Salts are compounds composed of a metal ion plus a non-metal (or polyatomic) ion, e.g., sodium chloride (NaCl), and sodium phosphate (Na 3 PO 4 ).

Size: px
Start display at page:

Download "Salts are compounds composed of a metal ion plus a non-metal (or polyatomic) ion, e.g., sodium chloride (NaCl), and sodium phosphate (Na 3 PO 4 )."

Transcription

1 Experiment 4 Water of Hydration Objective - Determine the percent of water in a hydrate. Introduction Salts are compounds composed of a metal ion plus a non-metal (or polyatomic) ion, e.g., sodium chloride (NaCl), and sodium phosphate (Na 3 PO 4 ). Hydrated salts (or Hydrates) are salts, which have a definite amount of water chemically combined. Some common hydrates are: CuSO 4 5H 2 O Copper (II) sulphate pentahydrate MgSO 4 7H 2 O Magnesium sulphate heptahydrate CoCl 2 6H 2 O Cobalt (II) chloride hexahydrate SnCl 2 2H 2 O Tin (II) chloride dihydrate The dot indicates an attractive force between the polar water molecules and the positively charged metal ion. On heating, the attractive forces are overcome and the water molecules are released leaving behind the anhydrous salt. The water released on heating is called the water of hydration. Since heat is absorbed during this process, the reaction is "endothermic". (In an "exothermic" reaction heat is liberated.)

2 CuSO 4 5H 2 O decomposes at temperatures greater than 560 o C. Therefore, avoid letting the flame of the Bunsen burner rest on one spot of the crucible. Heat gently by holding the Bunsen burner in a sweeping motion. When CuSO 4 5H 2 O decomposes a black solid, CuS, is formed. Apparatus: 1. Porcelain crucible with lid * 2. Clay triangle * 3. Ring clamp * 4. Crucible tongs 5. Spatula ml beaker 7. Bunsen burner * 8. Goggles 9. Desicooler * Solids: Sample of hydrated salt (CuSO 4 5H 2 O) * View photos on course website

3 Procedure: Part A - Removing Water from a Hydrated Salt * 1. Obtain a clean crucible and lid from your instructor. Inspect the crucible for cracks. 2. Use an analytical balance and determine the mass of the empty crucible. Record the mass of the empty crucible to four decimal places on the data sheet. Record the mass of the empty crucible to four decimal places on the data sheet. 3. Use an analytical balance and weigh approximately 4.0 +/- 0.1 grams of hydrate into the crucible. Record the mass of the crucible and the hydrate to four decimal places on the data sheet. 4. Place the crucible on the clay triangle and heat gently by holding the Bunsen burner in a sweeping motion for about 12 minutes. 5. Allow to cool to room temperature inside the desicooler and weigh the crucible and the content. Record the mass of the crucible and the content (after 1st heating) to four decimal places on the data sheet. 6. After weighing, place the crucible back on the clay triangle and reheat content for about 5 minutes. Allow to cool and reweigh. Record the mass of the crucible and the content (after re-heating) to four decimal places on the data sheet. If you have done a good job in heating, the mass of the crucible and residue after the 1st heating and the 2nd heating should not differ by more than 0.01 gram. * View photos on course website

4 Part B - Add water to an Anhydrous Salt 1. Add about 30 ml of distilled water to a 50 ml beaker. Record the temperature of the water. 2. Using a spatula, transfer a scoop of CuSO 4 into the water and stir gently. Record the highest temperature reached. NOTE: Anhydrous CuSO 4 is a white compound with a bluish tint.* * View photos on course website

5 Datasheet: Part A - Removing Water from a Hydrated Salt 1. Mass of empty crucible 2. Mass of crucible and hydrated salt (CuSO 4 5H 2 O) 3. Mass of crucible and content (after 1st heating) 4. Mass of crucible and content (after re-heating) 5. Mass of used 6. Mass of anhydrous CuSO 4, which remains after heating 7. Mass of water released Calculation of % water in CuSO 4 5H 2 O (experimental): Calculation of % water (theoretical):

6 Datasheet: Part B - Add water to an Anhydrous Salt 1. Appearance of CuSO 4 5H 2 O (s) 2. Appearance of CuSO 4 (s) 3. Initial temperature of water 4. Maximum temperature reached after the addition of CuSO 4 (s)

7 Postlab Questions: 1. Briefly explain observations of the temperature changed observed in Part B of the experiment. 2. Write the chemical and word equations for any reaction(s), which occur. 3. Discuss the two most significant sources of error which are in the design of this experiment. Do not include human error as the sources of error. 4. Write the chemical and word equation for the reaction which occurs when the hydrated salt is heated. Is this an endothermic or exothermic reaction? Explain. 5. Calculate the percent water in sodium dichromate dihydrate (NaCr 2 O 7 2H 2 O).

