Moles and Chemical Formulas 11

Size: px
Start display at page:

Download "Moles and Chemical Formulas 11"

Transcription

1 Moles and Chemical Formulas 11 LABORATORY GOALS Determine the simplest formula of a compound. Calculate the percent water in a hydrate. Determine the formula of a hydrate. LAB INFORMATION Time: Comments: Related Topics: 2-2 1/2 h Tear out the report sheets and place them beside the matching procedures. Use steel wool to remove any coating on the magnesium ribbon until it is shiny. Check the crucible for cracks before you start to heat it. When you set a hot object aside to cool, remember that it is hot. Dispose of all chemicals as directed by your instructor. Formulas, moles, molar mass, calculating moles from grams, calculating grams from moles, hydrates, dehydration CHEMICAL CONCEPTS A. Finding the Simplest Formula The simplest formula of a compound is the lowest whole-number ratio of the atoms in the formula. For example, the compound benzene, with molecular formula C 6H6, has the simplest formula CH. Some molecular formulas and their simplest formulas are shown in Table TABLE 11.1 Examples of Molecular and Empirical Formulas Name Molecular Formula Simplest Formula Acetylene C2 H2 CH Benzene C6H6 CH Ammonia NH 3 NH 3 Hydrazine N2H4 NH 2 The simplest formula of a compound is determined by converting the number of grams of each element to moles and finding the lowest whole-number ratio to use as subscripts. For example, in an experiment it was determined that mole of Zn had combined with mole of Cl to form a compound. To calculate the simplest formula we proceed as follows: 1. Divide the moles of each element by the smaller number of moles (0.040) and round to the nearest whole number mole Cl mole Zn = 2 moles of Cl =1 mole of Zn

2 122 Laboratory Manual for General, Organic, and Biological Chemistry 2. Use the whole numbers as subscripts to write the formula of the compound. ZnC1 2 (The subscript 1 for Zn is understood.) B. Formula of a Hydrate A hydrate is an ionic compound that is combined with a specific number of water molecules. The number of water molecules is fixed for each hydrate, but differs from one hydrate to another. The number of water molecules is written after the ionic formula and separated by a large, raised dot. CaSO4 2H20 CuSO4 5H20 Na2CO3 10H20 The water molecules in the hydrate can be removed by heating. When all the water is removed, the remaining ionic compound is called an anhydrate. For example, when one mole of copper(ii) sulfate pentahydrate is heated, five moles of H 2O are removed. The water removed is also called the water of hydration. CuSO 4 5H 20 CuSO4 + 5H 20(g) hydrate anhydrate water of hydration The amount of water in a hydrate is experimentally determined by measuring the mass of the hydrate before heating and the mass of the anhydrate after heating. The difference in mass is due to the water of hydration that is lost. The percent water is calculated by dividing the grams of water by the mass of the hydrate and multiplying by 100%. For example, if 2.00 g of CuSO 4 5H20 is heated and the mass of the anhydrate CuSO 4 is 1.28 g, we would calculate the grams of H 2O as the difference g of hydrate 1.28 g of anhydrate = 0.72 g of H 2O in hydrate Then the percent water in the hydrate is calculated as 0.72 g H2O x100% = 36% H 2O in hydrate 2.00 g CuSO4

3 EXPERIMENTAL PROCEDURES A. Finding the Simplest Formula Moles and Chemical Formulas 123 GOGGLES REQUIRED! Materials: Crucible, crucible cover, crucible tongs, clay triangle, iron ring and stand, Bunsen burner, magnesium ribbon, steel wool, eyedropper, small 100- or 150-mL beaker, heat-resistant pad In this experiment, you will heat magnesium so that it reacts with the oxygen (0 2 ) in the air and forms an oxide. The difference between the mass of the oxide compound and the initial mass of the magnesium is the mass of oxygen that combined with magnesium. When the moles of the magnesium and the oxygen are calculated, the simplest formula can be determined. 1. Obtain a clean, dry crucible and its cover. Set the crucible, and cover, slightly offset, on a clay triangle and place on an iron ring attached to a ring stand (see Figure 11.1). Heat the crucible and cover for about one minute. Cool until they are at room temperature. Using crucible tongs, carry the crucible and cover to the balance. Do not place hot objects on a balance pan. Weigh the crucible and cover and record the mass. FIGURE 11.1 A crucible and cover, slightly offset, are heated on a clay triangle. 2. Obtain a piece of magnesium ribbon that has a mass of g. If there is tarnish on the ribbon, remove it by polishing the ribbon with steel wool. Describe the appearance of the magnesium ribbon after polishing. 3. Twist the ribbon into a coil and place it at the bottom of the crucible. Weigh the crucible, cover, and magnesium ribbon and record the mass. Heating the Magnesium Ribbon Do this part of the experiment in a fume hood: Place the crucible with the magnesium ribbon on the clay triangle. Keep the cover and a pair of tongs nearby. Begin to heat the crucible making sure that the tip of the inner blue flame touches the bottom of the crucible. The bottom of the crucible will become red hot. Watch for smoke or fumes, which indicate that the magnesium and oxygen are reacting. As soon as the magnesium bursts into flame, use the tongs to place the cover on the crucible. The cover should be slightly offset to allow oxygen to react with the magnesium. Caution: Avoid looking directly at the bright flame of the burning magnesium. When the magnesium no longer produces smoke or a flame, remove the cover and set it on a heat-resistant surface.

