Techniques in Heterogeneous Catalysis Research Prof. Justin Notestein Updated 2-4-16 Modern Techniques in Heterogeneous Catalysis Why Catalyst Synthesis? Many different catalyst

More information

Supporting Information:

Supporting Information: Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting Information:. FigS1:TEM images of Pd conacve nanocube of three different sizes synthesised

More information

1 Answer. 2 Answer A B C D

1 Answer. 2 Answer A B C D 216 W10-Exam #1 Page 1 of 9. I. (8 points) 1) Given below are infrared (IR) spectra of four compounds. The structures of compounds are given below. Assign each spectrum to its compound by putting the letter

More information

Research Article Synthesis and Characterization of Magnetic Nanosized Fe 3 O 4 /MnO 2 Composite Particles

Research Article Synthesis and Characterization of Magnetic Nanosized Fe 3 O 4 /MnO 2 Composite Particles Nanomaterials Volume 29, rticle ID 34217, 5 pages doi:1.1155/29/34217 Research rticle Synthesis and Characterization of Magnetic Nanosized /MnO 2 Composite Particles Zhang Shu and Shulin Wang Department

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Information (ESI) A thin-layered chromatography plate prepared from naphthalimide-based receptor immobilized SiO 2 nanoparticles as a portable chemosensor and adsorbent for Pb

More information

Tailoring the shapes of Fe x. Pt 100 x. nanoparticles. Home Search Collections Journals About Contact us My IOPscience

Tailoring the shapes of Fe x. Pt 100 x. nanoparticles. Home Search Collections Journals About Contact us My IOPscience Home Search Collections Journals About Contact us My IOPscience Tailoring the shapes of Fe x Pt 100 x nanoparticles This content has been downloaded from IOPscience. Please scroll down to see the full

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Au nanoparticles supported on magnetically separable Fe 2 O 3 - graphene

More information

Supporting Information

Supporting Information Supporting Information Photocatalytic Suzuki Coupling Reaction using Conjugated Microporous Polymer with Immobilized Palladium Nanoparticles under Visible Light Zi Jun Wang, Saman Ghasimi, Katharina Landfester

More information

Multiply twinned Pt Pd nanoicosahedrons as highly active electrocatalyst for methanol oxidation

Multiply twinned Pt Pd nanoicosahedrons as highly active electrocatalyst for methanol oxidation Supporting Information for Multiply twinned Pt Pd nanoicosahedrons as highly active electrocatalyst for methanol oxidation An-Xiang Yin, Xiao-Quan Min, Wei Zhu, Hao-Shuai Wu, Ya-Wen Zhang* and Chun-Hua

More information

Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators for Free Radical Polymerization

Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators for Free Radical Polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators

More information

Multifunctional nanoadditives for the thermodynamic and kinetic stabilization of enzymes. Supporting Information

Multifunctional nanoadditives for the thermodynamic and kinetic stabilization of enzymes. Supporting Information Multifunctional nanoadditives for the thermodynamic and kinetic stabilization of enzymes Tristan D. Clemons 1,2, Cameron W. Evans 1, Bogdan Zdyrko 3, Igor Luzinov 3, Melinda Fitzgerald 2, Sarah A. Dunlop

More information

Supporting Information for. Magnetic Nanoparticle Supported Polyoxometalates (POMs) via

Supporting Information for. Magnetic Nanoparticle Supported Polyoxometalates (POMs) via Supporting Information for Magnetic anoparticle Supported Polyoxometalates (PMs) via on-covalent Interaction: Reusable Acid Catalysts and Catalyst Supports for Chiral Amines Xiaoxi Zheng, Long Zhang, Jiuyuan

More information

Supporting Information:

Supporting Information: Supporting Information: In Situ Synthesis of Magnetically Recyclable Graphene Supported Pd@Co Core-Shell Nanoparticles as Efficient Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane Jun Wang,

More information

Synthesis and Rapid Characterization of Amine-Functionalized Silica

Synthesis and Rapid Characterization of Amine-Functionalized Silica December 15, 2011 Synthesis and Rapid Characterization of Amine-Functionalized Silica SUPPORTING INFORMATION Erick Soto-Cantu, Rafael Cueto, Jerome Koch and Paul S. Russo* Department of Chemistry and Macromolecular

More information

Encapsulation. Battelle Technology. Introduction

Encapsulation. Battelle Technology. Introduction Encapsulation Introduction The encapsulation methods reported in the literature 1-7 for the production of microcapsules are generally achieved using one of the following techniques: 1. Phase separation

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Alternating Chiral Selectivity of Aldol Reactions under the Confined Space

More information

Supporting Information

Supporting Information Supporting Information Conversion and Kinetics Study of Fructose-to-5- Hydroxymethylfurfural (HMF) Using Sulfonic and Ionic Liquid Groups Bi-functionalized Mesoporous Silica Nanoparticles as Recyclable

More information

Transformation of Pd PdH 0.7 nanoparticles inside the mesoporous Zr-modified SiO 2 films in ambient conditions