Copper (II) sulfate pentahydrate Calcium sulfate dihydrate Magnesium sulfate heptahydrate Zinc sulfate heptahydrate

Copper (II) sulfate pentahydrate Calcium sulfate dihydrate Magnesium sulfate heptahydrate Zinc sulfate heptahydrate 1 EXPERIMENT A3: HYDRATE Learning Outcomes Upon completion of this lab, the student will be able to: 1) Describe the differences between an anhydrous and hydrate compound. 2) Calculate the number of moles

More information

CHEM 30A EXPERIMENT 4: HYDRATE. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

CHEM 30A EXPERIMENT 4: HYDRATE. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 Learning Outcomes CHEM 30A EXPERIMENT 4: HYDRATE Upon completion of this lab, the student will be able to: 1) Describe the differences between an anhydrous and hydrate compound. 2) Calculate the number

More information

COPYRIGHT FOUNTAINHEAD PRESS

COPYRIGHT FOUNTAINHEAD PRESS Water of Hydration Objectives To calculate the percent water by mass in several hydrated compounds; to dehydrate an unknown solid sample and identify it by comparing its percent water with known hydrated

More information

Moles and Chemical Formulas 11

Moles and Chemical Formulas 11 Moles and Chemical Formulas 11 LABORATORY GOALS Determine the simplest formula of a compound. Calculate the percent water in a hydrate. Determine the formula of a hydrate. LAB INFORMATION Time: Comments:

More information

Chemistry 151 Last Updated: Dec Lab 5: Hydrated Compounds

Chemistry 151 Last Updated: Dec Lab 5: Hydrated Compounds Chemistry 151 Last Updated: Dec. 2013 Lab 5: Hydrated Compounds Introduction When ionic compounds form, there are sometimes gaps or cavities within the crystal lattice that are large enough to trap water

More information

ANALYSIS OF HYDRATES

ANALYSIS OF HYDRATES 1 ANALYSIS OF HYDRATES INTRODUCTION An ionic compound is made of positive and negative ions, called cations and anions, respectively. At room temperature, all ionic compounds are solid. Within a solid

More information

Water of Hydration Version 6.3

Water of Hydration Version 6.3 Water of Hydration Version 6.3 Michael J. Vitarelli Jr. Department of Chemistry and Chemical Biology Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 I. INTRODUCTION Hydrates are compounds that

More information

It s just like finding out your test score!!!

It s just like finding out your test score!!! It s just like finding out your test score!!! 97 correct out of 100 questions = 97 x 100 = 97% 100 Total of something x 100 = % TOTAL The chemical composition can be expressed as the mass percent of each

More information

Experiment 4: COMPOSITION OF A HYDRATE

Experiment 4: COMPOSITION OF A HYDRATE Experiment 4: COMPOSITION OF A HYDRATE Purpose: Determine the empirical formula of an unknown hydrate and the percentage by mass of water in the hydrate Performance Goals: Gain skills in the operation

More information

Identification of an Unknown Compound through Mass Correlations

Identification of an Unknown Compound through Mass Correlations EXPERIMENT Identification of an Unknown Compound through Mass Correlations PURPOSE To carry out a series of decomposition reactions for five different unknown, and use stoichiometry in order to identify

More information

Milwaukie HS Chemistry Herrington/Linman Name Period Date / /

Milwaukie HS Chemistry Herrington/Linman Name Period Date / / A101 1. Determine the oxidation number for each element. Display each elements oxidation number above it as in the following S2O3 example. +3-2 final answers S2O3 2(S) + 3(O)=0 2(S) + 3(-2)=0 S=+3 Show

More information

CSUS Department of Chemistry Experiment 2 Chem. 1A EXPERIMENT 2: HYDRATE PRE-LABORATORY ASSIGNMENT

CSUS Department of Chemistry Experiment 2 Chem. 1A EXPERIMENT 2: HYDRATE PRE-LABORATORY ASSIGNMENT Name: Lab Section: EXPERIMENT 2: HYDRATE PRE-LABORATORY ASSIGNMENT 1. A student obtains the following data: Mass of test tube: Mass of test tube and hydrate: Mass of test tube and anhydrous residue after

