Elemental Mass Percent and Empirical Formula from Decomposition

Size: px
Start display at page:

Download "Elemental Mass Percent and Empirical Formula from Decomposition"

Transcription

1 EXPERIMENT Elemental Mass Percent and Empirical Formula from Decomposition 10 Prepared by Edward L. Brown, Lee University The student will heat copper oxide in a methane atmosphere forming elemental copper. The masses of the original CuO and the resulting Cu will be used to arrive at the mass percent and empirical formula of the copper oxide. OBJECTIVE Ring Stand Bunsen Burner Rubber tubing A P P A R A T U S 15 cm Pyrex test tube Glass tubing (bent) APPARATUS AND CHEMICALS C H E M I C A L S Copper oxide (Cu x O y ) Elemental Mass Percent Compounds containing stable elements can be assayed to determine their elemental composition. A host of companies provide these elemental analysis reports to academic and industrial clients. The techniques and instruments used in these companies include Neutron Activation Analysis (NAA), Inductively Coupled Plasma Mass Spectroscopy (ICP-MS), and Proton Induced X-Ray Emission (PIXE), to name a few. At the introductory level of elemental analysis, we will limit our focus to compounds containing two (at most three) elements. In today s lab, the decomposition of Copper oxide provides the mass data needed to determine the mass percent of both elements. Copyright 2005 Chem21 LLC. No part of this work may be reproduced, transcribed, or used in any form by any means graphic, electronic, or mechanical, including, but not limited to, photocopying, recording, taping, Web distribution, or information storage or retrieval systems without the prior written permission of the publisher. For permission to use material from this work, contact us at info@chemistrylabmanual.com. Printed in United States of America.

2 Empirical Formulas The empirical formula of a compound is the simplest whole number ratio of its elements. This ratio can be either an atomic ratio or a molar ratio. The experimental determination of a compound s empirical formula occurs in three steps: Step 1: Step 2: Step 3: Determine the mass of each element present Convert the individual elemental masses into the number of moles of each element. Express the molar ratio of the two elements by dividing the number of moles of each element by the smaller of the two numbers. This will assign 1 mole to the element with the smallest number of moles and the other element will be assigned a number greater than or equal to 1 mole. This sequence of steps can be summarized using a table similar to Table 1. Sample Problem 1: The electrolysis (decomposition) of water produced 23.2 ml of Hydrogen gas (density = g/l) and 12 ml of Oxygen gas (density = g/l). What is the empirical formula of water? Step 1: Mass of the Elements g H g O Step 2: Moles of the Elements 2.085E-3 g g/mol 1.715E-2g 16 g/mol E-3 mol H 1.072E-3 mol O Step 3: Divide by smallest moles 1.93 mol H 1.00 mol O Step 4: Write the empirical formula H 2 O 1 or simply H 2 O Percent Composition from Empirical Formulas The percent composition of a compound is easily calculated if its empirical formula is known. An empirical formula gives us two essential facts about a compound s elemental composition: the identity of the elements and their relative ratios. For example, water (H 2 O) is composed of 2 atoms of hydrogen and 1 atom of oxygen. This information, Experiment

3 coupled with information displayed in the Periodic Table, allows the determination of the percent hydrogen and oxygen in water. Sample Problem 2: Determine the percent hydrogen and oxygen in water. Step 1: Moles of the Elements 2 mol H 1 mol O Step 2: Mass of the Elements 2 mol H1.008g/mol 1 mol O 16 g/mol g H 16 g O Step 3: Add the masses together to find the total mass g H 2 O Step 4: Divide the elemental masses by the total masses and multiply by 100 (2.016 / )100 (16 / ) % H % O Obviously, the reversal of these four steps will give the empirical formula from the percent composition. It should be noted that the mass percent of hydrogen and oxygen in water will always be % and % regardless of the source of the water. This observation led to the LAW OF DEFINITE PROPORTIONS. Molecular Formulas from Empirical Formulas While the empirical formula by definition shows the smallest whole number ratio of the elements, it may or may not be the molecular formula. The molecular formula reveals the actual elemental composition in a distinct molecule. For example, the molecular formula of hydrogen peroxide is H 2 O 2 but the smallest whole number ratio of the elements is HO (its empirical formula). We can obtain the molecular formula from the empirical formula if the molecular weight of the compound is known. It turns out that the molecular formula is the same whole number multiple of the empirical formula as the molecular mass is of the empirical mass. Comparing H 2 O 2 (molecular formula) to HO (empirical formula) Experiment

4 shows that the whole number multiple is 2. Two times HO will give H 2 O 2. In addition, the empirical mass of HO is g/mol ( ) while the molecular mass of H 2 O 2 is g/mol (( )+( )) again a multiple of 2. A template has been developed to guide you through the calculations in a problem of this type. This template is a combination of the approaches used previously in Sample Problem 1 and 2. After reading a problem, place the starting information into this template and fill in all missing information between your starting point and the answer. Sample Problem 3: The organic compound n-octylacetate belongs to a class of generally pleasant smelling compounds called esters. In fact, n-octylacetate smells like oranges. If this ester contains % C, % H, and % O by mass, what is its molecular formula? The molar mass of n-octylacetate is g/mol. Element Symbol C H O Percent (%) Mass (g) (if % is given, assume 100 g) Elemental Molar Mass (g/mole) (report to 1 SF > than starting number) Moles Empirical Molar (or Atomic) Ratio (whole numbers only) Empirical Formula C 5 H 10 O Empirical Mass (g/mole) Molecular Mass (g/mole) Molecular Molar Ratio Molecular Formula C 10 H 20 O 2 Table 1 Experiment

