Density modelling NH 3 -CO 2 -H 2 O liquid mixtures. Technology for a better society

Size: px
Start display at page:

Download "Density modelling NH 3 -CO 2 -H 2 O liquid mixtures. Technology for a better society"

Transcription

1 1 Density modelling NH 3 -CO 2 -H 2 O liquid mixtures

2 2 Liquid density model in Aspen Plus Clarke model (for aqueous electrolyte molar volume) Molar volume for electrolyte solutions (V m l ), applicable to mixed solvents Based on apparent components V l m (298.15K) = x w V,l w + x am V,l am + 2x w x am K w,am V,l,l 0.5 w V am + 2xw x c K w,c V,l,l w V 0.5 c + 2x am x c K am,c V,l,l am V 0.5 c + x BC V BC + x CM V CM + x CB V CB V m l (T) = V m l (298.15K) V l s liquid molar volume for solvent mixtures based V l on liquid volume quadratic mixing rule s (T) V s l (298.15K) Non-electrolyte apparent components (molecular solvents): V e l liquid molar volume for electrolytes H 2 O (w) NH 3 (am) CO 2 (c) Electrolyte apparent components (ca): DIPPR equation for the computation of the pure component liquid molar volume: V W,l, V am,l and V c,l NH 4 HCO 3 (BC) NH 4 NH 2 COO (CM) (NH 4 ) 2 CO 3 (CB) x BC +x CM +x BC V ca = V ca + A ca, with x 1+ x BC +x CM +x w + x am + x c + x BC + x CM + x CB = 1 BC and where x i is computed from the true ionic concentrations 9 parameters to be estimated: K w,am, K w,c, K am,c, V BC, A BC, V CM, A CM, V CB, A CB

3 3 Default (Aspen Plus) liquid density model validation Default value of parameters: K w,am = 0 K w,c = 0; K am,c = 0 V BC = m3 A BC = m3 V CM = m3 A CM = m3 V CB = m3 A CB = m3 If experimental data obtained at P vap > P atm and T < 0 C are not considered, the density is underestimated up to 20% Perkin (1889) -20% 3.9 T( C) 15.0 Perry s chemical engineers handbook 0 T( C) 25.0 Liu et al. (2012) 10.0 T( C) 50.0 Lichtfers (2000) 39.9 T( C) 80.1 This work (Lab samples) T C = 27.0 This work (Pilot plant samples) m NH3 0.6 m NH3 1.5 m NH3 1.9 m NH3 m NH T( C) m NH3 mol NH3 = = 17.7 CO 2 loading CO 2 loading CO 2 loading mol CO2 mol CO2 mol CO2 = 0 = 0 = 0 0 CO 2 loading mol CO2 mol NH CO 2 loading mol CO 2 mol NH3 = CO 2 loading mol CO 2 mol NH Perkin. J Chem Soc 55 (1889) 680 Perry et al. Perry s chemical engineers handbook, 8th ed.; McGraw-Hill: New York, 2008 Liu et al. J Chem Eng Data 57 (2012) Technology Lichtfers (2000) for a better society

4 4 Liquid density modelling NH 3 -H 2 O mixtures Regressed parameter: K w,am = ± K w,c = 0; K am,c = 0 Average absolute relative deviation: AARD % = 100 Absolute average deviation: AAD kg m 3 = 1 N N N i=1 N i=1 ρ exp,i ρ calc,i ρ exp,i ρ exp,i ρ calc,i Density regression of unloaded aqueous NH 3 solutions from the literature [1,2,3,4] using experimental data obtained at T 0 C and with P vap < P atm Perkin (1889) 3.9 T( C) 15.0 m NH3 = 26.5 CO 2 loading mol CO2 = 0 Perry s chemical engineers handbook 0 T( C) m NH CO 2 loading mol CO2 = 0 Liu et al. (2012) 10.0 T( C) m NH CO 2 loading mol CO2 = 0 Lichtfers (2000) 40.0 T( C) m NH CO 2 loading mol CO2 = 0 AARD = 0. 4% max ARD = 1. 5% AAD = 3. 6 kg m3 max AD kg = m 3 [1] Perkin. J Chem Soc 55 (1889) 680 [2] Perry et al. Perry s chemical engineers handbook, 8th ed.; McGraw-Hill: New York, 2008 [3] Liu et al. J Chem Eng Data 57 (2012) Technology [4] Lichtfers (2000) for a better society

