Identification of an Unknown Compound through Mass Correlations

Size: px
Start display at page:

Download "Identification of an Unknown Compound through Mass Correlations"

Transcription

1 EXPERIMENT Identification of an Unknown Compound through Mass Correlations PURPOSE To carry out a series of decomposition reactions for five different unknown, and use stoichiometry in order to identify each one of them through mass correlations calculations. To confirmed your result analytically using the Flame Test method. MATERIALS AND EQUIPMENT NaHCO 3, Na 2 CO 3, KHCO 3, K 2 CO 3, (NH 4 ) 2 CO 3, 6 M HCl, 0.1 M NaCl and 0.1 M KCl. Crucible and lid, iron ring, ring stand, clay triangle, Bunsen burner, nichrome wire, and analytical balance. BACKGROUND When chemical reactions occur, there is a stoichiometric relationship between the masses of the reactants and products that follow directly from the balanced equation for the reaction and the molar masses of the species that are involved. In this experiment we will use this relationship to identify an unknown substance. For selected ions we can confirm the result by the Flame Test. The flame test is used to visually determine the identity of an unknown metal ion based on the characteristic color that the metal turns the flame of a Bunsen burner. The heat of the flame excites the electrons of the metals ions, causing them to emit visible light (E=hc/λ). Every element has a signature emission spectrum (fingerprint) that can be used to differentiate between one element and another. Your unknown will be one of the following compounds, all of which are salts: NaHCO 3 (s) Na 2 CO 3 (s) KHCO 3 (s) K 2 CO 3 (s) (NH 4 ) 2 CO 3(s) In the first part of the experiment you will be heating a massed sample of your compound in a crucible. There is a distinct difference in behavior of these carbonates in decomposition reactions. Therefore the following will occur depending on the identity of your unknown: 1) If your sample is ammonium carbonate, heating will decompose it to NH 3 (g) and HCl (g). Therefore nothing will be left in the crucible after decomposition. (NH 4 ) 2 CO 3(s) 2NH 3 (g) + H 2 O (g) + CO 2 (g) Page 1

2 2) If your sample is any other carbonate, there will be no chemical reaction that occurs, but any small amount of adsorbed water (moisture) will be driven off upon heating in the first part of the experiment. Therefore there may a slight mass change. In order to differentiate between two possible carbonates; sodium and potassium, you need to continue with second part of the experiment (addition of HCl and heating) to form the corresponding chloride salt and use mass correlations to establish the identity of the unknown. 3) If your sample is a hydrogen carbonate, it will decompose to form a mixture of gases and salt by the following reactions (pattern I): 2 NaHCO 3 (s) Na 2 CO 3 (s) + H 2 O (g) + CO 2 (g) 2 KHCO 3 (s) K 2 CO 3 (s) + H 2 O (g) + CO 2 (g) In these cases there will an appreciable decrease in mass, since some of the products will be driven off as gases. Therefore if such a mass decrease occurs, you can be sure that your sample is a hydrogen carbonate. In the second part of the experiment, we treat the solid carbonate in the crucible with concentrated hydrochloric acid. There will be considerable fizziness as CO 2 gas is evolved; the reactions that occur are (pattern II): Na 2 CO 3 (s) + 2 HCl (aq) 2 NaCl(s) + H 2 O (l) + CO 2 (g) K 2 CO 3 (s) + 2 HCl (aq) 2 KCl(s) + H 2 O (l) + CO 2 (g) We then heat the crucible strongly to drive off any excess HCl and any water that is present, obtaining pure, dry, solid NaCl or KCl as our product. To identify your unknown, you will need to find the molar masses of the possible reactants and final products. For each of the possible unknowns there will be a different relationship between the mass of the original sample and the mass of the corresponding chloride salt that is produced in the second reactions. If you know your sample is a carbonate, you need only to be concerned with the mass relationships in the reactions involved in the second part of the experiment (pattern II), and should NOT use the original mass of your unknown. Instead you should use the mass of the dry carbonate after it has been heated. On the other hand, if you have a hydrogen carbonate, you should consider the overall reactions in both parts of experiment (pattern I& II), because your sample undergoes both reactions. From your experimental data you will be able to calculate the ratio of the mass of the solid chloride to the mass of either the original hydrogen carbonate or the mass of the anhydrous carbonate in your sample of unknown. From your calculation of the relative masses of solid chloride to solid hydrogen carbonate or solid carbonate in the two corresponding equations (pattern I& II) you can calculate what the theoretical ratio of those masses should be. Your observed value should match one of the theoretical values and thus allow you to identify the compound your unknown contains. SAFETY Hydrochloric acid is corrosive. Several of the chemicals are toxic. Be cautious with the handling of 6M HCl acid. If you spill these reagents on yourself, rinse the affected area with water. Wear gloves and goggles. Page 2