5 Decomposition of Cu x O y Copper oxide exists as either Copper I (cuprous) or Copper II (cupric) oxide. Heating either of these compounds with methane (CH 4 ) gas will produce copper metal. Both of these compounds have valuable chemical applications: cuprous oxide is used as a fungicide and an insecticide primarily in the fruit industry, cupric oxide has found notoriety in the area of superconductivity when it is blended with yttrium, barium and copper oxides. PROCEDURE 1. Flame dry a Pyrex test tube (15 cm or longer) by holding it vertically (mouth upward) with tongs in the flame of a Bunsen burner for 3 4 minutes. Rest the hot test tube on a clean dry surface until it has cooled to room temperature (about 5 minutes). Determine the mass of the test tube [Data Sheet Q1] by taring a small beaker on the balance and then placing your test tube in the beaker. 2. After recording the mass of the test tube, tare the scale with the test tube / beaker on it. Remove the test tube from the beaker and add g g of Copper oxide. hold the test tube over the copper oxide container and add a little copper oxide Rubber tubing to gas outlet gently place the test tube in the beaker and note the mass if the mass is g g, record the exact mass [Data Sheet Q2], if not, add more copper oxide Record the 4 digit Unknown Number of the Copper Oxide you used [Data Sheet Q3]. 3. Clamp the test tube to a ring stand with a bare metal test tube clamp. Figure 1 4. Assemble the remaining apparatus as shown in Figure 1 but DO NOT TURN ON THE GAS. 5. Next, light only the Bunsen burner THIS SHOULD NOT BE AN EXTREMELY HOT FLAME. 6. HAVE YOUR INSTRUCTOR OR TA ASSIST YOU WITH THE LIGHTING OF THE GAS THAT EXITS THE TEST TUBE. Experiment

6 Position the ring stand so that the test tube is well away from your face and arms. Hold the Bunsen burner in your right hand and reach behind the ring stand with your left hand to turn on the Gas. Move your lit Bunsen burner under the mouth of the test tube and SLOWLY turn on the gas to the test tube. Adjust the gas flow to the test tube such that the flame is only inches high. 7. Heat the Copper oxide with a cool flame for 5 minutes. 8. Then, adjust the Bunsen burner to produce a hot flame. Heat the test tube with this hot flame for minutes (depending on the type of copper oxide used). You will see a copper colored compound form during this heating process. 9. When the entire solid is a copper color, sweep any condensed water out of the test tube by moving the Bunsen burner along the top and bottom of the test tube. 10. Turn off the gas to the Bunsen burner, but allow the flame to keep burning at the mouth of the test tube while the rest of the test tube cools down. 11. After 5 minutes, turn off the gas to the test tube and remove the glass tubing (Caution: HOT!). Allow the test tube to cool to room temperature. 12. Record the mass of the test tube and Copper metal [Data Sheet Q4]. 13. Remove the Copper from the test tube and rub it gently on a hard surface (i.e. a penny) to produce the familiar shiny look and color of copper. You may dispose of this copper metal in the trash OR keep it as a lab souvenir. 14. Determine the mass of the Oxygen contained in the Copper oxide [Online Report Sheet Q5]. 15. Determine the mass percent of Copper [Online Report Sheet Q6] and Oxygen [Online Report Sheet Q7] in the Copper oxide. 16. Determine the moles of Copper [Online Report Sheet Q8] and Oxygen [Online Report Sheet Q9] in the Copper oxide. 17. Determine the molar ratio (don t round the answer) between Copper [Online Report Sheet Q10] and Oxygen [Online Report Sheet Q11] in the Copper oxide. 18. Give an empirical formula for Copper oxide (Round To Whole Numbers One Number Will Be A 1 ) [Online Report Sheet Q12]. 19. Write a balanced chemical equation for this reaction assuming you started with Copper (I) oxide [Online Report Sheet Q13]. 20. Write a balanced chemical equation for this reaction assuming you started with Copper (II) oxide [Online Report Sheet Q14]. Experiment

7 Waste Disposal: The elemental copper can be placed in the regular trash container. Lab Report: Once you have turned in your Instructor Data Sheet, lab attendance will be entered and lab attendees will be permitted to access the online data / calculation submission part of the lab report (click on Lab 10 Empirical Formula Copper Oxide). Enter your data accurately to avoid penalty. The lab program will take you in order to each calculation. If there is an error, you will be given additional submissions (the number and penalty to be determined by your instructor) to correct your calculation. Experiment

8 Laboratory 10 Student Data Sheet 1. Mass of the test tube g 2. Mass of the copper oxide g 3. Unknown Number of the Copper Oxide (4 digits) 4. Mass of the test tube and copper metal g Name: Laboratory 10 Instructor Data Sheet Section: 1. Mass of the test tube g 2. Mass of the copper oxide g 3. Unknown Number of the Copper Oxide (4 digits) 4. Mass of the test tube and copper metal g Experiment

Chemical Reactions of Copper and Percent Recovery

Chemical Reactions of Copper and Percent Recovery and Percent Recovery EXPERIMENT 9 Prepared by Edward L. Brown, Lee University To take copper metal through series of chemical reactions that regenerates elemental copper. Students will classify the various

More information

Separation of the Components of a Mixture

Separation of the Components of a Mixture Separation of the Components of a Mixture Prepared by Edward L. Brown, Lee University EXPERIMENT 3 To become familiar with the laboratory techniques used to separate different substances from one another.