5 5 Liquid density modelling CO 2 -NH 3 -H 2 O mixtures Fixed parameters: K w,am = ± K w,c = 0 K am,c = 0 Regressed parameters: V BC = ± m3 A BC = ± m3 V CM = ± m3 A CM = 0.09 ± 0.04 m3 V CB = 0.12 ± 0.05 m3 A CB = 0.2 ± 0.3 m3 Density regression of CO 2 -loaded aqueous NH 3 solutions from the literature [1] using experimental data obtained at T 0 C and with P vap < P atm Lichtfers (2000) 39.9 T( C) m NH3 mol NH CO 2 loading mol CO AARD = 0. 1% max ARD = 0. 6% AAD = 1. 0 kg m3 max AD kg = 5. 8 m 3 But highly correlated parameters with high standard deviation in some cases Additional experiments might be required for modelling [1] Lichtfers (2000) 5

6 6 Liquid density model validation Regressed parameters: K w,am = K w,c = 0; K am,c = 0 V BC = m3 A BC = m3 V CM = m3 A CM = 0.09 m3 V CB = 0.12 m3 A CB = 0.2 m3 Model validation with independent liquid density measurements of the samples taken during the pilot plant tests of the CO 2 absorber This work (Lab samples) T C = 27.0 m NH3 mol NH3 This work (Pilot plant samples) 11.9 T( C) m NH3 = 17.7 CO 2 loading mol CO 2 mol NH3 = CO 2 loading mol CO The model consistently underpredicts the experimental liquid density values, but always below 2% AARD = 0. 6% max ARD = 1. 8% AAD = 6. 9 kg m3 max AD kg = m 3

7 7 Density model for CO 2 -NH 3 -H 2 O liquid mixtures Perkin (1889) Perry s chemical engineers handbook Liu et al. (2012) Lichtfers (2000) This work (Lab samples) -20% This work (Pilot plant samples) Default Aspen (Thomsen) AARD, % (max) 7.3 (21.1) ARD, kg/m 3 (max) 77.2 (243.6) This work (Thomsen) 0.5 (1.8) 5.5 (18.5) Average absolute relative deviation: AARD % = 100 N Absolute average deviation: AAD kg m 3 = 1 N N i=1 N i=1 ρ exp,i ρ calc,i ρ exp,i ρ exp,i ρ calc,i Perkin. J Chem Soc 55 (1889) 680 Perry et al. Perry s chemical engineers handbook, 8th ed.; McGraw-Hill: New York, 2008 Liu et al. J Chem Eng Data 57 (2012) Lichtfers (2000)

8 8 CAP pilot testing CO 2 absorber tests

9 9 Test rig CO 2 absorber

10 10 Systematic treatment of raw data from pilot plant tests min F = y y σ y constrained to f x, y, u = u u σ u 2

11 11 Automatized steady state detection Experiment 14 Experiment 21 Sample 1 Sample 1 Sample 2 Sample 2

12 12 Mass balances before data reconciliation CO 2 capture test NH 3 removal test Composition and flowrate of liquid streams are critical for closing the mass balances

13 13 Reconciled data for analysis and modelling Inlet gas Failure in the in the inlet gas flowrate sensor during the tests CO 2 capture test NH 3 removal test

14 14 Reconciled data for analysis and modelling Outlet gas CO 2 capture test NH 3 removal test

15 15 Reconciled data for analysis and modelling Inlet liquid CO 2 capture test NH 3 removal test

16 16 Reconciled data for analysis and modelling Outlet liquid Most uncertainties are in the measurement of the flowrate and composition of the outlet liquid stream CO 2 capture test NH 3 removal test