3 PROCEDURE 1. Mass and record a clean and dry crucible with lid to the nearest milligram using an analytical balance. YOU MUST USE ANALYTICAL BALANCE FOR THIS EXPERIMENT! 2. Obtain an unknown compound. The unknown compound may be NaHCO 3, Na 2 CO 3, KHCO 3, K 2 CO 3, or (NH 4 ) 2 CO Mass and record about 0.5 g of the unknown compound directly into the crucible. 4. Secure an iron ring on a ring stand, but make sure to leave enough space underneath the iron ring for a Bunsen burner. 5. Place a clay triangle on top of the iron ring and then place the crucible containing the sample on the clay triangle. Make sure the lid is placed partly open on the crucible. 7. Place a Bunsen burner underneath the iron ring and gently heat the sample for 6 minutes. 8. Increase the intensity of the flame and heat for an additional 8 minutes. The high intensity flame should cause the bottom of the crucible to glow reddish in color. 9. Allow the crucible to cool to room temperature (~ 12 minutes). 10. When the crucible is no longer hot, weigh and record the mass of the crucible with lid and sample. 11. Repeat the heating and cooling process until constant mass is reached. (Note: If the sample is sodium bicarbonate or potassium bicarbonate, it would decompose into sodium or potassium carbonate respectively, water, and carbon dioxide and you should continue with step 12. However if the sample is ammonium carbonate, it will decompose into ammonia gas and hydrogen chloride gas and it does not require any further experiment to determine its identity since there will nothing left in crucible. 12. Slowly add 6 M HCl, one drop at a time, to the sample inside the crucible. (Note: both sodium carbonate and potassium carbonate react with HCl to produce corresponding chloride salt). 13. Make sure when you add each drop to swirl the mixture until there is no appearance of a chemical reaction before adding another drop. 14. Continue adding drops and swirl until all the solids dissolves, but do not exceed a total of 30 drops. 15. Gently heat the crucible with the lid very partly open for about 12 minutes. It is important that the flame is set at a very low intensity to prevent any HCl excess from boiling out of the crucible. 16. After 12 minutes, turn off the flames and check to see if the sample appears dry. 17. Continue to gently heat if the sample is not dry. If the sample appears dry, set the flame at a high intensity and heat for an additional 12 minutes. The high intensity flame should cause the bottom of the crucible to glow reddish in color. 18. Allow the crucible to cool for at least 12 minutes. 19. When the crucible is no longer hot, mass and records the crucible with lid and sample. 20. Repeat the heating and cooling process until constant mass is reached. 21. Dispose of any residues in a waste container, wash and dry the crucibles. 22. Using the masses data obtained, determine the unknown compound. Page 3

4 Flame Test: 1. First, you need to clean the nickel-chromium (aka nichrome) wire loop by dipping in 6M hydrochloric followed by heating to a bright glow in the Bunsen burner. Make sure to flame the nichrome wire at the top of the blue inner cone (hottest part) of the flame. End the cleaning with rinsing the wire loop with distilled or deionized water. 2. Transfer small quantity (~10 drops) of each known solution (0.1 M NaCl and 0.1 M KCl) to a small spot plate pre-labeled. 3. Dip the clean loop in one of the solution in the spot plate and then preform the flame test by inserting the wire loop into the outer cone of a Bunsen burner. 4. After cleaning the wire loop with acid again repeat the flame test for another known solution. The wire loop must be cleaned between tests for different ions. 5. Write down your observation and indicate the color of each solution. 6. Perform the flame test for each of your unknown solid by dissolving about 0.02g of your solid in 1ml distilled water in a small test tube and then transferring adequate amount to the small spot plate. Write down your observations. Questions 1- If 2.0 grams of sodium bicarbonate was added into a crucible and heated with the lid partly open to constant mass, how many grams of product will remain? 2- In the experiment, what would happen to the mass data if not enough hydrochloric acid is added to dissolve the solid? Page 4

5 Unknown Heat Ammonium Carbonate (Nothing will be left) Carbonate (Slight mass change) Hydrogen Carbonate (Noticeable mass change) HCl & Heat to constant mass HCl & Heat to constant mass Figure 1: Flow Chart to identify the unknown FORMS NaCl or KCl Use mass Correlations & Flame Test To identify the Unknown FORMS NaCl or KCl Use mass Correlations & Flame Test To identify the Unknown Page 5

6 LAB REPORT Unknown Mass correlations Name Section Date Unknown # 1 Unknown # 2 Unknown # 3 Unknown # 4 Unknown # 5 Page 6

7 LAB REPORT Unknown Mass correlations Name Section Date Show your calculations including related reactions for each unknown: Unknown # 1 Unknown # 2 Unknown # 3 Unknown # 4 Unknown # 5 Page 7

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise.