4 124 Laboratory Manual for General, Organic, and Biological Chemistry Continue to heat the crucible strongly for another five minutes. Then turn off the burner and allow the crucible and its contents to cool to room temperature. During heating, some magnesium reacts with nitrogen in the air to form magnesium nitride. 3Mg(s)+ N2 (g) Mg3N2 (s) To remove this nitride product, carefully add drops of water to the cooled contents. Mg3N2 (S)+ 3H20(1) A 3Mg0(s) + 2NH 3 (g) Caution: Avoid breathing fumes from the crucible because ammonia may be released. 4. Cover the crucible and heat gently for five minutes to drive off any excess water. Then heat strongly for five minutes. Allow the crucible to cool completely. Reweigh the crucible, cover, and oxide contents and record the mass. Remove the solid in the crucible and dispose of it as directed by your instructor. Calculations 5. Determine the mass of the magnesium (3 1). 6. Calculate the mass of the magnesium compound (4 1). 7. Calculate the mass of oxygen that combined with the magnesium (6 5). 8. Determine the number of moles of magnesium by dividing the mass of magnesium (5) by its molar mass. 1 mole Mg moles of Mg = x y,-mg 9. Determine the number of moles of oxygen by dividing the mass of the oxygen (7) by its molar mass. x 1 mole 0 moles of 0 = *CC 10. Divide the moles of Mg (8) and the moles of 0 (9) by the smaller number of moles. Round each of the results to the nearest whole number. 11. Using the whole number values obtained in 10 as subscripts, write the simplest formula of the magnesium compound. B. Formula of a Hydrate Materials: Crucible, clay triangle, crucible tongs, hydrate of MgSO 4, iron ring and stand, Bunsen burner, heat-resistant pad, laboratory balance 1. Obtain a clean, dry crucible and its cover. Set the crucible and cover, slightly offset, on a clay triangle and place on an iron ring attached to a ring stand (see Figure 11.1). Heat the crucible and cover for about one minute. Cool until they are at room temperature. Using crucible tongs, carry the crucible and cover to the balance. Do not place hot objects on a balance pan. Weigh the crucible and cover and record the mass. 2. Fill the crucible about 1/3 full with the hydrate of MgSO 4. Weigh the crucible with the MgSO 4 hydrate and record the mass. 3. Set the crucible and hydrate on a clay triangle that is set on an iron ring (see Figure 11.1). The cover should be slightly offset so that water vapor can escape. Heat gently for five minutes; increase the intensity of the flame and heat strongly for another 10 minutes. The bottom of the crucible should become a dull red color. Turn off the burner. Allow the crucible to cool to room temperature.

5 Moles and Chemical Formulas 125 Caution: Allow heated items to cool to room temperature. Do not place a hot object on the balance pan. Weigh the crucible and its contents. Record the mass. 3a. Repeat step 3. If more water has been lost, use this final mass in the calculations. Remove the solid in the crucible and dispose of it as directed by your instructor. Calculations 4. Calculate the mass of the hydrate (2 1) 5. Calculate the mass of the anhydrate after heating (3 1) 6. Calculate the mass of water lost from the hydrate sample (4 5) 7. Calculate the percent H 2O in the hydrate by dividing the mass of H 2O lost (6) by the mass of the hydrate (4) and multiply by 100%. Percent water in hydrate = g waterx 100% g hydrate 8. Calculate the moles of H 2O in the hydrate by dividing the mass of the H 2O (6) by its molar mass. 1 mole water Moles of water = pwatei x gwatei-- 9. Calculate the moles of anhydrate by dividing the mass of the anhydrate by its molar mass. Moles of anhydrate = ate x 1 mole anhydrate j...anhydrile 10. To determine the ratio of moles of water to 1 mole of anhydrate, divide the moles of water (8) by the moles of anhydrate (9). Round off the value for moles of H 2O to the nearest whole number. moles of water moles of H 2O moles of MgSO 4 1 mole of MgSO Complete the formula of the hydrate by writing in the number of moles of water for each mole of anhydrate.

6

7 Date Section Instructor Name Team 1. What is meant by the simplest formula of a compound? Pre-Lab Study Questions How does a hydrate differ from an anhydrate? 3. What happens when a hydrate is heated? 4. A hydrate of CoC1 2 with a mass of 6.00 g is heated strongly. After cooling, the mass of the anhydrate is 3.27 g. a. How many grams of H 2O were lost from the hydrate? b. What is the % water in the hydrate? c. What is the formula of the CoC1 2 hydrate? d. Write the equation for the dehydration of the CoC1 2 hydrate. 127

8

9 Date Section Instructor Name Team REPORT SHEET LAB Moles and Chemical Formulas 11 A. Finding the Simplest Formula 1. Mass of empty crucible + cover 2. Initial appearance of the magnesium 3. Mass of crucible + cover + magnesium 4. Mass of crucible + cover + oxide product Calculations 5. Mass of magnesium 6. Mass of magnesium compound 7. Mass of oxygen in the product 8. Moles of Mg (Show calculations.) g g g g g g mole 9. Moles of 0 mole (Show calculations.) 10. Which number of moles (Mg or 0) is smaller moles of Mg = moles of Mg (rounded to a whole number) moles 0 = moles of 0 (rounded to a whole number) Formula: Mt 0 subscripts 129