More information

Experiment #5. Empirical Formula

Experiment #5. Empirical Formula Experiment #5. Empirical Formula Goal To experimentally determine the empirical formula of magnesium oxide based on reaction stoichiometry. Introduction The molecular formula (usually shortened to simply

More information

EXPERIMENT 6 Empirical Formula of a Compound

EXPERIMENT 6 Empirical Formula of a Compound EXPERIMENT 6 Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

AP Chemistry Laboratory #1

AP Chemistry Laboratory #1 Catalog No. AP8813 Publication No. 10528A Determination of the Empirical Formula of Silver Oxide AP Chemistry Laboratory #1 Introduction There is an official database that keeps track of the known chemical

More information

Physical Properties: Identification of a Pure Liquid

Physical Properties: Identification of a Pure Liquid EXPERIMENT Physical Properties: Identification of a Pure Liquid 7 Prepared by Edward L. Brown, Lee University and Verrill M. Norwood, Cleveland State Community Collee To identify an unknown liquid by comparin

More information

Moles and Chemical Formulas 11

Moles and Chemical Formulas 11 Moles and Chemical Formulas 11 LABORATORY GOALS Determine the simplest formula of a compound. Calculate the percent water in a hydrate. Determine the formula of a hydrate. LAB INFORMATION Time: Comments:

More information

Determination of Avogadro s Number via Electrolysis

Determination of Avogadro s Number via Electrolysis Determination of Avogadro s Number via Electrolysis EXPERIMENT 14 Prepared by Edward L. Brown, Lee University and Verrill M. Norwood, Cleveland State Community College To determine the value of Avogadro

More information

CSUS Department of Chemistry Experiment 2 Chem. 1A EXPERIMENT 2: HYDRATE PRE-LABORATORY ASSIGNMENT

CSUS Department of Chemistry Experiment 2 Chem. 1A EXPERIMENT 2: HYDRATE PRE-LABORATORY ASSIGNMENT Name: Lab Section: EXPERIMENT 2: HYDRATE PRE-LABORATORY ASSIGNMENT 1. A student obtains the following data: Mass of test tube: Mass of test tube and hydrate: Mass of test tube and anhydrous residue after

More information

Physical Properties: Identification of a Pure Liquid

Physical Properties: Identification of a Pure Liquid EXPERIMENT Physical Properties: Identification of a Pure Liquid 4 Prepared by Edward L. Brown, Lee University and Verrill M. Norwood, Cleveland State Community Collee To identify an unknown liquid by comparin

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

EXPERIMENT #6 Calculation of the Atomic Mass of Magnesium

EXPERIMENT #6 Calculation of the Atomic Mass of Magnesium OBJECTIVES: EXPERIMENT #6 Calculation of the Atomic Mass of Magnesium Observe the reaction between oxygen and magnesium Accurately weigh reaction mixtures before and after reaction Calculate the atomic

More information

CHEM 30A EXPERIMENT 4: HYDRATE. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

CHEM 30A EXPERIMENT 4: HYDRATE. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 Learning Outcomes CHEM 30A EXPERIMENT 4: HYDRATE Upon completion of this lab, the student will be able to: 1) Describe the differences between an anhydrous and hydrate compound. 2) Calculate the number

More information

Laboratory Experiment No. 3 The Empirical Formula of a Compound

Laboratory Experiment No. 3 The Empirical Formula of a Compound Introduction An initial look at mass relationships in chemistry reveals little order or sense. Mass ratios of elements in a compound, while constant, do not immediately tell anything about a compound s

More information

NOTES: 10.3 Empirical and Molecular Formulas

NOTES: 10.3 Empirical and Molecular Formulas NOTES: 10.3 Empirical and Molecular Formulas What Could It Be? Empirical Formulas Indicate the lowest whole number ratio of the atoms in a compound: 1) Determine moles of each element present in the compound

More information

Part II. Cu(OH)2(s) CuO(s)

Part II. Cu(OH)2(s) CuO(s) The Copper Cycle Introduction In this experiment, you will carry out a series of reactions starting with copper metal. This will give you practice handling chemical reagents and making observations. It

More information

Titration of Vinegar

Titration of Vinegar EXPERIMENT 8 Prepared by Edward L. Brown, Lee University and Verrill M. Norwood, Cleveland State Community Collee The student will become familiar with the techniques of titration and expressin a solution

More information

Classifying Chemical Reactions

Classifying Chemical Reactions Classifying Chemical Reactions Prepared by M.L. Holland and A.L. Norick, Foothill College Purpose of the Experiment To make observations when reactants are combined and become familiar with indications

More information

Unit 9 The Mole Chapter 10 of your textbook

Unit 9 The Mole Chapter 10 of your textbook Unit 9 The Mole Chapter 10 of your textbook Learning Targets for Unit 9 Early Booklet E.C.: + 2 Unit 9.A Hwk. Pts.: / 36 Unit 9.A Lab Pts.: / 32 Late, Incomplete, No Work, No Units Fees? Y / N 1.1 I can

More information

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise.