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Experiment 10 Stoichiometry- Gravimetric Analysis Pre-lab Assignment Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose The purpose this experiment

More information

Forensics Lab Flame Tests

Forensics Lab Flame Tests Forensics Lab Flame Tests Name Per Due Date Introduction The fundamental particles that make up the building blocks of matter are known as atoms, each of which is shown on the periodic table of the elements.

More information

Western Carolina University

Western Carolina University CHEM 132 Lab 03 Chemistry 132 Lab 03 Flame Test and Electron Configuration Prelaboratory Exercise Go to Chem21Labs.com and complete the on-line prelab by answering the questions below. The prelab will

More information

Experiment #5. Empirical Formula

Experiment #5. Empirical Formula Experiment #5. Empirical Formula Goal To experimentally determine the empirical formula of magnesium oxide based on reaction stoichiometry. Introduction The molecular formula (usually shortened to simply

More information

HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES

HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES Experiment 4 Name: 15 P HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES 13 Al e In this experiment, you will also observe physical and chemical properties and physical and chemical changes.

More information

AP Chemistry Laboratory #1

AP Chemistry Laboratory #1 Catalog No. AP8813 Publication No. 10528A Determination of the Empirical Formula of Silver Oxide AP Chemistry Laboratory #1 Introduction There is an official database that keeps track of the known chemical

More information

CIE Chemistry A-Level Practicals for Papers 3 and 5

CIE Chemistry A-Level Practicals for Papers 3 and 5 CIE Chemistry A-Level Practicals for Papers 3 and 5 Ion Identification Group 2 Ions Identification Example -3 1. Place 10 drops of 0.1 mol dm barium chloride in a clean test tube. Must be clean to ensure

More information

Classifying Chemical Reactions

Classifying Chemical Reactions 1 Classifying Chemical Reactions Analyzing and Predicting Products Introduction The power of chemical reactions to transform our lives is visible all around us-in our cars, even in our bodies. Chemists

More information

In this activity, you will observe and predict products for some simple

In this activity, you will observe and predict products for some simple Chemistry Not Chemistry My Type Not My Type Classifying Chemical Reactions In this activity, you will observe and predict products for some simple chemical reactions. You will classify the reactions as

More information

AQA Chemistry A-level

AQA Chemistry A-level AQA Chemistry A-level Required Practical 4 Carry out simple test-tube reactions to identify cations and anions + Cations: Group 2 ions, NH 4 Test for group 2 ions: sodium hydroxide -3 1. Place 10 drops

More information

PDFMAILER.COM Print and send PDF files as s with any application, ad-sponsored and free of charge Activity # 14.

PDFMAILER.COM Print and send PDF files as  s with any application, ad-sponsored and free of charge   Activity # 14. Activity # 14 Name Purpose Date Date due Activities 10c and 10d - Performing More Examples of Chemical Reactions To perform a number of different chemical reactions, determine what the reactants and products

More information

Classifying Chemical Reactions: Lab Directions

Classifying Chemical Reactions: Lab Directions Classifying Chemical Reactions: Lab Directions Please Return Background: The power of chemical reactions to transform our lives is visible all around us in our homes, in our cars, even in our bodies. Chemists

More information

LAB TEST Physical and Chemical Changes

LAB TEST Physical and Chemical Changes NAME: DATE: STATION: LAB TEST Physical and Chemical Changes PURPOSE: To observe physical and chemical changes in matter MATERIALS: 3 medium test tubes 1 small test tube test tube rack test tube holder

More information

COPYRIGHT FOUNTAINHEAD PRESS

COPYRIGHT FOUNTAINHEAD PRESS Water of Hydration Objectives To calculate the percent water by mass in several hydrated compounds; to dehydrate an unknown solid sample and identify it by comparing its percent water with known hydrated

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

Santa Monica College Chemistry 11

Santa Monica College Chemistry 11 Types of Reactions Objectives The objectives of this laboratory are as follows: To perform several types of simple chemical reactions, To become familiar with some common observable signs of chemical reactions,

More information

Chemistry 1B Experiment 17 89

Chemistry 1B Experiment 17 89 Chemistry 1B Experiment 17 89 17 Thermodynamics of Borax Solubility Introduction In this experiment, you will determine the values of H and S for the reaction which occurs when borax (sodium tetraborate

More information

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction Given an amount of a substance involved in a chemical reaction, we can figure out the amount