10 130 Laboratory Manual for General, Organic, and Biological Chemistry Questions and Problems Q1 Using the rules for writing the formulas of ionic compounds, write the ions and the correct formula for magnesium oxide. Q2 Write a balanced equation for the reaction of the magnesium and the oxygen (0 2 ), including their physical states. Q3 Calculate the simplest formula for each of the following compounds: a mole of Al and mole of Cl b mole of Ba, mole of S, mole of 0 Q4 When 2.50 g of copper reacts with oxygen, the copper oxide compound has a mass of 2.81 g. What is the simplest formula of the copper oxide? B. Formula of a Hydrate 1. Mass of crucible 2. Mass of crucible and hydrate 3. Mass of crucible and anhydrate 3a. Mass of crucible and anhydrate (second heating) Calculations 4. Mass of hydrate 5. Mass of anhydrate 6. Mass of water lost

11 Moles and Chemical Formulas Percent water % (Show calculations.) 8. Moles of water moles (Show calculations.) 9. Moles of salt (anhydrate) moles (Show calculations.) 10. Ratio of moles of water to moles of hydrate (Show calculations.) 11. Formula of hydrate MgSO4 H2O Questions and Problems Q5 Using the formula you obtained in B11, write a balanced equation for the dehydration of the MgSO 4 hydrate used in the experiment. (

12

Experiment #5. Empirical Formula

Experiment #5. Empirical Formula Experiment #5. Empirical Formula Goal To experimentally determine the empirical formula of magnesium oxide based on reaction stoichiometry. Introduction The molecular formula (usually shortened to simply

More information

EXPERIMENT 6 Empirical Formula of a Compound

EXPERIMENT 6 Empirical Formula of a Compound EXPERIMENT 6 Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

EXPERIMENT #6 Calculation of the Atomic Mass of Magnesium

EXPERIMENT #6 Calculation of the Atomic Mass of Magnesium OBJECTIVES: EXPERIMENT #6 Calculation of the Atomic Mass of Magnesium Observe the reaction between oxygen and magnesium Accurately weigh reaction mixtures before and after reaction Calculate the atomic

More information

Experiment 4: COMPOSITION OF A HYDRATE

Experiment 4: COMPOSITION OF A HYDRATE Experiment 4: COMPOSITION OF A HYDRATE Purpose: Determine the empirical formula of an unknown hydrate and the percentage by mass of water in the hydrate Performance Goals: Gain skills in the operation

More information

Making Ionic Compounds Lab#

Making Ionic Compounds Lab# Making Ionic Compounds Lab# Elements combine to form compounds. If energy is released as the compound is formed, the resulting product is more stable than the reacting elements. In this lab you will react

More information

COPYRIGHT FOUNTAINHEAD PRESS

COPYRIGHT FOUNTAINHEAD PRESS Water of Hydration Objectives To calculate the percent water by mass in several hydrated compounds; to dehydrate an unknown solid sample and identify it by comparing its percent water with known hydrated

More information

AP Chemistry Laboratory #1

AP Chemistry Laboratory #1 Catalog No. AP8813 Publication No. 10528A Determination of the Empirical Formula of Silver Oxide AP Chemistry Laboratory #1 Introduction There is an official database that keeps track of the known chemical

More information

Chemistry 151 Last Updated: Dec Lab 5: Hydrated Compounds

Chemistry 151 Last Updated: Dec Lab 5: Hydrated Compounds Chemistry 151 Last Updated: Dec. 2013 Lab 5: Hydrated Compounds Introduction When ionic compounds form, there are sometimes gaps or cavities within the crystal lattice that are large enough to trap water

More information

Water of Hydration Version 6.3

Water of Hydration Version 6.3 Water of Hydration Version 6.3 Michael J. Vitarelli Jr. Department of Chemistry and Chemical Biology Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 I. INTRODUCTION Hydrates are compounds that

More information

Salts are compounds composed of a metal ion plus a non-metal (or polyatomic) ion, e.g., sodium chloride (NaCl), and sodium phosphate (Na 3 PO 4 ).

Salts are compounds composed of a metal ion plus a non-metal (or polyatomic) ion, e.g., sodium chloride (NaCl), and sodium phosphate (Na 3 PO 4 ). Experiment 4 Water of Hydration Objective - Determine the percent of water in a hydrate. Introduction Salts are compounds composed of a metal ion plus a non-metal (or polyatomic) ion, e.g., sodium chloride

More information

Empirical and Molecular Formulas

Empirical and Molecular Formulas Empirical and Molecular Formulas CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Milwaukie HS Chemistry Herrington/Linman Name Period Date / /

Milwaukie HS Chemistry Herrington/Linman Name Period Date / / A101 1. Determine the oxidation number for each element. Display each elements oxidation number above it as in the following S2O3 example. +3-2 final answers S2O3 2(S) + 3(O)=0 2(S) + 3(-2)=0 S=+3 Show

More information

ANALYSIS OF HYDRATES

ANALYSIS OF HYDRATES 1 ANALYSIS OF HYDRATES INTRODUCTION An ionic compound is made of positive and negative ions, called cations and anions, respectively. At room temperature, all ionic compounds are solid. Within a solid

More information

CHEM 30A EXPERIMENT 4: HYDRATE. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

CHEM 30A EXPERIMENT 4: HYDRATE. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 Learning Outcomes CHEM 30A EXPERIMENT 4: HYDRATE Upon completion of this lab, the student will be able to: 1) Describe the differences between an anhydrous and hydrate compound. 2) Calculate the number

More information

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus

More information

From Hydrate to Anhydrate: Percent Composition

From Hydrate to Anhydrate: Percent Composition Artist as Chemist Section 5 From Hydrate to Anhydrate: Percent Composition What Do You See? Learning Outcomes In this section you will Identify an unknown hydrate. Distinguish between a hydrated and an

More information

EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /9 (To be completed prior to lab, read the experiment before attempting)

EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /9 (To be completed prior to lab, read the experiment before attempting) Name: Lab Section: EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /9 (To be completed prior to lab, read the experiment before attempting) 1. A student obtains the following data: Mass of test

More information

Chemical reactions: Chemical reactions change substances into other substances.