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Experiment 10 Stoichiometry- Gravimetric Analysis Pre-lab Assignment Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose The purpose this experiment

More information

EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /9 (To be completed prior to lab, read the experiment before attempting)

EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /9 (To be completed prior to lab, read the experiment before attempting) Name: Lab Section: EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /9 (To be completed prior to lab, read the experiment before attempting) 1. A student obtains the following data: Mass of test

More information

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus

More information

Limiting Reagent Synthesis of Aspirin Thomas M. Moffett Jr., SUNY Plattsburgh, 2007.

Limiting Reagent Synthesis of Aspirin Thomas M. Moffett Jr., SUNY Plattsburgh, 2007. Limiting Reagent Synthesis of Aspirin Thomas M. Moffett Jr., SUNY Plattsburgh, 007. Aspirin (acetylsalicylic acid) is the most common medicinal drug in use today. Aspirin is an analgesic (pain reliever),

More information

Formula weight of a compound is the sum of the atomic weights of all the atoms in the compound. The atomic weights are found on the periodic table

Formula weight of a compound is the sum of the atomic weights of all the atoms in the compound. The atomic weights are found on the periodic table Purpose The objective of this experiment is to describe the law of definite proportions and to give students experience in gravimetric analysis and error calculations. Theory The law of definite proportions

More information

Laboratory 3. Development of an Equation. Objectives. Introduction

Laboratory 3. Development of an Equation. Objectives. Introduction Laboratory 3 Development of an Equation Objectives Apply laboratory procedures and make observations to investigate a chemical reaction. Based on these observations, identify the pattern of reactivity

More information

Minneapolis Community and Technical College. Separation of Components of a Mixture

Minneapolis Community and Technical College. Separation of Components of a Mixture Minneapolis Community and Technical College Chemistry Department Chem1020 Separation of Components of a Mixture Objectives: To separate a mixture into its component pure substances. To calculate the composition

More information

Finding Formulas. using mass information about a compound to find its formula

Finding Formulas. using mass information about a compound to find its formula Finding Formulas using mass information about a compound to find its formula Molecular Formula Molecular formula is the actual formula of compounds which form molecules. For example, the molecular formula

More information

Please understand that you will NOT receive another copy of this packet! Name:

Please understand that you will NOT receive another copy of this packet! Name: Mole Unit Packet Please understand that you will NOT receive another copy of this packet! Name: Period: Introduction to The unit of the Mole is the HEART of all chemistry and most of its calculations.

More information

Section I: Synthesis reactions Synthesis reactions occur when two or more substances come together to form a single new substance.

Section I: Synthesis reactions Synthesis reactions occur when two or more substances come together to form a single new substance. TYPES OF CHEMICAL REACTIONS A Laboratory Investigation Purpose: Observe the five major types of reactions. Record observations for these reactions. Complete balanced equations for these reactions. Introduction:

More information

Salts are compounds composed of a metal ion plus a non-metal (or polyatomic) ion, e.g., sodium chloride (NaCl), and sodium phosphate (Na 3 PO 4 ).

Salts are compounds composed of a metal ion plus a non-metal (or polyatomic) ion, e.g., sodium chloride (NaCl), and sodium phosphate (Na 3 PO 4 ). Experiment 4 Water of Hydration Objective - Determine the percent of water in a hydrate. Introduction Salts are compounds composed of a metal ion plus a non-metal (or polyatomic) ion, e.g., sodium chloride

More information

Experiment 4: COMPOSITION OF A HYDRATE

Experiment 4: COMPOSITION OF A HYDRATE Experiment 4: COMPOSITION OF A HYDRATE Purpose: Determine the empirical formula of an unknown hydrate and the percentage by mass of water in the hydrate Performance Goals: Gain skills in the operation

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Chemical Formulae, Equations and Calculations NOTES 1.25: Write word equations and balanced chemical equations (including state symbols): For reactions

More information

Chemistry 151 Last Updated Dec Lab 11: Oxidation-Reduction Reactions

Chemistry 151 Last Updated Dec Lab 11: Oxidation-Reduction Reactions Chemistry 151 Last Updated Dec. 2012 Lab 11: Oxidation-Reduction Reactions Introduction Oxidation-reduction ( redox ) reactions make up a large and diverse part of chemical systems. A few examples include

More information

Synthesis of Benzoic Acid

Synthesis of Benzoic Acid E x p e r i m e n t 5 Synthesis of Benzoic Acid Objectives To use the Grignard reagent in a water free environment. To react the Grignard reagent with dry ice, CO 2(s). To assess the purity of the product

More information

Announcements. 1 point for every question attempted; 0.2 extra credit points for every correct answer

Announcements. 1 point for every question attempted; 0.2 extra credit points for every correct answer Announcements Print worksheet #3 prior to your Tuesday discussion section Solutions to worksheets #1 and #2 are posted online now A full schedule of readings and suggested problems is posted on the course

More information

Pre-Lab Read the entire laboratory assignment. Answer all pre-lab questions before beginning the lab.