More information

Experiment 8 - Chemical Changes

Experiment 8 - Chemical Changes Experiment 8 - Chemical Changes When a chemical change occurs, the chemicals that you start with are changed into different chemicals. We know when this happens because the new chemicals have different

More information

CSUS Department of Chemistry Experiment 2 Chem. 1A EXPERIMENT 2: HYDRATE PRE-LABORATORY ASSIGNMENT

CSUS Department of Chemistry Experiment 2 Chem. 1A EXPERIMENT 2: HYDRATE PRE-LABORATORY ASSIGNMENT Name: Lab Section: EXPERIMENT 2: HYDRATE PRE-LABORATORY ASSIGNMENT 1. A student obtains the following data: Mass of test tube: Mass of test tube and hydrate: Mass of test tube and anhydrous residue after

More information

Chemistry 151 Last Updated: Dec Lab 5: Hydrated Compounds

Chemistry 151 Last Updated: Dec Lab 5: Hydrated Compounds Chemistry 151 Last Updated: Dec. 2013 Lab 5: Hydrated Compounds Introduction When ionic compounds form, there are sometimes gaps or cavities within the crystal lattice that are large enough to trap water

More information

Atomic Spectra Introduction

Atomic Spectra Introduction Atomic Spectra Introduction: Light and all other electromagnetic radiation is energy that is emitted in the form of waves. Thus light behaves like a wave, and the energy of light varies with the wavelength

More information

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate CEAC 105 GENERAL CHEMISTRY Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate Purpose: To enhance the understanding of stoichiometry, a reaction between iron and copper (II) sulfate

More information

Lab #5 - Limiting Reagent

Lab #5 - Limiting Reagent Objective Chesapeake Campus Chemistry 111 Laboratory Lab #5 - Limiting Reagent Use stoichiometry to determine the limiting reactant. Calculate the theoretical yield. Calculate the percent yield of a reaction.

More information

Classifying Chemical Reactions Analyzing and Predicting Products

Classifying Chemical Reactions Analyzing and Predicting Products Classifying Chemical Reactions Analyzing and Predicting Products Background A chemical reaction is defined as any process in which one or more substances are converted into new substances with different

More information

CHM 130LL: Chemical and Physical Changes

CHM 130LL: Chemical and Physical Changes CHM 130LL: Chemical and Physical Changes In this experiment you will observe and record observations of properties of substances and you will cause changes to occur and classify these changes as physical

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS EXPERIMENT 11 (2 Weeks) Chemistry 110 Laboratory TYPES OF CHEMICAL REACTIONS PURPOSE: The purpose of this experiment is perform, balance and classify chemical reactions based on observations. Students

More information

Chemical Equilibrium and Le Chatlier s Principle

Chemical Equilibrium and Le Chatlier s Principle MiraCosta College Introductory Chemistry Laboratory Chemical Equilibrium and Le Chatlier s Principle EXPERIMENTAL TASK Examine a number of chemical reaction systems at equilibrium, predict the shifts they

More information

Physical Changes and Chemical Reactions

Physical Changes and Chemical Reactions Physical Changes and Chemical Reactions Gezahegn Chaka, Ph.D., and Sudha Madhugiri, Ph.D., Collin College Department of Chemistry Objectives Introduction To observe physical and chemical changes. To identify

More information

Pre-Lab Read the entire laboratory assignment. Answer all pre-lab questions before beginning the lab.

Pre-Lab Read the entire laboratory assignment. Answer all pre-lab questions before beginning the lab. Name: Date: Pd: Lab Partner: Lab # 13: Types of Reactions, Predicting Products of Chemical Reactions Lab Accelerated Chemistry 1 Introduction: If you examine your bicycle after it has been left out in

More information

Chemistry 151 Last Updated Dec Lab 11: Oxidation-Reduction Reactions

Chemistry 151 Last Updated Dec Lab 11: Oxidation-Reduction Reactions Chemistry 151 Last Updated Dec. 2012 Lab 11: Oxidation-Reduction Reactions Introduction Oxidation-reduction ( redox ) reactions make up a large and diverse part of chemical systems. A few examples include

More information

Physical and Chemical Changes Or How Do You Know When You ve Made Something New?

Physical and Chemical Changes Or How Do You Know When You ve Made Something New? Introduction Or How Do You Know When You ve Made Something New? Remember that all matter has characteristic physical and chemical properties. Matter can also undergo physical and chemical changes. How

More information

o Test tube In this experiment, you ll be observing the signs of chemical reactions. These include the following:

o Test tube In this experiment, you ll be observing the signs of chemical reactions. These include the following: Experiment: Chemical Reactions & Chemical s Objective In this experiment, students perform a variety of chemical reactions. For each reaction, student identify the signs that a reaction has occurred, write

More information

Title: FLAME TESTS. sodium chloride. calcium nitrate. potassium nitrate. strontium nitrate. copper(ii) nitrate. lithium nitrate. nitrate.