Chemical reactions: Chemical reactions change substances into other substances. Chemical reactions: Chemical reactions change substances into other substances. A chemical equation is used to represent a reaction. This has the form: reactants à products Word equations use the names

More information

Copper (II) sulfate pentahydrate Calcium sulfate dihydrate Magnesium sulfate heptahydrate Zinc sulfate heptahydrate

Copper (II) sulfate pentahydrate Calcium sulfate dihydrate Magnesium sulfate heptahydrate Zinc sulfate heptahydrate 1 EXPERIMENT A3: HYDRATE Learning Outcomes Upon completion of this lab, the student will be able to: 1) Describe the differences between an anhydrous and hydrate compound. 2) Calculate the number of moles

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Chemical Formulae, Equations and Calculations NOTES 1.25: Write word equations and balanced chemical equations (including state symbols): For reactions

More information

Section I: Synthesis reactions Synthesis reactions occur when two or more substances come together to form a single new substance.

Section I: Synthesis reactions Synthesis reactions occur when two or more substances come together to form a single new substance. TYPES OF CHEMICAL REACTIONS A Laboratory Investigation Purpose: Observe the five major types of reactions. Record observations for these reactions. Complete balanced equations for these reactions. Introduction:

More information

What Do You Think? Investigate GOALS. Part A: Heating a Hydrate

What Do You Think? Investigate GOALS. Part A: Heating a Hydrate Artist as Chemist Activity 5 Clay GOALS In this activity you will: Identify an unknown hydrate. Distinguish between a hydrated and an anhydrous compound. Examine and describe the effects of heat on clay.

More information

Name: Date: Pd: Topic 1.2: The Mole Concept and Empirical Formula

Name: Date: Pd: Topic 1.2: The Mole Concept and Empirical Formula Name: Date: Pd: Topic 1.2: The Mole Concept and Empirical Formula Relative Atomic Mass- A r - the weighted average of one atom of an element relative to 1/12 of an atom of carbon-12. A r values do not

More information

1.21. Formulae, equations and amounts of substance

1.21. Formulae, equations and amounts of substance 1.21. Formulae, equations and amounts of substance The mole is the key concept for chemical calculations DEFINITION: The mole is the amount of substance in grams that has the same number of particles as

More information

1.21. Formulae, equations and amounts of substance

1.21. Formulae, equations and amounts of substance 1.21. Formulae, equations and amounts of substance The mole is the key concept for chemical calculations DEFINITION: The mole is the amount of substance in grams that has the same number of particles as

More information

Laboratory Experiment No. 3 The Empirical Formula of a Compound

Laboratory Experiment No. 3 The Empirical Formula of a Compound Introduction An initial look at mass relationships in chemistry reveals little order or sense. Mass ratios of elements in a compound, while constant, do not immediately tell anything about a compound s

More information

Unit 9 The Mole Chapter 10 of your textbook

Unit 9 The Mole Chapter 10 of your textbook Unit 9 The Mole Chapter 10 of your textbook Learning Targets for Unit 9 Early Booklet E.C.: + 2 Unit 9.A Hwk. Pts.: / 36 Unit 9.A Lab Pts.: / 32 Late, Incomplete, No Work, No Units Fees? Y / N 1.1 I can

More information

CSUS Department of Chemistry Experiment 2 Chem. 1A EXPERIMENT 2: HYDRATE PRE-LABORATORY ASSIGNMENT

CSUS Department of Chemistry Experiment 2 Chem. 1A EXPERIMENT 2: HYDRATE PRE-LABORATORY ASSIGNMENT Name: Lab Section: EXPERIMENT 2: HYDRATE PRE-LABORATORY ASSIGNMENT 1. A student obtains the following data: Mass of test tube: Mass of test tube and hydrate: Mass of test tube and anhydrous residue after

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise.

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Experiment 10 Stoichiometry- Gravimetric Analysis Pre-lab Assignment Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose The purpose this experiment

More information

It s just like finding out your test score!!!

It s just like finding out your test score!!! It s just like finding out your test score!!! 97 correct out of 100 questions = 97 x 100 = 97% 100 Total of something x 100 = % TOTAL The chemical composition can be expressed as the mass percent of each

More information

6 Investigations Observational Study: Popping Percentage Composition

6 Investigations Observational Study: Popping Percentage Composition The fragment containing two carbon atoms, three hydrogen atoms, and one oxygen atom has a molecular mass of 43 u.) Why is the pattern of the fragments important for identifying a compound? (Sample answer:

More information

Types of Chemical Reactions and Predicting Products

Types of Chemical Reactions and Predicting Products Types of Chemical Reactions and Predicting Products Pre-Lab Discussion There are many kinds of chemical reactions and several ways to classify them. One useful method classifies reactions into four major

More information

Quantitative Chemistry

Quantitative Chemistry Quantitative Chemistry When we do experiments to measure something in Chemistry, we: Repeat experiments (usually 3 times) to improve the reliability of the results, by calculating an average of our results.