Pre-Lab Read the entire laboratory assignment. Answer all pre-lab questions before beginning the lab. Name: Date: Pd: Lab Partner: Lab # 13: Types of Reactions, Predicting Products of Chemical Reactions Lab Accelerated Chemistry 1 Introduction: If you examine your bicycle after it has been left out in

More information

Chesapeake Campus Chemistry 111 Laboratory

Chesapeake Campus Chemistry 111 Laboratory Chesapeake Campus Chemistry 111 Laboratory Objectives Calculate molar mass using the ideal gas law and laboratory data. Determine the identity of an unknown from a list of choices. Determine how sources

More information

Lab #11: Heats of Reaction and Hess s Law Name: Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour:

Lab #11: Heats of Reaction and Hess s Law Name: Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour: Lab #11: Heats of Reaction and Hess s Law Name: _ Lab Exercise Chemistry II Partner: 10 points USE BLUE/BLACK INK!!!! Date: Hour: Goal: The goal of this lab is to determine the heat of reaction of burning

More information

Chemical Calculations: The Mole concept and Chemical Formula. Law of Definite Proportions (John Dalton) Chapter 9

Chemical Calculations: The Mole concept and Chemical Formula. Law of Definite Proportions (John Dalton) Chapter 9 Chapter 9 Chemical Calculations: The Mole concept and Chemical Formula This material is not included in Midterm 1 1 Law of Definite Proportions (John Dalton) Chapter 9 A given compound always contains

More information

o Test tube In this experiment, you ll be observing the signs of chemical reactions. These include the following:

o Test tube In this experiment, you ll be observing the signs of chemical reactions. These include the following: Experiment: Chemical Reactions & Chemical s Objective In this experiment, students perform a variety of chemical reactions. For each reaction, student identify the signs that a reaction has occurred, write

More information

Properties of Alkanes, Alkenes, Aromatic Compounds and an Alcohol

Properties of Alkanes, Alkenes, Aromatic Compounds and an Alcohol 1 of 5 1/26/2010 11:40 AM Experiment 2 Properties of Alkanes, Alkenes, Aromatic Compounds and an Alcohol In the reactions we will perform in this experiment, hexane will be used to represent the saturated

More information

THE MOLE CONCEPT CHAPTER 10. (Part 3) Empirical Formulas Molecular Formulas The Ideal Gas Law ACTIVE LEARNING IN CHEMISTRY EDUCATION ALICE

THE MOLE CONCEPT CHAPTER 10. (Part 3) Empirical Formulas Molecular Formulas The Ideal Gas Law ACTIVE LEARNING IN CHEMISTRY EDUCATION ALICE NAME PER DATE DUE ACTIVE LEARNING IN CHEMISTRY EDUCATION ALICE CHAPTER 10 THE MOLE CONCEPT (Part 3) Empirical Formulas Molecular Formulas The Ideal Gas Law 10-1 1997, A.J. Girondi NOTICE OF RIGHTS All

More information

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES Experiment 3 Name: INTRODUCTION TO MATTER: 9 4 CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL e PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES In this experiment, you will encounter various classification

More information

Determination of the Chemical Formula

Determination of the Chemical Formula Determination of the Chemical Formula Place pre-lab report on table for the TA to sign Hand in Lab Safety Certification and Identification with photo Collect laboratory equipment: Clean and oven dry one

More information

Aspirin Synthesis H 3 PO 4

Aspirin Synthesis H 3 PO 4 Aspirin Synthesis Experiment 10 Aspirin is the common name for the compound acetylsalicylic acid, widely used as a fever reducer and as a pain killer. Salicylic acid, whose name comes from Salix, the willow

More information

Physical and Chemical Changes

Physical and Chemical Changes Objectives Introduction Physical and Chemical Changes Gezahegn Chaka, Ph.D. Collin College Department of Chemistry To observe physical and chemical changes. To identify and characterize physical and chemical

More information

EXPERIMENT 17. Oxidation-Reduction Reactions INTRODUCTION

EXPERIMENT 17. Oxidation-Reduction Reactions INTRODUCTION EXPERIMENT 17 Oxidation-Reduction Reactions INTRODUCTION Oxidizing agents are compounds or ions that contain an element capable of achieving a lower oxidation state by gaining electrons The stronger the

More information

Station 1: Adiabatic Decompression Materials: Can of compressed air Infrared thermometer Graph paper

Station 1: Adiabatic Decompression Materials: Can of compressed air Infrared thermometer Graph paper Station 1: Adiabatic Decompression Can of compressed air Infrared thermometer Graph paper 1. Using the digital thermometer, take the initial temperature of the can and record it on the table on the activity

More information

PS3.10b. Determine the simplest formula for gold chloride if a g sample of gold chloride reacts with AgNO3 to produce gold nitrate and 0.