Title: FLAME TESTS. sodium chloride. calcium nitrate. potassium nitrate. strontium nitrate. copper(ii) nitrate. lithium nitrate. nitrate. Title: FLAME TESTS Target In this lab students will learn about atomic energy levels, emissions spectroscopy and flame tests for element identification. Students will identify the unknown elements from

More information

Experiment 4: COMPOSITION OF A HYDRATE

Experiment 4: COMPOSITION OF A HYDRATE Experiment 4: COMPOSITION OF A HYDRATE Purpose: Determine the empirical formula of an unknown hydrate and the percentage by mass of water in the hydrate Performance Goals: Gain skills in the operation

More information

GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT. REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985

GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT. REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985 1 GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985 Typical techniques used in gravimetric analyses by quantitatively determining

More information

Types of Chemical Reactions

Types of Chemical Reactions Types of Chemical Reactions Objectives Perform and observe the results of a variety of chemical reactions. Become familiar with the observable signs of chemical reactions. Identify the products formed

More information

EXPERIMENT 6 Empirical Formula of a Compound

EXPERIMENT 6 Empirical Formula of a Compound EXPERIMENT 6 Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

Lab- Properties of Acids and Bases. Name. PSI Chemistry

Lab- Properties of Acids and Bases. Name. PSI Chemistry Lab- Properties of Acids and Bases PSI Chemistry Name Introduction Acids and bases are useful reagents in the chemistry laboratory and play an important role in biology and nature. What are acids and bases?

More information

Hydrolysis of Salts Weak Acids and Bases

Hydrolysis of Salts Weak Acids and Bases elearning 2009 Introduction Hydrolysis of Salts Weak Acids and Bases Publication No. 9117 Show the effects of hydrolysis of salts on the acidbase properties of a solution with this colorful demonstration

More information

Chemical Reactions: Introduction to Reaction Types

Chemical Reactions: Introduction to Reaction Types Chemical Reactions: Introduction to Reaction Types **Lab Notebook** Record observations for all of the chemical reactions carried out during the lab in your lab book. These observations should include:

More information

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction Given an amount of a substance involved in a chemical reaction, we can figure out the amount

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Chemical Formulae, Equations and Calculations NOTES 1.25: Write word equations and balanced chemical equations (including state symbols): For reactions

More information

ANALYSIS OF HYDRATES

ANALYSIS OF HYDRATES 1 ANALYSIS OF HYDRATES INTRODUCTION An ionic compound is made of positive and negative ions, called cations and anions, respectively. At room temperature, all ionic compounds are solid. Within a solid

More information

Reaction Stoichiometry

Reaction Stoichiometry Reaction Stoichiometry PURPOSE To determine the stoichiometry of acid-base reactions by measuring temperature changes which accompany them. GOALS To learn to use the MicroLab Interface. To practice generating

More information

Apply the ideal gas law (PV = nrt) to experimentally determine the number of moles of carbon dioxide gas generated

Apply the ideal gas law (PV = nrt) to experimentally determine the number of moles of carbon dioxide gas generated Teacher Information Ideal Gas Law Objectives Determine the number of moles of carbon dioxide gas generated during a reaction between hydrochloric acid and sodium bicarbonate. Through this investigation,

More information

Moles and Chemical Formulas 11

Moles and Chemical Formulas 11 Moles and Chemical Formulas 11 LABORATORY GOALS Determine the simplest formula of a compound. Calculate the percent water in a hydrate. Determine the formula of a hydrate. LAB INFORMATION Time: Comments:

More information

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Objectives Part 1: To determine the limiting reagent and percent yield of CuCO

More information

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES Experiment 3 Name: INTRODUCTION TO MATTER: 9 4 CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL e PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES In this experiment, you will encounter various classification

More information

Lab #14: Qualitative Analysis of Cations and Anions

Lab #14: Qualitative Analysis of Cations and Anions Lab #14: Qualitative Analysis of Cations and Anions Objectives: 1. To understand the rationale and the procedure behind the separation for various cations and anions. 2. To perform qualitative analysis

More information

Exploring Equilibrium

Exploring Equilibrium Page 7 - It Works Both Ways Introduction The word equilibrium has two roots: mqui, meaning equal, and libra, meaning weight or balance. Our physical sense of equilibrium-in the motion of a seesaw or the

More information

Separation and Identification of Metal Ions

Separation and Identification of Metal Ions Vivek Kumar, Ph.D. OBJECTIVES: In this experiment, you will analyze an aqueous solution for the presence of Ag +, Pb 2+ and Hg2 2+ ions LEARNING GOALS 1. To understand and apply chemistry of metal ions

More information

EXPERIMENT 3 Flame Tests & Electron Configuration

EXPERIMENT 3 Flame Tests & Electron Configuration EXPERIMENT 3 Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons

More information

Na Na + +e - Cl+e - Cl -

Na Na + +e - Cl+e - Cl - LAB-Ionic vs. Covalent Bonding Have you ever accidentally used salt instead of sugar? Drinking tea that has been sweetened with salt or eating vegetables that have been salted with sugar tastes awful!