More information

Identification of an Unknown Compound through Mass Correlations

Identification of an Unknown Compound through Mass Correlations EXPERIMENT Identification of an Unknown Compound through Mass Correlations PURPOSE To carry out a series of decomposition reactions for five different unknown, and use stoichiometry in order to identify

More information

Hydrates, Percent Composition, and Empirical and Molecular Formulas

Hydrates, Percent Composition, and Empirical and Molecular Formulas Hydrates, Percent Composition, and Empirical and Molecular Formulas Hydrates Hydrates are ionic cmpds (salts) that have water molecules bound to their ions. Examples: CuSO 4 5H 2 O Fe(NO 3 ) 3 9H 2 O CoCl

More information

Types of Chemical Reactions and Equations

Types of Chemical Reactions and Equations Types of Chemical Reactions and Equations v051413_7pm Objectives: You will be able to identify a reaction according to the chemical changes that occur. You will be able to write balanced chemical equations

More information

UNIT 9. Stoichiometry

UNIT 9. Stoichiometry UNIT 9 Stoichiometry FORMULA MASS Atomic Mass Unit (u): unit of mass for measuring atoms. (1 u = 1/12 th the mass of a carbon 12 atom) FORMULA MASS FORMULA MASS Example 2: Find the mass of one molecule

More information

Chapter 8 Chemical Quantities

Chapter 8 Chemical Quantities Chapter 8 Chemical Quantities Molecular Weight and Moles Find the molecular mass or formula massof each of the following 1. HNO 3 2. Ammonium nitrate 3. Fe 2 O 3 4. Rubidium Sulfite 5. H 3 PO 4 6. Lithium

More information

L REACTIONS AND EQUATIONS

L REACTIONS AND EQUATIONS Experiment 7 Name: CHEMI 20 Ca L REACTIONS AND EQUATIONS In this experiment, you will observe changes that occur during chemical reactions. You will also balance the corresponding chemical equations and

More information

Classifying Chemical Reactions Analyzing and Predicting Products

Classifying Chemical Reactions Analyzing and Predicting Products Classifying Chemical Reactions Analyzing and Predicting Products Background A chemical reaction is defined as any process in which one or more substances are converted into new substances with different

More information

Chemical Reactions and Equations 10

Chemical Reactions and Equations 10 Chemical Reactions and Equations 10 LABORATORY GOALS Observe physical and chemical properties associated with chemical changes. Give evidence for the occurrence of a chemical reaction. Write a balanced

More information

HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES

HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES Experiment 4 Name: 15 P HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES 13 Al e In this experiment, you will also observe physical and chemical properties and physical and chemical changes.

More information

Ch 1-6 Working With Numbers; Scientific Notation pp Ch 1-5 to 1-6 Significant Figures pp 22-37

Ch 1-6 Working With Numbers; Scientific Notation pp Ch 1-5 to 1-6 Significant Figures pp 22-37 Ch 1-5 to 1-6 Significant Figures pp 22-37 Know how significant digits are found and used in calculations. Ch 1-6 Working With Numbers; Scientific Notation pp 30-32 Know how to use the calculator exponent

More information

Background: Understanding the Mole

Background: Understanding the Mole Background: Understanding the Mole 1. Why was it important for scientists to know the number of atoms in a sample of matter? 2. What was chosen to use as the standard on which to base the atomic masses

More information

Types of Chemical Reactions

Types of Chemical Reactions Types of Chemical Reactions Name - Partner - Pre-lab Questions 1.) List the four phase subscripts with each one s symbol. 2.) State the rule for determining whether a single replacement reaction will be

More information

o Test tube In this experiment, you ll be observing the signs of chemical reactions. These include the following:

o Test tube In this experiment, you ll be observing the signs of chemical reactions. These include the following: Experiment: Chemical Reactions & Chemical s Objective In this experiment, students perform a variety of chemical reactions. For each reaction, student identify the signs that a reaction has occurred, write

More information

Chemistry 151 Last Updated Dec Lab 11: Oxidation-Reduction Reactions

Chemistry 151 Last Updated Dec Lab 11: Oxidation-Reduction Reactions Chemistry 151 Last Updated Dec. 2012 Lab 11: Oxidation-Reduction Reactions Introduction Oxidation-reduction ( redox ) reactions make up a large and diverse part of chemical systems. A few examples include

More information

Classifying Chemical Reactions

Classifying Chemical Reactions 1 Classifying Chemical Reactions Analyzing and Predicting Products Introduction The power of chemical reactions to transform our lives is visible all around us-in our cars, even in our bodies. Chemists

More information

Lab #5 - Limiting Reagent

Lab #5 - Limiting Reagent Objective Chesapeake Campus Chemistry 111 Laboratory Lab #5 - Limiting Reagent Use stoichiometry to determine the limiting reactant. Calculate the theoretical yield. Calculate the percent yield of a reaction.