PS3.10b. Determine the simplest formula for gold chloride if a g sample of gold chloride reacts with AgNO3 to produce gold nitrate and 0. PS3.9. An oxide of osmium is pale yellow in color. A 2.89 g sample of this oxide contains 2.16 g of osmium. Assuming the remainder is oxygen determine the empirical formula of the compound. PS3.10a. Combustion

More information

CHEMICAL QUANTITIES. Chapter Six

CHEMICAL QUANTITIES. Chapter Six CHEMICAL QUANTITIES Chapter Six Introducing the Mole The dozen is a unit of quantity If I have a dozen atoms, I have 12 atoms by definition. The mole(mol) is a very important unit of quantity in chemistry.

More information

Recovery of Copper Renee Y. Becker Manatee Community College

Recovery of Copper Renee Y. Becker Manatee Community College Recovery of Copper Renee Y. Becker Manatee Community College Introduction In this lab we are going to start with a sample of copper wire. We will then use a sequence of reactions to chemically transform

More information

Lab: Types of Chemical Reactions

Lab: Types of Chemical Reactions Name: Date: Period: Lab: Types of Chemical Reactions ESSENTIAL QUESTION: How do we represent chemical reactions as a chemical equation? BACKGROUND- See class handout. PRELAB: 1. What is a chemical reaction

More information

6.1- Chemical vs. Physical - Pre-Lab Questions

6.1- Chemical vs. Physical - Pre-Lab Questions 6.1- Chemical vs. Physical - Pre-Lab Questions Name: Instructor: Date: Section/Group: 1. Using the procedures for each station provided as a guide, predict which properties you will be looking for in each

More information

Chem 102b Experiment 14: Part II Revised Preparation of Esters

Chem 102b Experiment 14: Part II Revised Preparation of Esters http://www.chem.arizona.edu/courseweb/981/chem102b1/fisher_esterification.html Purpose of the Experiment: Chem 102b Experiment 14: Part II Revised Preparation of Esters Students will be given alcohols

More information

Types of Chemical Reactions

Types of Chemical Reactions Types of Chemical Reactions Name - Partner - Pre-lab Questions 1.) List the four phase subscripts with each one s symbol. 2.) State the rule for determining whether a single replacement reaction will be

More information

COPYRIGHT FOUNTAINHEAD PRESS

COPYRIGHT FOUNTAINHEAD PRESS Water of Hydration Objectives To calculate the percent water by mass in several hydrated compounds; to dehydrate an unknown solid sample and identify it by comparing its percent water with known hydrated

More information

Introductory Chemistry Essentials Nivaldo J. Tro Fourth Edition

Introductory Chemistry Essentials Nivaldo J. Tro Fourth Edition Introductory Chemistry Essentials Nivaldo J. Tro Fourth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World

More information

Chemistry 212 MOLAR MASS OF A VOLATILE LIQUID USING THE IDEAL GAS LAW

Chemistry 212 MOLAR MASS OF A VOLATILE LIQUID USING THE IDEAL GAS LAW Chemistry 212 MOLAR MASS OF A VOLATILE LIQUID USING THE IDEAL GAS LAW To study the Ideal Gas Law. LEARNING OBJECTIVES To determine the molar mass of a volatile liquid. BACKGROUND The most common instrument

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS EXPERIMENT 11 (2 Weeks) Chemistry 110 Laboratory TYPES OF CHEMICAL REACTIONS PURPOSE: The purpose of this experiment is perform, balance and classify chemical reactions based on observations. Students

More information

PART I: MEASURING MASS

PART I: MEASURING MASS Chemistry I Name Dr. Saulmon 2014-15 School Year Laboratory 1 Measuring Mass, Volume, and Temperature Monday, August 25, 2014 This laboratory is broken into three parts, each with its own introduction,

More information

Topics in composition stoichiometry include the calculation of: Molar mass Percent Composition Molecular formula Empirical formulas

Topics in composition stoichiometry include the calculation of: Molar mass Percent Composition Molecular formula Empirical formulas Composition Stoichiometry Composition Stoichiometry NOTES 1 So far, we ve studied the products of a chemical reaction in terms of their identity. Stoichiometry is a branch of chemistry dealing with quantities.

More information

Chemistry Assessment Unit AS 3

Chemistry Assessment Unit AS 3 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2009 Chemistry Assessment Unit AS 3 assessing Module 3: Practical Examination 2 ASC32 [ASC32] FRIDAY 15 MAY,

More information

Composion Stoichiometry

Composion Stoichiometry Composition Stoichiometry blank 3.3.13.notebook Due: Ch 10 RG Hummmm... How do you "measure" bananas? > How many? Count 1 dozen naners or 12 naners Composion Stoichiometry 3 new conversion factors > Avogadro's

More information

Laboratory 23: Properties of Aldehydes and Ketones

Laboratory 23: Properties of Aldehydes and Ketones Introduction Laboratory 23: Properties of Aldehydes and Ketones Aldehydes and Ketones represent an important class of organic molecules containing a carbonyl carbon. In this experiment you will study the

More information

Making Ionic Compounds Lab#

Making Ionic Compounds Lab# Making Ionic Compounds Lab# Elements combine to form compounds. If energy is released as the compound is formed, the resulting product is more stable than the reacting elements. In this lab you will react