Current status of R&D in post combustion CO 2 capture

Current status of R&D in post combustion CO 2 capture Current status of R&D in post combustion CO 2 capture Kaj Thomsen, Ph.D. Center for Energy Resources Engineering, CERE DTU Chemical Engineering Technical University of Denmark Outline Choice of solvent

More information

Optimal design of a CO 2 absorption unit and assessment of solvent degradation

Optimal design of a CO 2 absorption unit and assessment of solvent degradation Optimal design of a CO 2 absorption unit and assessment of solvent degradation Mid-term Presentation Grégoire Léonard Table of Content 1. Introduction 2. Objectives 3. Modeling and optimal design 4. Solvent

More information

Py x P P P. Py x P. sat. dq du PdV. abs Q S. An Innovative Approach in the G U TS PV P P G U TS PV T H U PV H U PV. abs. Py x P. sat.

Py x P P P. Py x P. sat. dq du PdV. abs Q S. An Innovative Approach in the G U TS PV P P G U TS PV T H U PV H U PV. abs. Py x P. sat. E a 1 1 sat sat ln Py x P Py x P K H k Ae R E sat a Py x P 1 1 sat ln K1 R Py x P K H k Ae R 1 CO P H 1 1 abs ln K H H 1/ R Q C 1 1 CO P ln S K H K1 R 1 P H abs H P K1 R CP 1 K1 R 1/ R S Q P 1 E a E du

More information

Contents. 1 Introduction 4. 2 Methods Results and Discussion 15

Contents. 1 Introduction 4. 2 Methods Results and Discussion 15 Contents 1 Introduction 4 2 Methods 11 3 Results and Discussion 15 4 Appendices 21 4.1 Variable Definitions................................ 21 4.2 Sample Calculations............................... 22

More information

Chapter 2 Introduction to Aqueous Speciation

Chapter 2 Introduction to Aqueous Speciation Chapter 2 Introduction to Aqueous Speciation Overview It is our belief that the predictive modeling of aqueous systems requires that the system be fully speciated. This allows for smoother extrapolation

More information

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00 10.551 Systems Engineering Spring 2000 Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant Date: 2/25/00 Due: 3/3/00 c Paul I. Barton, 14th February 2000 At our Nowhere City

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.1- Types of solutions A solution is a homogenous mixture of 2 or

More information

Chapter 12 & 13 Test Review. Bond, Ionic Bond

Chapter 12 & 13 Test Review. Bond, Ionic Bond Chapter 12 & 13 Test Review A solid solute dissolved in a solid solvent is an Alloy What is happening in a solution at equilibrium? The Ionic rate of Bond dissolving is equal to the rate of crystallization.

More information

Chapter (4) Motion of Fluid Particles and Streams

Chapter (4) Motion of Fluid Particles and Streams Chapter (4) Motion of Fluid Particles and Streams Read all Theoretical subjects from (slides Dr.K.AlASTAL) Patterns of Flow Reynolds Number (R e ): A dimensionless number used to identify the type of flow.

More information

Name: Date: Grade. Work Session # 12: Intermolecular Forces

Name: Date: Grade. Work Session # 12: Intermolecular Forces Name: Date: Grade Work Session # 12: Intermolecular Forces All questions below must be answered during the lab. Show all work and express your answers with appropriate units and the correct number of significant

More information

PLEASE DO NOT MARK ON THE EXAM. ALL ANSWERS SHOULD BE INDICATED ON THE ANSWER SHEET. c) SeF 4

PLEASE DO NOT MARK ON THE EXAM. ALL ANSWERS SHOULD BE INDICATED ON THE ANSWER SHEET. c) SeF 4 Chem 130 EXAM 4 Fall 99 PLEASE DO NOT MARK ON THE EXAM. ALL ANSWERS SHOULD BE INDICATED ON THE ANSWER SHEET QUESTIONS 1-5 MAY HAVE MORE THAN ONE POSSIBLE ANSWER CIRCLE ALL CORRECT RESPONSES TO EACH QUESTION