More information

Worksheet 1: REPRESENTATIVE PARTICLES

Worksheet 1: REPRESENTATIVE PARTICLES Worksheet 1: REPRESENTATIVE PARTICLES Directions: For each substance below, state the representative particle. If the RP is a molecule, state the number of atoms that make up the molecule. If the RP is

More information

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction Given an amount of a substance involved in a chemical reaction, we can figure out the amount

More information

Lab: Types of Chemical Reactions

Lab: Types of Chemical Reactions Name: Date: Period: Lab: Types of Chemical Reactions ESSENTIAL QUESTION: How do we represent chemical reactions as a chemical equation? BACKGROUND- See class handout. PRELAB: 1. What is a chemical reaction

More information

Classifying Chemical Reactions: Lab Directions

Classifying Chemical Reactions: Lab Directions Classifying Chemical Reactions: Lab Directions Please Return Background: The power of chemical reactions to transform our lives is visible all around us in our homes, in our cars, even in our bodies. Chemists

More information

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES Experiment 3 Name: INTRODUCTION TO MATTER: 9 4 CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL e PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES In this experiment, you will encounter various classification

More information

Physical Changes and Chemical Reactions

Physical Changes and Chemical Reactions Physical Changes and Chemical Reactions Gezahegn Chaka, Ph.D., and Sudha Madhugiri, Ph.D., Collin College Department of Chemistry Objectives Introduction To observe physical and chemical changes. To identify

More information

Finding Formulas. using mass information about a compound to find its formula

Finding Formulas. using mass information about a compound to find its formula Finding Formulas using mass information about a compound to find its formula Molecular Formula Molecular formula is the actual formula of compounds which form molecules. For example, the molecular formula

More information

Physical and Chemical Changes

Physical and Chemical Changes Objectives Introduction Physical and Chemical Changes Gezahegn Chaka, Ph.D. Collin College Department of Chemistry To observe physical and chemical changes. To identify and characterize physical and chemical

More information

CHM 130LL: Chemical and Physical Changes

CHM 130LL: Chemical and Physical Changes CHM 130LL: Chemical and Physical Changes In this experiment you will observe and record observations of properties of substances and you will cause changes to occur and classify these changes as physical

More information

Empirical Formulas and Molecular Formulas. Ch 3.5

Empirical Formulas and Molecular Formulas. Ch 3.5 Empirical Formulas and Molecular Formulas Ch 3.5 Empirical Formulas are the simplest (lowest) whole number ratio of atoms in a molecule or ionic compound Molecular Formulas are true formulas. For example:

More information

3. Write the equation to calculate percent error. Data Part 1: Length Measurements (all values must include units) A. Length of notebook in cm:

3. Write the equation to calculate percent error. Data Part 1: Length Measurements (all values must include units) A. Length of notebook in cm: Name: Date: Lab Section Experiment 1: Basic Measurement Techniques REPORT SHEET Pre-lab Study Questions: 1. Objectives of the experiment (in your own words): 2. In our everyday speech, precision and accuracy

More information

Moles Lab Activity 2: Elements Copper

Moles Lab Activity 2: Elements Copper Materials Sample of copper Balance Pre-1982 penny Moles Lab Activity 2: Elements Copper Procedure Take the necessary measurements, and record them with units. Show all your calculations, rounding your

More information

Chemistry Stoichiometry and Heat Exam (ver.1) Mr. Thaler. Please do not write on this exam. Mark your answers on the scantron only.

Chemistry Stoichiometry and Heat Exam (ver.1) Mr. Thaler. Please do not write on this exam. Mark your answers on the scantron only. 1. Identify from the unbalanced equations below the one that does not represent a redox reaction. a. H 2O 2(aq) + MnO 4 - (aq) O 2(g) + Mn 2+ (aq) b. H 2(g) + N 2(g) NH 3(g) c. NaCl (aq) + AgNO 3(aq) NaNO

More information

Part II. Cu(OH)2(s) CuO(s)

Part II. Cu(OH)2(s) CuO(s) The Copper Cycle Introduction In this experiment, you will carry out a series of reactions starting with copper metal. This will give you practice handling chemical reagents and making observations. It

More information

Elemental Mass Percent and Empirical Formula from Decomposition

Elemental Mass Percent and Empirical Formula from Decomposition EXPERIMENT Elemental Mass Percent and Empirical Formula from Decomposition 10 Prepared by Edward L. Brown, Lee University The student will heat copper oxide in a methane atmosphere forming elemental copper.

More information

Chemists need a convenient method for counting accurately the number of atoms, molecules, or formula units in a sample of a substance.

Chemists need a convenient method for counting accurately the number of atoms, molecules, or formula units in a sample of a substance. I. Measuring Matter Chemists need a convenient method for counting accurately the number of atoms, molecules, or formula units in a sample of a substance. As you know, atoms and molecules are extremely

More information

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2)

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2) www.pedersenscience.com AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2) 1.A.1: Molecules are composed of specific combinations of atoms; different molecules are composed of combinations

More information

Name: Unit 9- Stoichiometry Day Page # Description IC/HW

Name: Unit 9- Stoichiometry Day Page # Description IC/HW Name: Unit 9- Stoichiometry Day Page # Description IC/HW Due Date Completed ALL 2 Warm-up IC 1 3 Stoichiometry Notes IC 1 4 Mole Map IC X 1 5 Mole to Mole Practice IC 1 6 Mass to Mole Practice IC 1/2 X

More information

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction Given an amount of a substance involved in a chemical reaction, we can figure out the amount

More information

or a chemical change in several experimental trials.