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Chemical Formulae, Equations and Calculations NOTES 1.25: Write word equations and balanced chemical equations (including state symbols): For reactions

More information

Synthesis of Potassium Ferric Oxalate Trihydrate

Synthesis of Potassium Ferric Oxalate Trihydrate Experiment 7 Revision 1.0 Synthesis of Potassium Ferric Oxalate Trihydrate To learn about Coordination Compounds. To learn about metal ion - ligand complexes. To learn about chemical stoichiometry and

More information

Making Ionic Compounds Lab#

Making Ionic Compounds Lab# Making Ionic Compounds Lab# Elements combine to form compounds. If energy is released as the compound is formed, the resulting product is more stable than the reacting elements. In this lab you will react

More information

Hydrates, Percent Composition, and Empirical and Molecular Formulas

Hydrates, Percent Composition, and Empirical and Molecular Formulas Hydrates, Percent Composition, and Empirical and Molecular Formulas Hydrates Hydrates are ionic cmpds (salts) that have water molecules bound to their ions. Examples: CuSO 4 5H 2 O Fe(NO 3 ) 3 9H 2 O CoCl

More information

Unit 9 The Mole Chapter 10 of your textbook

Unit 9 The Mole Chapter 10 of your textbook Unit 9 The Mole Chapter 10 of your textbook Learning Targets for Unit 9 Early Booklet E.C.: + 2 Unit 9.A Hwk. Pts.: / 36 Unit 9.A Lab Pts.: / 32 Late, Incomplete, No Work, No Units Fees? Y / N 1.1 I can

More information

Experiment 5. Heat and Temperature

Experiment 5. Heat and Temperature Experiment 5 Heat and Temperature This coffee isn t hot enough! E5-1 E5-2 The Task In this experiment you will study the heat flow associated with a range of processes and examine the relationship between

More information

Chapter 8 Chemical Quantities

Chapter 8 Chemical Quantities Chapter 8 Chemical Quantities Molecular Weight and Moles Find the molecular mass or formula massof each of the following 1. HNO 3 2. Ammonium nitrate 3. Fe 2 O 3 4. Rubidium Sulfite 5. H 3 PO 4 6. Lithium

More information

Experiment #5. Empirical Formula

Experiment #5. Empirical Formula Experiment #5. Empirical Formula Goal To experimentally determine the empirical formula of magnesium oxide based on reaction stoichiometry. Introduction The molecular formula (usually shortened to simply

More information

Background: Understanding the Mole

Background: Understanding the Mole Background: Understanding the Mole 1. Why was it important for scientists to know the number of atoms in a sample of matter? 2. What was chosen to use as the standard on which to base the atomic masses

More information

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise.

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Experiment 10 Stoichiometry- Gravimetric Analysis Pre-lab Assignment Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose The purpose this experiment

More information

In general, the condition for a process to occur (for it to be "spontaneous") is that G < 0 (i.e. negative) where

In general, the condition for a process to occur (for it to be spontaneous) is that G < 0 (i.e. negative) where EXPERIMENT 9 Enthalpy Measurement in Chemical Reactions INTRODUCTION: Chemical and physical changes are often accompanied by heat evolution or absorption. A process in which heat is released to the surroundings

More information

o Test tube In this experiment, you ll be observing the signs of chemical reactions. These include the following:

o Test tube In this experiment, you ll be observing the signs of chemical reactions. These include the following: Experiment: Chemical Reactions & Chemical s Objective In this experiment, students perform a variety of chemical reactions. For each reaction, student identify the signs that a reaction has occurred, write

More information

From Hydrate to Anhydrate: Percent Composition

From Hydrate to Anhydrate: Percent Composition Artist as Chemist Section 5 From Hydrate to Anhydrate: Percent Composition What Do You See? Learning Outcomes In this section you will Identify an unknown hydrate. Distinguish between a hydrated and an

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

EXPERIMENT. Stoichiometry of a Precipitation Reaction

EXPERIMENT. Stoichiometry of a Precipitation Reaction EXPERIMENT Stoichiometry of a Precipitation Reaction Hands-On Labs, Inc. Version 42-0201-00-02 Review the safety materials and wear goggles when working with chemicals. Read the entire exercise before

More information

3. Write the equation to calculate percent error. Data Part 1: Length Measurements (all values must include units) A. Length of notebook in cm:

3. Write the equation to calculate percent error. Data Part 1: Length Measurements (all values must include units) A. Length of notebook in cm: Name: Date: Lab Section Experiment 1: Basic Measurement Techniques REPORT SHEET Pre-lab Study Questions: 1. Objectives of the experiment (in your own words): 2. In our everyday speech, precision and accuracy

More information

EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /9 (To be completed prior to lab, read the experiment before attempting)

EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /9 (To be completed prior to lab, read the experiment before attempting) Name: Lab Section: EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /9 (To be completed prior to lab, read the experiment before attempting) 1. A student obtains the following data: Mass of test

More information

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate CEAC 105 GENERAL CHEMISTRY Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate Purpose: To enhance the understanding of stoichiometry, a reaction between iron and copper (II) sulfate

More information

What Do You Think? Investigate GOALS. Part A: Heating a Hydrate

What Do You Think? Investigate GOALS. Part A: Heating a Hydrate Artist as Chemist Activity 5 Clay GOALS In this activity you will: Identify an unknown hydrate. Distinguish between a hydrated and an anhydrous compound. Examine and describe the effects of heat on clay.

More information

1.21. Formulae, equations and amounts of substance

1.21. Formulae, equations and amounts of substance 1.21. Formulae, equations and amounts of substance The mole is the key concept for chemical calculations DEFINITION: The mole is the amount of substance in grams that has the same number of particles as

More information

Percent Composition, Empirical Formula, Molecular Formula, Hydrates

Percent Composition, Empirical Formula, Molecular Formula, Hydrates Name: Percent Composition, Empirical Formula, Molecular Formula, Hydrates Essential Questions How can one explain the structure, properties, and interactions of matter? How do substances combine or react

More information

Empirical and Molecular Formulas

Empirical and Molecular Formulas Empirical and Molecular Formulas CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

#30 Thermochemistry: Heat of Solution

#30 Thermochemistry: Heat of Solution #30 Thermochemistry: Heat of Solution Purpose: You will mix different salts with water and note any change in temperature. Measurements using beakers will be compared to measurements using polystyrene

More information

AP Chemistry Laboratory #1

AP Chemistry Laboratory #1 Catalog No. AP8813 Publication No. 10528A Determination of the Empirical Formula of Silver Oxide AP Chemistry Laboratory #1 Introduction There is an official database that keeps track of the known chemical

More information

Minneapolis Community and Technical College. Separation of Components of a Mixture

Minneapolis Community and Technical College. Separation of Components of a Mixture Minneapolis Community and Technical College Chemistry Department Chem1020 Separation of Components of a Mixture Objectives: To separate a mixture into its component pure substances. To calculate the composition

More information

Distinguish Describe Explain Describe demonstrate Slide 2 of 29

Distinguish Describe Explain Describe demonstrate Slide 2 of 29 1 of 29 Distinguish between a solvent and a solute. Describe what happens in the process of solvation. Explain why all ionic compounds are electrolytes. Describe hydrates and demonstrate how the formula

More information

1.21. Formulae, equations and amounts of substance

1.21. Formulae, equations and amounts of substance 1.21. Formulae, equations and amounts of substance The mole is the key concept for chemical calculations DEFINITION: The mole is the amount of substance in grams that has the same number of particles as

More information

Practice Examination #1

Practice Examination #1 Practice Examination #1 Name: Date: 1. Which diagram shown represents a pipette? A. B. 3. Which diagram shown represents an Erlenmeyer flask? A. B. C. D. C. D. 2. The process of filtration is performed

More information

Chemistry Stoichiometry and Heat Exam (ver.1) Mr. Thaler. Please do not write on this exam. Mark your answers on the scantron only.

Chemistry Stoichiometry and Heat Exam (ver.1) Mr. Thaler. Please do not write on this exam. Mark your answers on the scantron only. 1. Identify from the unbalanced equations below the one that does not represent a redox reaction. a. H 2O 2(aq) + MnO 4 - (aq) O 2(g) + Mn 2+ (aq) b. H 2(g) + N 2(g) NH 3(g) c. NaCl (aq) + AgNO 3(aq) NaNO

More information

6 Investigations Observational Study: Popping Percentage Composition

6 Investigations Observational Study: Popping Percentage Composition The fragment containing two carbon atoms, three hydrogen atoms, and one oxygen atom has a molecular mass of 43 u.) Why is the pattern of the fragments important for identifying a compound? (Sample answer:

More information

Materials " glass test tubes ring stand, wire gauze, iron ring, & burner hydrated salt wood splint spatula for transferring solid to test tubes

Materials  glass test tubes ring stand, wire gauze, iron ring, & burner hydrated salt wood splint spatula for transferring solid to test tubes EMPIRICAL FORMULA OF A HYDRATE LAB Many salts crystallized from water solutions appear to be perfectly dry, yet when heated, they liberate large quantities of water. The crystals change form, even color,

More information

Santa Monica College Chemistry 11

Santa Monica College Chemistry 11 Types of Reactions Objectives The objectives of this laboratory are as follows: To perform several types of simple chemical reactions, To become familiar with some common observable signs of chemical reactions,

More information

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus

More information

Quantitative Chemistry

Quantitative Chemistry Quantitative Chemistry When we do experiments to measure something in Chemistry, we: Repeat experiments (usually 3 times) to improve the reliability of the results, by calculating an average of our results.

More information

Separation of the Components of a Mixture

Separation of the Components of a Mixture Separation of the Components of a Mixture Prepared by Edward L. Brown, Lee University EXPERIMENT 3 To become familiar with the laboratory techniques used to separate different substances from one another.

More information

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2)

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2) www.pedersenscience.com AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2) 1.A.1: Molecules are composed of specific combinations of atoms; different molecules are composed of combinations

More information

2.1.3 Amount of substance

2.1.3 Amount of substance 2.1.3 Amount of substance The mole is the key concept for chemical calculations DEFINITION: The mole is the amount of substance in grams that has the same number of particles as there are atoms in 12 grams

More information

Section I: Synthesis reactions Synthesis reactions occur when two or more substances come together to form a single new substance.

Section I: Synthesis reactions Synthesis reactions occur when two or more substances come together to form a single new substance. TYPES OF CHEMICAL REACTIONS A Laboratory Investigation Purpose: Observe the five major types of reactions. Record observations for these reactions. Complete balanced equations for these reactions. Introduction:

More information

Physical and Chemical Changes

Physical and Chemical Changes Objectives Introduction Physical and Chemical Changes Gezahegn Chaka, Ph.D. Collin College Department of Chemistry To observe physical and chemical changes. To identify and characterize physical and chemical

More information

Duncan UNIT 7 - CHEMICAL FORMULAS WRITING FORMULAS NOTES. Does the second word end with -ide?

Duncan UNIT 7 - CHEMICAL FORMULAS WRITING FORMULAS NOTES. Does the second word end with -ide? WRITING FORMULAS NOTES Does the second word end with -ide? yes no / \ Is the second word "hydroxide"? \ no yes \ \ \ Is the first word "ammonium"? \ no yes ---------------------------------------------->

More information

Germanium 32. Nickel Uranium 92. Sulfur THE MOLE Worksheets

Germanium 32. Nickel Uranium 92. Sulfur THE MOLE Worksheets Germanium 32 Ge 72.61 Nickel 28 Ni 8.693 Uranium 92 U 238.029 Sulfur 16 S 32.066 THE MOLE Worksheets Measuring Matter Counting particles We always use the appropriate units for the number of objects. For

More information

By the end of this experiment the student should have learned:

By the end of this experiment the student should have learned: Experiment 3 SUBSTANCES, REACTIONS MIXTURES, AND Learning Objectives By the end of this experiment the student should have learned: 1. To distinguish elements from compounds. 2. To distinguish heterogeneous

More information

GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT. REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985

GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT. REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985 1 GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985 Typical techniques used in gravimetric analyses by quantitatively determining

More information

or a chemical change in several experimental trials.

or a chemical change in several experimental trials. Regular Chemistry Lab Chemical and Physical Changes. Intro: As we study matter, we base most of our classification and identification of pure substances on chemical and physical properties. A physical

More information

Moles Lab Activity 2: Elements Copper

Moles Lab Activity 2: Elements Copper Materials Sample of copper Balance Pre-1982 penny Moles Lab Activity 2: Elements Copper Procedure Take the necessary measurements, and record them with units. Show all your calculations, rounding your

More information

Molar Conversions & Calculations

Molar Conversions & Calculations Molar Conversions & Calculations Ch. 11 The Mole 1 A. What is the Mole? A counting number (like a dozen) Avogadro s number (n) 1 mol = 6.02 x 10 23 items A VERY large amount!!!! 2 A. What is the Mole?

More information

Q1. The diagram shows the apparatus for an experiment. Hydrated copper sulphate crystals were heated. They became anhydrous copper sulphate.