More information

0 o C. H vap. H evap

0 o C. H vap. H evap Solution. Energy P (00 ) Pν x 0 5 ρ 850,4 J kg - J kg Power kg s 000,4 600 70 W Solution. 00 o C H evap H vap 0 o C H liq 00 t H liq (4. x0 t ) dt 4.t x0 0 40 0 40 kj kg - H evap 40,68 J mol - (From Appendix

More information

DYNAMIC SIMULATOR-BASED APC DESIGN FOR A NAPHTHA REDISTILLATION COLUMN

DYNAMIC SIMULATOR-BASED APC DESIGN FOR A NAPHTHA REDISTILLATION COLUMN HUNGARIAN JOURNAL OF INDUSTRY AND CHEMISTRY Vol. 45(1) pp. 17 22 (2017) hjic.mk.uni-pannon.hu DOI: 10.1515/hjic-2017-0004 DYNAMIC SIMULATOR-BASED APC DESIGN FOR A NAPHTHA REDISTILLATION COLUMN LÁSZLÓ SZABÓ,

More information

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs Unit 22. Analysis of Steady State CSRs Overview Reaction engineering involves constructing an accurate mathematical model of a real world reactor and then using that model to perform an engineering task

More information

Simulation of Electrolyte Processes: Status and Challenges

Simulation of Electrolyte Processes: Status and Challenges Simulation of Electrolyte Processes: Status and Challenges Paul M Mathias and Chau-Chyun Chen Aspen Technology, Inc. 12 March 2002 AIChE Spring 2002 Meeting AIChE 2002 Spring Meeting. Summary Opportunities/needs

More information

Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling

Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling P.J.G. Huttenhuis, E.P. van Elk, S. Van Loo, G.F. Versteeg Procede Gas Treating B.V., The Netherlands 11 th MEETING of the INTERNATIONAL

More information

Solutions, Ions & Acids, Bases (Chapters 3-4) Example - Limiting Reagents. Percent Yield. Reaction Yields. Yield - example.

Solutions, Ions & Acids, Bases (Chapters 3-4) Example - Limiting Reagents. Percent Yield. Reaction Yields. Yield - example. Solutions, Ions & Acids, Bases (Chapters 3-4) Chem 107 T. Hughbanks Example - Limiting Reagents SiCl 4 is used in making computer chips. It is produced by the reaction: SiO 2 + 2 C + 2 Cl 2 SiCl 4 + 2

More information

Solutions, Ions & Acids, Bases (Chapters 3-4)

Solutions, Ions & Acids, Bases (Chapters 3-4) Solutions, Ions & Acids, Bases (Chapters 3-4) Chem 107 T. Hughbanks Example - Limiting Reagents SiCl 4 is used in making computer chips. It is produced by the reaction: SiO 2 + 2 C + 2 Cl 2 SiCl 4 + 2

More information

CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM EVAPORATOR

CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM EVAPORATOR Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM

More information

Chemistry B11 Chapter 5 Chemical reactions

Chemistry B11 Chapter 5 Chemical reactions Chapter 5 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl A + BC AC +

More information

Ammonia Gas Absorption

Ammonia Gas Absorption Ammonia Gas Absorption by Oscar D. Crisalle Professor Chemical Engineering Department University of Florida crisalle@che.ufl.edu Revision 12: September 24, 2013 Ammonia Absorption Rev 08-04/15/2013 Page

More information

ALE 9. Equilibrium Problems: ICE Practice!

ALE 9. Equilibrium Problems: ICE Practice! Name Chem 163 Section: Team Number: ALE 9. Equilibrium Problems: ICE Practice! (Reference: 17.5 Silberberg 5 th edition) Equilibrium Calculations: Show all work with correct significant figures. Circle

More information

Simulation of CO 2 Removal by Potassium Taurate Solution

Simulation of CO 2 Removal by Potassium Taurate Solution A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 57, 2017 Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza, Serafim Bakalis Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-48-8;

More information

Analysis of Performance of Packed Columns

Analysis of Performance of Packed Columns Analysis of Performance of Packed Columns There are two packed column experiments in the Unit Operations lab: Liquid-Liquid Extraction (LLE) and Gas Absorption (GA). In both of these experiments, a solute