Transformation of Pd PdH 0.7 nanoparticles inside the mesoporous Zr-modified SiO 2 films in ambient conditions Transformation of Pd PdH 0.7 nanoparticles inside the mesoporous Zr-modified SiO 2 films in ambient conditions Jony Saha, Anirban Dandapat and Goutam De* Nano-Structured Materials Division, Central Glass

More information

INVESTIGATING DOPED MESOPROUS ZSM-5 FOR CASCADE CATALYSIS

INVESTIGATING DOPED MESOPROUS ZSM-5 FOR CASCADE CATALYSIS INVESTIGATING DOPED MESOPROUS ZSM-5 FOR CASCADE CATALYSIS Introduction With the recent innovations and progress in the nanotechnology industry, a family of microporous catalysts and adsorbents known as

More information

A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals

A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals Zhenkun Sun,, Yong Liu, Bin Li, Jing Wei, Minghong Wang, Qin Yue, Yonghui Deng,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Controllable integration of ultrasmall noble metal nanoparticles

More information

Surface modification of silica particles with organoalkoxysilanes through two-step (acid-base) process in aqueous solution

Surface modification of silica particles with organoalkoxysilanes through two-step (acid-base) process in aqueous solution Journal of Ceramic Processing Research. Vol. 3, No. 3, pp. 216~221 (2002) J O U R N A L O F Surface modification of silica particles with organoalkoxysilanes through two-step (acid-base) process in aqueous

More information

SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications

SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications Babak Karimi* a, Majid Vafaeezadeh a a Department of Chemistry,

More information

Suzuki coupling reactions catalyzed by poly(n-ethyl-4-vinylpyridinium) bromide stabilized palladium nanoparticles in aqueous solution

Suzuki coupling reactions catalyzed by poly(n-ethyl-4-vinylpyridinium) bromide stabilized palladium nanoparticles in aqueous solution express Polymer Letters Vol.2, No.4 (2008) 251 255 Available online at www.expresspolymlett.com DOI: 10.3144/expresspolymlett.2008.30 Suzuki coupling reactions catalyzed by poly(n-ethyl-4-vinylpyridinium)

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Polymer-coated spherical mesoporous silica for ph-controlled delivery of insulin Sae Rom Choi a,, Dong-jin Jang b,, Sanghyun Kim a, Sunhyung An c, Jinwoo Lee c, Euichaul

More information

Supporting Information

Supporting Information Supporting Information Collapsed (Kippah) Hollow Silica Nanoparticles Kun-Che Kao, Chieh-Jui Tsou and Chung-Yuan Mou* Experimental Section Materials: Reagents: Cetyltrimethylammonium bromide (CTAB, 99%+),

More information

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles [Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles Jong Wook Hong, Young Wook Lee, Minjung Kim, Shin Wook Kang, and Sang Woo Han * Department of

More information

Supporting Information

Supporting Information Supporting Information Janus Hollow Spheres by Emulsion Interfacial Self-Assembled Sol-Gel Process Fuxin Liang, Jiguang Liu, Chengliang Zhang, Xiaozhong Qu, Jiaoli Li, Zhenzhong Yang* State Key Laboratory

More information

Graphene oxide was synthesized from graphite using the MH (modified Hummer s method) 30 and

Graphene oxide was synthesized from graphite using the MH (modified Hummer s method) 30 and Supplemental Information Synthesis of Graphene Oxide from Graphite Graphene oxide was synthesized from graphite using the MH (modified Hummer s method) 30 and the Tour methods 31. For the MH method, SP-1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION 1. Selection of the concentrations of PQDs and dye co-immobilized in the sol-gel Both donor (PQDs) and acceptor (dye) concentrations used in the doped sol-gel synthesis were optimized.

More information

Solutions for Assignment-8

Solutions for Assignment-8 Solutions for Assignment-8 Q1. The process of adding impurities to a pure semiconductor is called: [1] (a) Mixing (b) Doping (c) Diffusing (d) None of the above In semiconductor production, doping intentionally

More information

Materials and Instrumentation. Preparation of ferrofluid [1] Preparation of polymer magnetic nanoparticles. Preparation of NHC ligand [2]

Materials and Instrumentation. Preparation of ferrofluid [1] Preparation of polymer magnetic nanoparticles. Preparation of NHC ligand [2] Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 204 Materials and Instrumentation. All the reagents and solvents were purchased from Sinopharm

More information

Encapsulation of enzyme in metal ion-surfactant nanocomposites for

Encapsulation of enzyme in metal ion-surfactant nanocomposites for Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting information for Encapsulation of enzyme in metal ion-surfactant nanocomposites for catalysis

More information

often display a deep green color due to where the SPR occurs (i.e., the wavelength of light that interacts with this specific morphology).

often display a deep green color due to where the SPR occurs (i.e., the wavelength of light that interacts with this specific morphology). Synthesis-Dependent Catalytic Properties of Gold Nanoparticles Nanoscience is the study of materials that have dimensions, intuitively, on the nanoscale, typically between 1 100 nm. This field has received