More information

Types of Chemical Reactions and Predicting Products

Types of Chemical Reactions and Predicting Products Types of Chemical Reactions and Predicting Products Pre-Lab Discussion There are many kinds of chemical reactions and several ways to classify them. One useful method classifies reactions into four major

More information

Laboratory Experiment No. 3 The Empirical Formula of a Compound

Laboratory Experiment No. 3 The Empirical Formula of a Compound Introduction An initial look at mass relationships in chemistry reveals little order or sense. Mass ratios of elements in a compound, while constant, do not immediately tell anything about a compound s

More information

Section I: Synthesis reactions Synthesis reactions occur when two or more substances come together to form a single new substance.

Section I: Synthesis reactions Synthesis reactions occur when two or more substances come together to form a single new substance. TYPES OF CHEMICAL REACTIONS A Laboratory Investigation Purpose: Observe the five major types of reactions. Record observations for these reactions. Complete balanced equations for these reactions. Introduction:

More information

Physical and Chemical Changes

Physical and Chemical Changes Objectives Introduction Physical and Chemical Changes Gezahegn Chaka, Ph.D. Collin College Department of Chemistry To observe physical and chemical changes. To identify and characterize physical and chemical

More information

CIE Chemistry A-Level Practicals for Papers 3 and 5

CIE Chemistry A-Level Practicals for Papers 3 and 5 CIE Chemistry A-Level Practicals for Papers 3 and 5 Rate of Reaction Disappearing cross: Change in rate of the reaction of sodium thiosulphate with hydrochloric acid as temperature is changed: Na 2 S 2

More information

2.1.3 Amount of substance

2.1.3 Amount of substance 2.1.3 Amount of substance The mole is the key concept for chemical calculations DEFINITION: The mole is the amount of substance in grams that has the same number of particles as there are atoms in 12 grams

More information

Experiment 7 Aldehydes, Ketones, and Carboxylic Acids

Experiment 7 Aldehydes, Ketones, and Carboxylic Acids Experiment 7 Aldehydes, Ketones, and arboxylic Acids Aldehydes and ketones are molecules that contain a carbonyl group, which is an oxygen atom with a double bond to a carbon atom. In an aldehyde, the

More information

Part II. Cu(OH)2(s) CuO(s)

Part II. Cu(OH)2(s) CuO(s) The Copper Cycle Introduction In this experiment, you will carry out a series of reactions starting with copper metal. This will give you practice handling chemical reagents and making observations. It

More information

To observe flame test colors produced by ions in solution.

To observe flame test colors produced by ions in solution. Flame Tests PURPOSE To determine the identities of ions in two solutions of unknown composition by comparing the colors they produce in flame tests with colors produced by solutions of known composition.

More information

Salts are compounds composed of a metal ion plus a non-metal (or polyatomic) ion, e.g., sodium chloride (NaCl), and sodium phosphate (Na 3 PO 4 ).

Salts are compounds composed of a metal ion plus a non-metal (or polyatomic) ion, e.g., sodium chloride (NaCl), and sodium phosphate (Na 3 PO 4 ). Experiment 4 Water of Hydration Objective - Determine the percent of water in a hydrate. Introduction Salts are compounds composed of a metal ion plus a non-metal (or polyatomic) ion, e.g., sodium chloride

More information

Classifying Chemical Reactions

Classifying Chemical Reactions Classifying Chemical Reactions Prepared by M.L. Holland and A.L. Norick, Foothill College Purpose of the Experiment To make observations when reactants are combined and become familiar with indications

More information

Chem 1B Saddleback College Dr. White 1. Experiment 5: Separation and Identification of Group I Cations (The Chloride Group: Ag +, Pb 2+, and Hg 2

Chem 1B Saddleback College Dr. White 1. Experiment 5: Separation and Identification of Group I Cations (The Chloride Group: Ag +, Pb 2+, and Hg 2 Chem 1B Saddleback College Dr. White 1 Experiment 5: Separation and Identification of Group I Cations (The Chloride Group: Ag +, Pb 2+, and Hg 2 2+) Objective To understand the chemical reactions involved