More information

Propylene Hydroformylation

Propylene Hydroformylation www.optience.com Propylene Hydroformylation Objective: Building Fedbatch reactors with Pressure Control In this example, we simulate a multiphase batch reactor for Propylene Hydroformylation and also explain

More information

SOLUTION CONCENTRATIONS

SOLUTION CONCENTRATIONS SOLUTION CONCENTRATIONS The amount of solute in a solution (concentration) is an important property of the solution. A dilute solution contains small quantities of solute relative to the solvent, while

More information

HTU of Acetone-Toluene-Water Extraction in a Pulsed Column

HTU of Acetone-Toluene-Water Extraction in a Pulsed Column HU of Acetone-oluene-Water Etraction in a Pulsed Column erdthai Vatanatham*, Pisan erasukaporn, and Paisan Lorpongpaiboon Department of Chemical Engineering, Kasetsart University ABSRAC he mass transfer

More information

Chapter 11 Review Packet

Chapter 11 Review Packet Chapter 11 Review Packet Name Multiple Choice Portion: 1. Which of the following terms is not a quantitative description of a solution? a. molarity b. molality c. mole fraction d. supersaturation 2. Which

More information

PREDICTION OF PHYSICAL PROPERTIES OF FOODS FOR UNIT OPERATIONS

PREDICTION OF PHYSICAL PROPERTIES OF FOODS FOR UNIT OPERATIONS PERIODICA POLYTECHNICA SER. CHEM. ENG. VOL. 45, NO. 1, PP. 35 40 (2001) PREDICTION OF PHYSICAL PROPERTIES OF FOODS FOR UNIT OPERATIONS Ágnes BÁLINT Department of Chemical Technology Budapest University

More information

Mass Transfer Rate Parameters of Sulzer EX Laboratory Scale Gauze Structured Packing

Mass Transfer Rate Parameters of Sulzer EX Laboratory Scale Gauze Structured Packing A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 69, 2018 Guest Editors: Elisabetta Brunazzi, Eva Sorensen Copyright 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-66-2; ISSN 2283-9216 The Italian

More information

Updating 8 m 2MPZ and Independence Models

Updating 8 m 2MPZ and Independence Models Updating 8 m 2MPZ and Independence Models Quarterly Report for January 1 March 31, 2013 by Brent Sherman Supported by the Texas Carbon Management Program and Carbon Capture Simulation Initiative McKetta

More information

Chem. 1C Midterm 2 Version B May 11, 2016

Chem. 1C Midterm 2 Version B May 11, 2016 Chem. 1C Midterm 2 Version B May 11, 2016 First initial of last name Name: Print Neatly. You will lose 1 point if I cannot read your name or perm number. Perm Number: All work must be shown on the exam

More information

CH 221 Sample Exam Exam I Name: Lab Section:

CH 221 Sample Exam Exam I Name: Lab Section: Exam I Name: Lab Section: Part I: Multiple Choice Questions (100 Points) Use a scantron sheet for Part I. There is only one best answer for each question. 1. At 0 C, a bottle contains 325 ml of water in

More information

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative properties to the concentrations of solutions. Calculate

More information

DME(10 TPD) Process Simulation Using Aspen Plus Release Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

DME(10 TPD) Process Simulation Using Aspen Plus Release Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University DME(10 TPD) Process Simulation Using Aspen Plus Release 12.1 Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University Overall Flowsheet for DME Production Unit 18 TO FLARE 17 DA-103

More information

SELECTIVE REMOVAL OF CARBON DIOXIDE FROM AQUEOUS AMMONIA SOLUTIONS

SELECTIVE REMOVAL OF CARBON DIOXIDE FROM AQUEOUS AMMONIA SOLUTIONS Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice SELECTIVE REMOVAL OF CARBON DIOXIDE FROM AQUEOUS AMMONIA SOLUTIONS

More information

Acids, Bases and Titrations Chapter 4 M. Shozi CHEM110 / 2014

Acids, Bases and Titrations Chapter 4 M. Shozi CHEM110 / 2014 Acids, Bases and Titrations Chapter 4 M. Shozi CHEM110 / 2014 ACID-BASE REACTIONS ACIDS Arrhenius: Compounds that contain an ionisable H and able to ionise in aqueous solution to form H + or H 3 O + Strong

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat.