Q1. The diagram shows the apparatus for an experiment. Hydrated copper sulphate crystals were heated. They became anhydrous copper sulphate. Q1. The diagram shows the apparatus for an experiment. Hydrated copper sulphate crystals were heated. They became anhydrous copper sulphate. (a) Name a suitable piece of equipment to heat tube A.... (b)

More information

Set 1 Structure of the atoms & Chemical Equation Perfect Score F Matter is anything that. and has.

Set 1 Structure of the atoms & Chemical Equation Perfect Score F Matter is anything that. and has. STRUCTURE OF THE ATOMS 1. Matter is anything that. and has. 2. The particle theory of matter state that matter is.. 3. Type of particle Example 4. Property Solid Liquid Gas Diagrammatic representation

More information

Science Naming and Writing Formulas for Chemical Compounds NAME:

Science Naming and Writing Formulas for Chemical Compounds NAME: Science 1206 - Naming and Writing Formulas for Chemical Compounds NAME: IUPAC! International Union of Pure and Applied Chemists! This is a global organization that sets the standards in chemistry.! One

More information

Measurement of an enthalpy change

Measurement of an enthalpy change Measurement of an enthalpy change Measuring the Enthalpy Change for a Reaction Experimentally Calorimetric method For a reaction in solution we use the following equation energy change = mass of solution

More information

Na Na + +e - Cl+e - Cl -

Na Na + +e - Cl+e - Cl - LAB-Ionic vs. Covalent Bonding Have you ever accidentally used salt instead of sugar? Drinking tea that has been sweetened with salt or eating vegetables that have been salted with sugar tastes awful!

More information

LAB TEST Physical and Chemical Changes

LAB TEST Physical and Chemical Changes NAME: DATE: STATION: LAB TEST Physical and Chemical Changes PURPOSE: To observe physical and chemical changes in matter MATERIALS: 3 medium test tubes 1 small test tube test tube rack test tube holder

More information

Experiment 15 - Heat of Fusion and Heat of Solution

Experiment 15 - Heat of Fusion and Heat of Solution Experiment 15 - Heat of Fusion and Heat of Solution Phase changes and dissolving are physical processes that involve heat. In this experiment, you will determine the heat of fusion of ice (the energy required

More information

Adult Education Chemistry Program. Lab Report Summary

Adult Education Chemistry Program. Lab Report Summary Adult Education Chemistry Program Chemistry is the study of the structure, properties, and composition of substances and the changes they undergo. Chemistry is also one of the more feared courses in high

More information

EXPERIMENT #4 Separation of a Three-Component Mixture

EXPERIMENT #4 Separation of a Three-Component Mixture OBJECTIVES: EXPERIMENT #4 Separation of a Three-Component Mixture Define chemical and physical properties, mixture, solubility, filtration, sublimation, and percent Separate a mixture of sodium chloride

More information

Designing a Hand Warmer AP* Chemistry Big Idea 5, Investigation 12 An Advanced Inquiry Lab

Designing a Hand Warmer AP* Chemistry Big Idea 5, Investigation 12 An Advanced Inquiry Lab Introduction Designing a Hand Warmer AP* Chemistry Big Idea 5, Investigation 12 An Advanced Inquiry Lab Catalog No. AP7654 Publication No. 7654 WEB Put your chemistry skills to commercial use! From instant

More information

1. Which laboratory glassware is shown in the diagram below?

1. Which laboratory glassware is shown in the diagram below? 1. Which laboratory glassware is shown in the diagram below? A) beaker B) Erlenmeyer flask C) crucible D) evaporating dish 2. Given the diagram representing a process being used to separate the colored

More information

Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law)

Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law) Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law) Name: Date: The formation or destruction of chemical bonds is always accompanied by an energy exchange between the reactant molecules and the

More information

Stoichiometry ( ) ( )

Stoichiometry ( ) ( ) Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) /

More information

Chemistry Assessment Unit AS 3

Chemistry Assessment Unit AS 3 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2009 Chemistry Assessment Unit AS 3 assessing Module 3: Practical Examination 2 ASC32 [ASC32] FRIDAY 15 MAY,

More information

Quantitative aspects of chemical change. sdfgsfgfgsgf Grade 10 Physical Science CAPS 2016

Quantitative aspects of chemical change. sdfgsfgfgsgf Grade 10 Physical Science CAPS 2016 Quantitative aspects of chemical change sdfgsfgfgsgf Grade 10 Physical Science CAPS 2016 The mole concept The mole concept Atoms are small chemists know this. But somewhere along the line they have to