More information

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2)

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2) www.pedersenscience.com AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2) 1.A.1: Molecules are composed of specific combinations of atoms; different molecules are composed of combinations

More information

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques Introduction When two or more substances that do not react chemically are blended together, the components of the

More information

Laboratory 3. Development of an Equation. Objectives. Introduction

Laboratory 3. Development of an Equation. Objectives. Introduction Laboratory 3 Development of an Equation Objectives Apply laboratory procedures and make observations to investigate a chemical reaction. Based on these observations, identify the pattern of reactivity

More information

Acid / Base Titrations

Acid / Base Titrations Acid / Base Titrations v051413_7pm Objectives: Determine the concentration of a base solution using an acid standard. Optional: Precipitate an ionic salt for percent yield determination using the standardized

More information

Acid Base Titration Experiment ACID - BASE TITRATION LAB

Acid Base Titration Experiment ACID - BASE TITRATION LAB ACID - BASE TITRATION LAB MATERIALS and CHEMICALS Burette 50 ml Burette clamp Ring stand Stirring rod Plastic funnel Beakers (50 ml, 100 ml, 400 ml) Graduated cylinder (25 ml, 50 ml) 0.10 M NaOH 0.10 M

More information

By the end of this experiment the student should have learned:

By the end of this experiment the student should have learned: Experiment 3 SUBSTANCES, REACTIONS MIXTURES, AND Learning Objectives By the end of this experiment the student should have learned: 1. To distinguish elements from compounds. 2. To distinguish heterogeneous

More information

Recovery of Copper Renee Y. Becker Manatee Community College

Recovery of Copper Renee Y. Becker Manatee Community College Recovery of Copper Renee Y. Becker Manatee Community College Introduction In this lab we are going to start with a sample of copper wire. We will then use a sequence of reactions to chemically transform

More information

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II)

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II) : Absorption Spectroscopy of Cobalt(II) OBJECTIVES In successfully completing this lab you will: prepare a stock solution using a volumetric flask; use a UV/Visible spectrometer to measure an absorption

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

or a chemical change in several experimental trials.

or a chemical change in several experimental trials. Regular Chemistry Lab Chemical and Physical Changes. Intro: As we study matter, we base most of our classification and identification of pure substances on chemical and physical properties. A physical

More information

Shifts in Equilibrium: Le Châtelier s Principle

Shifts in Equilibrium: Le Châtelier s Principle 6 Shifts in Equilibrium: Le Châtelier s Principle Introduction Whenever a chemical reaction occurs, the reverse reaction can also occur. As the original reactants, on the left side of the equation, react

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge nternational Examinations Cambridge nternational Advanced Subsidiary and Advanced Level CHEMSTRY 9701/32 Paper 3 Advanced Practical Skills 2 May/June 2014 2 hours Candidates answer on the Question

More information

#30 Thermochemistry: Heat of Solution

#30 Thermochemistry: Heat of Solution #30 Thermochemistry: Heat of Solution Purpose: You will mix different salts with water and note any change in temperature. Measurements using beakers will be compared to measurements using polystyrene

More information

Stoichiometry ( ) ( )

Stoichiometry ( ) ( ) Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) /

More information

Synthesis of Benzoic Acid

Synthesis of Benzoic Acid E x p e r i m e n t 5 Synthesis of Benzoic Acid Objectives To use the Grignard reagent in a water free environment. To react the Grignard reagent with dry ice, CO 2(s). To assess the purity of the product

More information

Goal: During this lab students will gain a quantitative understanding of limiting reagents.

Goal: During this lab students will gain a quantitative understanding of limiting reagents. LIMITING REAGENT LAB: THE REACTION BETWEEN VINEGAR AND BAKING SODA Goal: During this lab students will gain a quantitative understanding of limiting reagents. Safety: Safety goggles should be worn at all

More information

Unit 10 Stoichiometry Chapter 11 of your textbook

Unit 10 Stoichiometry Chapter 11 of your textbook Unit 10 Stoichiometry Chapter 11 of your textbook Early Booklet E.C.: + 2 Unit 10.B Hwk. Pts.: / 21 Unit 10.B Lab Pts.: / 14 Late, Incomplete, No Work, No Units Fees? Y / N Learning Targets for Unit 10

More information

TOPIC 9. CHEMICAL CALCULATIONS III - stoichiometry.