or a chemical change in several experimental trials. Regular Chemistry Lab Chemical and Physical Changes. Intro: As we study matter, we base most of our classification and identification of pure substances on chemical and physical properties. A physical

More information

Composion Stoichiometry

Composion Stoichiometry Composition Stoichiometry blank 3.3.13.notebook Due: Ch 10 RG Hummmm... How do you "measure" bananas? > How many? Count 1 dozen naners or 12 naners Composion Stoichiometry 3 new conversion factors > Avogadro's

More information

Part 01 - Notes: The Mole and Its Calculations

Part 01 - Notes: The Mole and Its Calculations Part 01 - Notes: The Mole and Its Calculations Objectives: Identify, define, and explain: mole, Avogadro s number, representative particle, gram atomic mass, gram molecular mass, gram formula mass, molar

More information

Experiment 12 Determination of an Enthalpy of Reaction, Using Hess s Law

Experiment 12 Determination of an Enthalpy of Reaction, Using Hess s Law Experiment 12 Determination of an Enthalpy of Reaction, Using Hess s Law Object: To measure the standard heat of formation, f, of MgO (s), and to become familiar with calorimetry as a toll for measuring

More information

Minneapolis Community and Technical College. Separation of Components of a Mixture

Minneapolis Community and Technical College. Separation of Components of a Mixture Minneapolis Community and Technical College Chemistry Department Chem1020 Separation of Components of a Mixture Objectives: To separate a mixture into its component pure substances. To calculate the composition

More information

Reaction of Magnesium with Hydrochloric Acid

Reaction of Magnesium with Hydrochloric Acid Reaction of Magnesium with Hydrochloric Acid Your Name: Date: Partner(s): Objectives: React magnesium metal with hydrochloric acid, collecting the hydrogen over water. Calculate the grams of hydrogen produced

More information

LAB TEST Physical and Chemical Changes

LAB TEST Physical and Chemical Changes NAME: DATE: STATION: LAB TEST Physical and Chemical Changes PURPOSE: To observe physical and chemical changes in matter MATERIALS: 3 medium test tubes 1 small test tube test tube rack test tube holder

More information

UNIT 7 CHEMICAL FORMULAS WRITING FORMULAS NOTES. EXAMPLES: 1. carbon tetrachloride 2. calcium oxide. 3. iron (III) bromide 4.

UNIT 7 CHEMICAL FORMULAS WRITING FORMULAS NOTES. EXAMPLES: 1. carbon tetrachloride 2. calcium oxide. 3. iron (III) bromide 4. WRITING FORMULAS NOTES EXAMPLES: 1. carbon tetrachloride 2. calcium oxide 3. iron (III) bromide 4. lead (II) nitrate 5. aluminum hydroxide 6. ammonium chromate Notes- HONORS 1 NAMING COMPOUNDS NOTES EXAMPLES:

More information

Reactions Crystal Gambino & Renee Y. Becker Manatee Community College

Reactions Crystal Gambino & Renee Y. Becker Manatee Community College Reactions Crystal Gambino & Renee Y. Becker Manatee Community College Purpose: To observe chemical reactions and write chemical equations based on laboratory observations. Introduction: The heart of chemistry

More information

Percent Composition, Empirical Formula, Molecular Formula, Hydrates

Percent Composition, Empirical Formula, Molecular Formula, Hydrates Name: Percent Composition, Empirical Formula, Molecular Formula, Hydrates Essential Questions How can one explain the structure, properties, and interactions of matter? How do substances combine or react

More information

EXPERIMENT 7: THE LIMITING REACTANT

EXPERIMENT 7: THE LIMITING REACTANT EXPERIMENT 7: THE LIMITING REACTANT PURPOSE To find the ratio of moles of a reactant to moles of a product of a chemical reaction. To relate this ratio to the coefficients of these substances in the balanced

More information

The quantities in formulas and in chemical reactions can be counted singly or in groups, such as the mole.

The quantities in formulas and in chemical reactions can be counted singly or in groups, such as the mole. CHEM110 Week 4 Notes Mass relationships in Chemical Formulas Page 1 of 5 Recall the Law of Definite Proportions. All samples of a compound have the same atomic composition (or) all samples have the same

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS EXPERIMENT 11 (2 Weeks) Chemistry 110 Laboratory TYPES OF CHEMICAL REACTIONS PURPOSE: The purpose of this experiment is perform, balance and classify chemical reactions based on observations. Students

More information

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units CHAPTER 11 The Mole 11.1 The Mole: Measurement of Matter Matter is measured in one of three ways: (How many?) Mole SI unit that measures the amount of a substance 6.02 x 10 particles of that substance.

More information

Trilogy Quantitative chemistry

Trilogy Quantitative chemistry Trilogy Quantitative chemistry Foundation revision questions Name: Class: Date: Time: 6 minutes Marks: 6 marks Comments: Page of 23 (a) Formulae and equations are used to describe chemical reactions. Aluminium

More information

In general, the condition for a process to occur (for it to be "spontaneous") is that G < 0 (i.e. negative) where

In general, the condition for a process to occur (for it to be spontaneous) is that G < 0 (i.e. negative) where EXPERIMENT 9 Enthalpy Measurement in Chemical Reactions INTRODUCTION: Chemical and physical changes are often accompanied by heat evolution or absorption. A process in which heat is released to the surroundings

More information

CHEMICAL QUANTITIES. Chapter Six

CHEMICAL QUANTITIES. Chapter Six CHEMICAL QUANTITIES Chapter Six Introducing the Mole The dozen is a unit of quantity If I have a dozen atoms, I have 12 atoms by definition. The mole(mol) is a very important unit of quantity in chemistry.