More information

Magnetophoresis of colloidal particles in a dispersion of superparamagnetic nanoparticles: Theory and Experiments

Magnetophoresis of colloidal particles in a dispersion of superparamagnetic nanoparticles: Theory and Experiments Magnetophoresis of colloidal particles in a dispersion of superparamagnetic nanoparticles: Theory and Experiments M. Benelmekki a*, Ll. M. Martinez b, J. S. Andreu c,d, J. Camacho d, J. Faraudo c. a Centro

More information

Supporting Information

Supporting Information upporting Information ynthesis of Thiol-functionalized Mesoporpous ilica Material (M) To synthesize the thiol-functionalized mesoporous silica (M), we modified the welldeveloped cetyltrimethylammonium

More information

Synthesis of Highly Concentrated Ag Nanoparticles in a Heterogeneous Solid-Liquid System under Ultrasonic Irradiation

Synthesis of Highly Concentrated Ag Nanoparticles in a Heterogeneous Solid-Liquid System under Ultrasonic Irradiation Materials Transactions, Vol. 51, No. 10 (2010) pp. 1764 to 1768 Special Issue on Lead-Free and Advanced Interconnection Materials for Electronics #2010 The Japan Institute of Metals Synthesis of Highly

More information

Amphiphilic diselenide-containing supramolecular polymers

Amphiphilic diselenide-containing supramolecular polymers Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Amphiphilic diselenide-containing supramolecular polymers Xinxin Tan, Liulin Yang, Zehuan

More information

Solvent Free Synthesis Of N,N-Diethyl Hydroxyl Amine Using Glycerol-Stabilized Nano TiO2 As An Efficient Catalyst

Solvent Free Synthesis Of N,N-Diethyl Hydroxyl Amine Using Glycerol-Stabilized Nano TiO2 As An Efficient Catalyst Solvent Free Synthesis Of N,N-Diethyl Hydroxyl Amine Using Glycerol-Stabilized Nano TiO2 As An Efficient Catalyst Bahramyadollahi 1, Raminsaeedi 2, Alihassanzadeh 3 Department of Physical Chemistry, Faculty

More information

J. Am. Chem. Soc. 2009, 131,

J. Am. Chem. Soc. 2009, 131, Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction J. Am. Chem. Soc. 2009, 131, 8262 8270 Rolf Műlhaupt

More information

Study on the Selective Hydrogenation of Nitroaromatics to N-aryl hydroxylamines using a Supported Pt nanoparticle Catalyst

Study on the Selective Hydrogenation of Nitroaromatics to N-aryl hydroxylamines using a Supported Pt nanoparticle Catalyst Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 204 Supporting Information Study on the Selective Hydrogenation of Nitroaromatics

More information

Supporting Information

Supporting Information Supporting Information Au-HKUST-1 Composite Nanocapsules: Synthesis with a Coordination Replication Strategy and Catalysis on CO Oxidation Yongxin Liu, 1 Jiali Zhang, 1 Lingxiao Song, 1 Wenyuan Xu, 1 Zanru

More information

CHAPTER 3. FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES. 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES

CHAPTER 3. FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES. 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES CHAPTER 3 FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES Au NPs with ~ 15 nm were prepared by citrate reduction of HAuCl 4

More information

Supporting Information

Supporting Information Supporting Information Lattice Contracted AgPt Nanoparticles Hongjun You, ab Zhenmeng Peng, a Jianbo Wu a and Hong Yang,* a a Department of Chemical Engineering, University of Rochester, Rochester, NY

More information

Supplementary Figure 1. Schematic layout of set-up for operando NMR studies.

Supplementary Figure 1. Schematic layout of set-up for operando NMR studies. Supplementary Figure 1. Schematic layout of set-up for operando NMR studies. Supplementary Figure 2. Correlations between different ratios of D2O/H2O and 1 H chemical shifts of HDO. The spectra were acquired

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Selective Diels-Alder cycloaddition on semiconducting single-walled carbon nanotubes for potential separation application Jiao-Tong Sun, Lu-Yang Zhao, Chun-Yan Hong,

More information

Supporting Information. Controlled mineralization by extracellular matrix: monodisperse, colloidal stable calcium phosphate-hyaluronan

Supporting Information. Controlled mineralization by extracellular matrix: monodisperse, colloidal stable calcium phosphate-hyaluronan Supporting Information Controlled mineralization by extracellular matrix: monodisperse, colloidal stable calcium phosphate-hyaluronan hybrid nanospheres Zhenhua Chen, a Huihui Zhou, b Xiaoliang Wang, a

More information

Supporting information

Supporting information Supporting information Manipulating the Concavity of Rhodium Nanocubes Enclosed with High-index Facets via Site-selective Etching Yumin Chen, Qing-Song Chen, Si-Yan Peng, Zhi-Qiao Wang, Gang Lu, and Guo-Cong

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION A Sustainable Approach to Waste-Minimized Sonogashira Cross-Coupling Reaction Based on Recoverable/Reusable heterogeneous Catalytic/Base System and Acetonitrile Azeotrope Vadym Kozell,

More information