More information

Thermodynamics of Salt Dissolution

Thermodynamics of Salt Dissolution 1 Thermodynamics of Salt Dissolution ORGANIZATION Mode: Part A groups of 3 or 4; Part B individual work; Part C back to groups Grading: lab notes, lab performance, and post-lab report Safety: goggles,

More information

Unit 6: Mole Assignment Packet Period:

Unit 6: Mole Assignment Packet Period: Unit 6: Mole Assignment Packet Name: Period: A1: Mole Conversions 1. Identify the representative particle in each of the following: (atom, molecule, formula unit) a. CuSO 4 b. H 2 O c. NaCl d. Zn e. Cu

More information

Trilogy Quantitative chemistry

Trilogy Quantitative chemistry Trilogy Quantitative chemistry Foundation revision questions Name: Class: Date: Time: 6 minutes Marks: 6 marks Comments: Page of 23 (a) Formulae and equations are used to describe chemical reactions. Aluminium

More information

Laboratory Experiment No. 3 The Empirical Formula of a Compound

Laboratory Experiment No. 3 The Empirical Formula of a Compound Introduction An initial look at mass relationships in chemistry reveals little order or sense. Mass ratios of elements in a compound, while constant, do not immediately tell anything about a compound s

More information

Chapter 8. Lesson 1 Chemical vs Physical change

Chapter 8. Lesson 1 Chemical vs Physical change Chapter 8 Lesson 1 Chemical vs Physical change Materials Needed Today Please take these materials out of your backpack. Pencil Hot Sync Monday 2/3/14 Answer the following questions in complete sentences

More information

Elemental Mass Percent and Empirical Formula from Decomposition

Elemental Mass Percent and Empirical Formula from Decomposition EXPERIMENT Elemental Mass Percent and Empirical Formula from Decomposition 10 Prepared by Edward L. Brown, Lee University The student will heat copper oxide in a methane atmosphere forming elemental copper.

More information

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES Experiment 3 Name: INTRODUCTION TO MATTER: 9 4 CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL e PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES In this experiment, you will encounter various classification

More information

EXPERIMENT 6 Empirical Formula of a Compound

EXPERIMENT 6 Empirical Formula of a Compound EXPERIMENT 6 Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

Which particle diagram represents molecules of only one compound in the gaseous phase?

Which particle diagram represents molecules of only one compound in the gaseous phase? Name: 1) Which species represents a chemical compound? 9114-1 - Page 1 NaHCO3 NH4 + Na N2 2) 3) 4) Which substance represents a compound? Co(s) O2(g) CO(g) C(s) Which terms are used to identify pure substances?

More information

Working with Solutions. (and why that s not always ideal)

Working with Solutions. (and why that s not always ideal) Page 1 of 13 Working with Solutions (and why that s not always ideal) Learning Objectives: Solutions are prepared by dissolving a solute into a solvent A solute is typically a solid, but may also be a

More information

*AC134* Chemistry. Assessment Unit AS 3. [AC134] wednesday 27 MAY, MORNING. assessing Module 3: Practical Examination Practical Booklet B

*AC134* Chemistry. Assessment Unit AS 3. [AC134] wednesday 27 MAY, MORNING. assessing Module 3: Practical Examination Practical Booklet B Centre Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2015 Chemistry Candidate Number Assessment Unit AS 3 assessing Module 3: Practical Examination Practical Booklet B [AC134] wednesday

More information

EXPERIMENT #6 Calculation of the Atomic Mass of Magnesium

EXPERIMENT #6 Calculation of the Atomic Mass of Magnesium OBJECTIVES: EXPERIMENT #6 Calculation of the Atomic Mass of Magnesium Observe the reaction between oxygen and magnesium Accurately weigh reaction mixtures before and after reaction Calculate the atomic

More information

EXPERIMENT 7: THE LIMITING REACTANT

EXPERIMENT 7: THE LIMITING REACTANT EXPERIMENT 7: THE LIMITING REACTANT PURPOSE To find the ratio of moles of a reactant to moles of a product of a chemical reaction. To relate this ratio to the coefficients of these substances in the balanced