More information

Electrolysis: Splitting Water Student Advanced Version

Electrolysis: Splitting Water Student Advanced Version Electrolysis: Splitting Water Student Advanced Version In this lab you will use a battery to perform electrolysis, or chemical decomposition, of different aqueous solutions (like water) to produce gases

More information

Practice Multiple Choice

Practice Multiple Choice Practice Multiple Choice 1. A theory differs from a hypothesis in that a theory A. cannot be disproved C. always leads to the formation of a law B. represents an educated guess D. has been subjected to

More information

Mole Concept. Conversion Factors:

Mole Concept. Conversion Factors: Today s focus. Mole Concept Avogadro s Number is 6.02x10 23 The mole unit is used to express: 1. A mass quantity 2. A counting quantity 1 water molecule 1 mole of water molecules Conversion Factors: 6.02x10

More information

90.14 g/mol x g/mol. Molecular formula: molecular formula 2 empirical formula 2 C OH C O H

90.14 g/mol x g/mol. Molecular formula: molecular formula 2 empirical formula 2 C OH C O H Whole-number multiple: M x M actual compound C2OH5 90.14 g/mol x 45.07 g/mol 90.14 g/mol x 45.07 g/mol 2 Molecular formula: molecular formula 2 empirical formula 2 C OH 2 5 C O H 4 2 10 Check Your Solution

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Chemistry 151 Last Updated: Dec Lab 5: Hydrated Compounds

Chemistry 151 Last Updated: Dec Lab 5: Hydrated Compounds Chemistry 151 Last Updated: Dec. 2013 Lab 5: Hydrated Compounds Introduction When ionic compounds form, there are sometimes gaps or cavities within the crystal lattice that are large enough to trap water

More information

Lesson 01: Atomic Masses and Avogadro s Hypothesis. 01 Counting Atoms and Molecules

Lesson 01: Atomic Masses and Avogadro s Hypothesis. 01 Counting Atoms and Molecules Chemistry 11, Mole Concept, Unit 04 1 Lesson 01: Atomic Masses and Avogadro s Hypothesis 01 Counting Atoms and Molecules The chemical changes we observe always involve a certain number of atoms that rearrange

More information

Chemical Reactions: Introduction to Reaction Types

Chemical Reactions: Introduction to Reaction Types Chemical Reactions: Introduction to Reaction Types **Lab Notebook** Record observations for all of the chemical reactions carried out during the lab in your lab book. These observations should include:

More information

MOLECULAR FORMULA AND EMPIRICAL FORMULA

MOLECULAR FORMULA AND EMPIRICAL FORMULA MOLECULAR FORMULA AND EMPIRICAL FORMULA Molecular Formula is a formula indicating the actual number of atoms of each element making up a molecule. The molecular formula must accurately state the exact

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 8 Chemical Composition

More information

All gases display distinctive properties compared with liquid or solid. Among them, five properties are the most important and listed below:

All gases display distinctive properties compared with liquid or solid. Among them, five properties are the most important and listed below: CHEM 1111 117 Experiment 8 Ideal gas Objective: 1. Advance core knowledge of ideal gas law; 2. Construct the generator to produce gases; 3. Collect the gas under ambient temperature. Introduction: An ideal

More information

Na Na + +e - Cl+e - Cl -

Na Na + +e - Cl+e - Cl - LAB-Ionic vs. Covalent Bonding Have you ever accidentally used salt instead of sugar? Drinking tea that has been sweetened with salt or eating vegetables that have been salted with sugar tastes awful!

More information

Chemistry Assessment Unit AS 3

Chemistry Assessment Unit AS 3 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2009 Chemistry Assessment Unit AS 3 assessing Module 3: Practical Examination 1 ASC31 [ASC31] MONDAY 11 MAY,

More information

Classifying Chemical Reactions Analyzing and Predicting Products

Classifying Chemical Reactions Analyzing and Predicting Products Classifying Chemical Reactions Analyzing and Predicting Products Background A chemical reaction is defined as any process in which one or more substances are converted into new substances with different

More information

Objectives To prepare a dilute solution of a weak acid. To prepare a buffer of a specific ph value.

Objectives To prepare a dilute solution of a weak acid. To prepare a buffer of a specific ph value. E x p e r i m e n t Chemistry Is phun! Objectives To prepare a dilute solution of a weak acid. To prepare a buffer of a specific ph value. To observe the effects of adding acid and base to a buffer solution.