TOPIC 9. CHEMICAL CALCULATIONS III - stoichiometry. TOPIC 9. CHEMICAL CALCULATIONS III - stoichiometry. Stoichiometric calculations. By combining a knowledge of balancing equations with the concept of the mole, it is possible to easily calculate the masses

More information

Experiment 6 Alcohols and Phenols

Experiment 6 Alcohols and Phenols Experiment 6 Alcohols and Phenols Alcohols are organic molecules that contain a hydroxyl (-) group. Phenols are molecules that contain an group that is directly attached to a benzene ring. Alcohols can

More information

Name: Unit 9- Stoichiometry Day Page # Description IC/HW

Name: Unit 9- Stoichiometry Day Page # Description IC/HW Name: Unit 9- Stoichiometry Day Page # Description IC/HW Due Date Completed ALL 2 Warm-up IC 1 3 Stoichiometry Notes IC 1 4 Mole Map IC X 1 5 Mole to Mole Practice IC 1 6 Mass to Mole Practice IC 1/2 X

More information

Lab: Types of Chemical Reactions

Lab: Types of Chemical Reactions Name: Date: Period: Lab: Types of Chemical Reactions ESSENTIAL QUESTION: How do we represent chemical reactions as a chemical equation? BACKGROUND- See class handout. PRELAB: 1. What is a chemical reaction

More information

What Do You Think? Investigate GOALS

What Do You Think? Investigate GOALS Activity 2 More Chemical Changes GOALS In this activity you will: Observe several typical examples of evidence that a chemical change is occurring. Make generalizations about the combinations of materials

More information

Set 1 Structure of the atoms & Chemical Equation Perfect Score F Matter is anything that. and has.

Set 1 Structure of the atoms & Chemical Equation Perfect Score F Matter is anything that. and has. STRUCTURE OF THE ATOMS 1. Matter is anything that. and has. 2. The particle theory of matter state that matter is.. 3. Type of particle Example 4. Property Solid Liquid Gas Diagrammatic representation

More information

To use calorimetry results to calculate the specific heat of an unknown metal. To determine heat of reaction ( H) from calorimetry measurements.

To use calorimetry results to calculate the specific heat of an unknown metal. To determine heat of reaction ( H) from calorimetry measurements. Calorimetry PURPOSE To determine if a Styrofoam cup calorimeter provides adequate insulation for heat transfer measurements, to identify an unknown metal by means of its heat capacity and to determine

More information

Minneapolis Community and Technical College. Separation of Components of a Mixture

Minneapolis Community and Technical College. Separation of Components of a Mixture Minneapolis Community and Technical College Chemistry Department Chem1020 Separation of Components of a Mixture Objectives: To separate a mixture into its component pure substances. To calculate the composition

More information

Water of Hydration Version 6.3

Water of Hydration Version 6.3 Water of Hydration Version 6.3 Michael J. Vitarelli Jr. Department of Chemistry and Chemical Biology Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 I. INTRODUCTION Hydrates are compounds that

More information

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Pre-lab Assignment: Reading: 1. Chapter sections 3.3, 3.4, 3.7 and 4.2 in your course text. 2. This lab handout. Questions:

More information

Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law)

Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law) Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law) Name: Date: The formation or destruction of chemical bonds is always accompanied by an energy exchange between the reactant molecules and the

More information

Separation and Qualitative Determination of Cations

Separation and Qualitative Determination of Cations Separation and Qualitative Determination of Cations Introduction Much of laboratory chemistry is focused on the question of how much of a given substance is contained in a sample. Sometimes, however, the

More information

Equilibrium and LeChatelier s Principle

Equilibrium and LeChatelier s Principle 1 Equilibrium and LeChatelier s Principle Purpose: To examine LeChatelier s Principle by studying disturbances applied to several equilibrium systems. Introduction Many chemical reactions reach a state

More information

2. Why do the discharge tubes get hot after running for a period of time?

2. Why do the discharge tubes get hot after running for a period of time? EXPERIIMENT #2 FLAME TESTS Note: Experiments #2 and #3 can be completed together in a single lab period (90 minutes). A combined data sheet for the two labs can be found after Experiment #3. Discussion:

More information

EXPERIMENT 7: THE LIMITING REACTANT

EXPERIMENT 7: THE LIMITING REACTANT EXPERIMENT 7: THE LIMITING REACTANT PURPOSE To find the ratio of moles of a reactant to moles of a product of a chemical reaction. To relate this ratio to the coefficients of these substances in the balanced

More information

EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /9 (To be completed prior to lab, read the experiment before attempting)

EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /9 (To be completed prior to lab, read the experiment before attempting) Name: Lab Section: EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /9 (To be completed prior to lab, read the experiment before attempting) 1. A student obtains the following data: Mass of test

More information

Experiment #7. Chemical Reactions.

Experiment #7. Chemical Reactions. Experiment #7. Chemical Reactions. Goals To observe chemical reactions and balance chemical equations. Background Chemical and Physical Changes Changes in matter are often classified as either physical

More information