More information

WRITING FORMULAS: MOLAR MASS, %COMPOSITION, EMPIRICAL AND MOLECULAR FORMULAS

WRITING FORMULAS: MOLAR MASS, %COMPOSITION, EMPIRICAL AND MOLECULAR FORMULAS WRITING FORMULAS: MOLAR MASS, %COMPOSITION, EMPIRICAL AND MOLECULAR FORMULAS REVIEW: Polyatomic ions, writing names from formulas, oxidation number rules I. WRITING FORMULAS FROM NAMES: A. Rules: 1. Know

More information

Name: Date: Pd: Topic 1.2: The Mole Concept and Empirical Formula

Name: Date: Pd: Topic 1.2: The Mole Concept and Empirical Formula Name: Date: Pd: Topic 1.2: The Mole Concept and Empirical Formula Relative Atomic Mass- A r - the weighted average of one atom of an element relative to 1/12 of an atom of carbon-12. A r values do not

More information

AP Chemistry Lab #10- Hand Warmer Design Challenge (Big Idea 5) Figure 1

AP Chemistry Lab #10- Hand Warmer Design Challenge (Big Idea 5) Figure 1 www.pedersenscience.com AP Chemistry Lab #10- Hand Warmer Design Challenge (Big Idea 5) 5.A.2: The process of kinetic energy transfer at the particulate scale is referred to in this course as heat transfer,

More information

THE MOLE (a counting unit).again!

THE MOLE (a counting unit).again! Name: Period: Date: THE MOLE (a counting unit).again! A mole represents a, much in the same way that a dozen represents a set of twelve. 1 dozen eggs = 12 eggs; 1 mol eggs = 6.022 10 23 eggs 1 dozen carbon

More information

Synthesis and Analysis of Coordination Compounds

Synthesis and Analysis of Coordination Compounds Experiment 12 Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. The questions should be answered on a separate

More information

Types of Chemical Reactions

Types of Chemical Reactions Types of Chemical Reactions Objectives Perform and observe the results of a variety of chemical reactions. Become familiar with the observable signs of chemical reactions. Identify the products formed

More information

Types of Chemical Reactions

Types of Chemical Reactions Types of Chemical Reactions Name - Partner - Pre-lab Questions 1.) List the four phase subscripts with each one s symbol. 2.) State the rule for determining whether a single replacement reaction will be

More information

College Chem I 2045C Specific Heat of a Metal-SL. Objective: In this lab, you will use calorimetry to determine the specific heat of a metal.

College Chem I 2045C Specific Heat of a Metal-SL. Objective: In this lab, you will use calorimetry to determine the specific heat of a metal. Student Name Partner s Name Date College Chem I 2045C Specific Heat of a Metal-SL Objective: In this lab, you will use calorimetry to determine the specific heat of a metal. Materials: Metal Sample Bunsen

More information

Year 10 Science Chemistry Examination November 2011 Part A Multiple Choice

Year 10 Science Chemistry Examination November 2011 Part A Multiple Choice Year 10 Science Chemistry Examination November 2011 Part A Multiple Choice Answer these questions on the multiple choice answer sheet provided 2 Isotopes have been found as variations of atoms. Which of

More information

Composion Stoichiometry

Composion Stoichiometry Composition Stoichiometry blank 3.3.13.notebook Due: Ch 10 RG Hummmm... How do you "measure" bananas? > How many? Count 1 dozen naners or 12 naners Composion Stoichiometry 3 new conversion factors > Avogadro's

More information

UNIT 9. Stoichiometry

UNIT 9. Stoichiometry UNIT 9 Stoichiometry FORMULA MASS Atomic Mass Unit (u): unit of mass for measuring atoms. (1 u = 1/12 th the mass of a carbon 12 atom) FORMULA MASS FORMULA MASS Example 2: Find the mass of one molecule

More information

Physical Changes and Chemical Reactions

Physical Changes and Chemical Reactions Physical Changes and Chemical Reactions Gezahegn Chaka, Ph.D., and Sudha Madhugiri, Ph.D., Collin College Department of Chemistry Objectives Introduction To observe physical and chemical changes. To identify

More information

Name: Period: Date: Types of Bonding Lab Inquiry

Name: Period: Date: Types of Bonding Lab Inquiry Types of Bonding Lab Inquiry One of the most important jobs of a chemist is to relate the properties of observable amounts of substance to the properties on the atomic level which are less easily observed.

More information

Types of Chemical Reactions and Equations

Types of Chemical Reactions and Equations Types of Chemical Reactions and Equations v051413_7pm Objectives: You will be able to identify a reaction according to the chemical changes that occur. You will be able to write balanced chemical equations

More information