More information

THE MOLE (a counting unit)

THE MOLE (a counting unit) MOLE AND MATH THE MOLE (a counting unit) A mole represents a set or group, much in the same way that a dozen represents a set of twelve. 1 dozen eggs = 12 eggs; 1 mole eggs = 6.022 x 10 23 eggs 1 dozen

More information

Paper Reference. London Examinations IGCSE. Foundation Tier. Tuesday 10 November 2009 Afternoon Time: 1 hour 30 minutes

Paper Reference. London Examinations IGCSE. Foundation Tier. Tuesday 10 November 2009 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 4335/1F London Examinations IGCSE Chemistry Paper 1F Foundation Tier Tuesday 10 November 2009 Afternoon Time: 1 hour 30 minutes Materials required for examination

More information

Notes: Molar Mass, Percent Composition, Mole Calculations, and Empirical/Molecular Formulas

Notes: Molar Mass, Percent Composition, Mole Calculations, and Empirical/Molecular Formulas Notes: Molar Mass, Percent Composition, Mole Calculations, and Empirical/Molecular Formulas In Chemistry, a Mole is: the unit that measures the amount of a substance - equals 6.022 x 10 23 particles of

More information

Unit 5. Chemical Composition

Unit 5. Chemical Composition Unit 5 Chemical Composition Counting by Mass Individually mass a few Calculate the average mass of one Can count large numbers of by mass Atomic Mass Unit (amu) 1 amu = 1.66 x 10-24 g Subatomic particles

More information

CHEM 30A EXPERIMENT 8 & 9: ACID- BASE TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

CHEM 30A EXPERIMENT 8 & 9: ACID- BASE TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 Learning Outcomes CHEM 30A EXPERIMENT 8 & 9: ACID- BASE TITRATION Upon completion of this lab, the student will be able to: 1) Prepare a solution of primary standard 2) Determine the molar concentration

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate CEAC 105 GENERAL CHEMISTRY Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate Purpose: To enhance the understanding of stoichiometry, a reaction between iron and copper (II) sulfate

More information

CHEMISTRY Matter and Change. Chapter 10: The Mole

CHEMISTRY Matter and Change. Chapter 10: The Mole CHEMISTRY Matter and Change Chapter 10: The Mole CHAPTER 10 Table Of Contents Section 10.1 Measuring Matter Section 10.2 Mass and the Mole Section 10.3 Moles of Compounds Section 10.4 Empirical and Molecular

More information

Dr. White Chem 1B Saddleback College 1. Experiment 15 Thermodynamics of the Solution Process

Dr. White Chem 1B Saddleback College 1. Experiment 15 Thermodynamics of the Solution Process Dr. White Chem 1B Saddleback College 1 Experiment 15 Thermodynamics of the Solution Process Objectives To learn about the relationship between K and ΔG. To learn how the van't Hoff equation can be used

More information

1. Which laboratory glassware is shown in the diagram below?

1. Which laboratory glassware is shown in the diagram below? 1. Which laboratory glassware is shown in the diagram below? A) beaker B) Erlenmeyer flask C) crucible D) evaporating dish 2. Given the diagram representing a process being used to separate the colored

More information

Evaporation and Intermolecular Forces

Evaporation and Intermolecular Forces Evaporation and Intermolecular Forces In this experiment, temperature probes are placed in various liquids. Evaporation occurs when the probe is removed from the liquid's container. This evaporation is

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *0134775130* CHEMISTRY 5070/41 Paper 4 Alternative to Practical October/November 2016 1 hour Candidates answer on the Question Paper. No Additional

More information

MATTER. Chemistry is the study of matter and the changes that matter undergoes. Matter is anything that has mass and takes up space.

MATTER. Chemistry is the study of matter and the changes that matter undergoes. Matter is anything that has mass and takes up space. MATTER Chemistry is the study of matter and the changes that matter undergoes. Matter is anything that has mass and takes up space. Properties of Matter Physical Properties Can be observed without changing

More information

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017 General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 3 Mass Relationships in Chemical Reactions 1 In this chapter, Chemical structure and formulas in studying

More information

Unit 10 Stoichiometry Chapter 11 of your textbook

Unit 10 Stoichiometry Chapter 11 of your textbook Unit 10 Stoichiometry Chapter 11 of your textbook Early Booklet E.C.: + 2 Unit 10.B Hwk. Pts.: / 21 Unit 10.B Lab Pts.: / 14 Late, Incomplete, No Work, No Units Fees? Y / N Learning Targets for Unit 10

More information

SL Chemistry. Friday August 28th Monday, August 31, 15

SL Chemistry. Friday August 28th Monday, August 31, 15 SL Chemistry Friday August 28th 2015 Agenda Warm Up: NONE Empirical and Molecular Formula Notes E & M handout (HW) Internal Assessment - Project Guides HOMEWORK Topic 1.1 Introduction to Particulate Nature

More information

Pre-Lab Exercises Lab 3: Chemical Properties

Pre-Lab Exercises Lab 3: Chemical Properties Pre-Lab Exercises Lab 3: Chemical Properties 1. How is a chemical property different from a physical property? Name Date Section 2. How is a chemical change different from a physical change? 3. Give two

More information

Classifying Chemical Reactions: Lab Directions

Classifying Chemical Reactions: Lab Directions Classifying Chemical Reactions: Lab Directions Please Return Background: The power of chemical reactions to transform our lives is visible all around us in our homes, in our cars, even in our bodies. Chemists

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Matter Matter is anything that has mass and takes up space 2 Composition of Matter Atom number of protons = atomic number (Z)

More information

Atoms, Ions and Molecules Calculations

Atoms, Ions and Molecules Calculations Atoms, Ions and Molecules Calculations 1. How do you calculate the atomic mass of an element? Atomic Mass = (% abundance of isotope 1)(mass of isotope 1) + (% abundance of isotope2)(mass of isotope 2)

More information