More information

Unit 10 Stoichiometry Chapter 11 of your textbook

Unit 10 Stoichiometry Chapter 11 of your textbook Unit 10 Stoichiometry Chapter 11 of your textbook Early Booklet E.C.: + 2 Unit 10.B Hwk. Pts.: / 21 Unit 10.B Lab Pts.: / 14 Late, Incomplete, No Work, No Units Fees? Y / N Learning Targets for Unit 10

More information

Na Na + +e - Cl+e - Cl -

Na Na + +e - Cl+e - Cl - LAB-Ionic vs. Covalent Bonding Have you ever accidentally used salt instead of sugar? Drinking tea that has been sweetened with salt or eating vegetables that have been salted with sugar tastes awful!

More information

Duncan UNIT 7 - CHEMICAL FORMULAS WRITING FORMULAS NOTES. Does the second word end with -ide?

Duncan UNIT 7 - CHEMICAL FORMULAS WRITING FORMULAS NOTES. Does the second word end with -ide? WRITING FORMULAS NOTES Does the second word end with -ide? yes no / \ Is the second word "hydroxide"? \ no yes \ \ \ Is the first word "ammonium"? \ no yes ---------------------------------------------->

More information

Chemistry 212 MOLAR MASS OF A VOLATILE LIQUID USING THE IDEAL GAS LAW

Chemistry 212 MOLAR MASS OF A VOLATILE LIQUID USING THE IDEAL GAS LAW Chemistry 212 MOLAR MASS OF A VOLATILE LIQUID USING THE IDEAL GAS LAW To study the Ideal Gas Law. LEARNING OBJECTIVES To determine the molar mass of a volatile liquid. BACKGROUND The most common instrument

More information

AP Chemistry A Review of Analytical Chemistry

AP Chemistry A Review of Analytical Chemistry AP Chemistry A Review of Analytical Chemistry AP Chemistry Ch 1 (Prentice Hall) What Temperature Do You Read? A measurement always has some amount of uncertainty To indicate the uncertainty of a single

More information

Experiment #7. Chemical Reactions.

Experiment #7. Chemical Reactions. Experiment #7. Chemical Reactions. Goals To observe chemical reactions and balance chemical equations. Background Chemical and Physical Changes Changes in matter are often classified as either physical

More information

CHM101 Lab Chemical Reactions Grading Rubric

CHM101 Lab Chemical Reactions Grading Rubric Name Team Name CHM101 Lab Chemical Reactions Grading Rubric To participate in this lab you must have splash- proof goggles, proper shoes and attire. Criteria Points possible Points earned Lab Performance

More information

Pre-Lab Read the entire laboratory assignment. Answer all pre-lab questions before beginning the lab.

Pre-Lab Read the entire laboratory assignment. Answer all pre-lab questions before beginning the lab. Name: Date: Pd: Lab Partner: Lab # 13: Types of Reactions, Predicting Products of Chemical Reactions Lab Accelerated Chemistry 1 Introduction: If you examine your bicycle after it has been left out in

More information

Symbols. Table 1 A set of common elements, their symbols and physical state

Symbols. Table 1 A set of common elements, their symbols and physical state Symbols Symbols are a kind of shorthand system for writing down elements and compounds. Each element has a particular one or two letter symbol. The first letter of a symbol is always capital, and if there

More information

, what volume of chlorine, measured at STP, reacts completely with 8 moles of gallium? A)

, what volume of chlorine, measured at STP, reacts completely with 8 moles of gallium? A) 7- In the reaction,, what volume of chlorine, measured at STP, reacts completely with 8 moles of gallium? A) B) C) D) E) Explanation of the answer: In this mole-volume stoichiometry problem # 7 above we

More information

Student Version Notes: Unit 5 Moles & Stoichiometry

Student Version Notes: Unit 5 Moles & Stoichiometry Name: Regents Chemistry: Mr. Palermo Student Version Notes: Unit 5 Moles & Stoichiometry Name: KEY IDEAS A compound is a substance composed of two or more different elements that are chemically combined

More information

If you have a Mac do whatever you have to do to play it as a slide show I don t know Macs well. Dr. Buckley

If you have a Mac do whatever you have to do to play it as a slide show I don t know Macs well. Dr. Buckley For best results please view this as a slide show. You can hit the F5 key or go to the Slide Show tab on the menu bar and click on From Beginning. Page Down and Page Up will move you through the presentation.

More information

Practice Packet Unit 3: Moles & Stoichiometry

Practice Packet Unit 3: Moles & Stoichiometry PRACTICE PACKET: Unit 3 Moles & Stoichiometry Regents Chemistry: Mr. Palermo Practice Packet Unit 3: Moles & Stoichiometry Vocabulary: Lesson 1: Lesson 2: Lesson 3: Lesson 4: Lesson 5: Lesson 6: Lesson

More information

Chemistry 1B Experiment 14 65

Chemistry 1B Experiment 14 65 Chemistry 1B Experiment 14 65 14 Electrochemistry Introduction In this experiment you will observe some spontaneous and non-spontaneous oxidation-reduction reactions, and see how the spontaneous reactions

More information