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. CHEM134- F18 Dr. Al- Qaisi Chapter 06: Thermodynamics Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. Energy is anything that has the capacity

More information

Acid-Base Equilibria and Solubility Equilibria Chapter 17

Acid-Base Equilibria and Solubility Equilibria Chapter 17 PowerPoint Lecture Presentation by J. David Robertson University of Missouri Acid-Base Equilibria and Solubility Equilibria Chapter 17 The common ion effect is the shift in equilibrium caused by the addition

More information

Chapter 13. Characteristics of a Solution. Example of A Homogenous Mixtures. Solutions

Chapter 13. Characteristics of a Solution. Example of A Homogenous Mixtures. Solutions Chapter 13 Solutions Characteristics of a Solution A solution is a homogeneous mixture A solution is composed of a: Solute: the substance in lesser amount Solvent: the substance in greater amount Two liquid

More information

Supplementary material

Supplementary material Ionic Liquid Design and Process Simulation for Decarbonization of Shale Gas XinyanLiu,, Ying Huang, Yongsheng Zhao, RafiqulGani, XiangpingZhang, *, SuojiangZhang *, Beijing Key Laboratory of Ionic Liquids

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: Solutions In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. Agitation prevents settling

More information

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i =

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i = Properties of Solution Practice Exam Solutions Name (last) (First) Read all questions before you start. Show all work and explain your answers. Report all numerical answers to the proper number of sig.

More information

Reactions in Aqueous Solution

Reactions in Aqueous Solution Reading Assignments: Reactions in Aqueous Solution Chapter 4 Chapter 4 in R. Chang, Chemistry, 9 th Ed., McGraw-Hill, 2006. or previous editions. Or related topics in other textbooks. Consultation outside

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 214 Supporting Information Theory: The physical properties of inary mixtures in different mass fractions

More information

Available online at Energy Procedia 00 (2008) GHGT-9

Available online at   Energy Procedia 00 (2008) GHGT-9 Available online at www.sciencedirect.com Energy Procedia (8) Energy Procedia www.elsevier.com/locate/xxx GHGT-9 Quantitative Evaluation of the Aqueous-Ammonia Process for CO Capture Using Fundamental

More information

SIEVE TRAY EFFICIENCY USING CFD MODELING AND SIMULATION

SIEVE TRAY EFFICIENCY USING CFD MODELING AND SIMULATION SIEVE TRAY EFFICIENCY USING CFD MODELING AND SIMULATION Getye Gesit* School of Chemical and Bio Engineering Addis Ababa Institute of Technology, Addis Ababa University ABSTRACT In this work, computational

More information

Exam 1 Chemical Reaction Engineering 26 February 2001 Closed Book and Notes

Exam 1 Chemical Reaction Engineering 26 February 2001 Closed Book and Notes Exam 1 Chemical Reaction Engineering 26 February 21 Closed Book and Notes (2%) 1. Derive the unsteady-state mole balance for a chemical species A for a packed bed reactor using the following steps: a)

More information

Prediction of N 2. O solubilities in alkanolamine solutions from density data

Prediction of N 2. O solubilities in alkanolamine solutions from density data Prediction of N O solubilities in alkanolamine solutions from density data 1 Ardi Hartono and Hallvard F. Svendsen 1 st Post Combustion Capture Conference Abu Dhabi, UAE, May 17-19, 011 Outline Introduction

More information

Modern Chemistry Chapter 12- Solutions

Modern Chemistry Chapter 12- Solutions Modern Chemistry Chapter 12- Solutions Section 1- Types of Mixtures Solutions are homogeneous mixtures of two or more substances in a single phase. Soluble describes a substance as capable of being dissolved.

More information

EXPERIMENT 2 DETERMINATION OF K a USING THE CONDUCTANCE METHOD

EXPERIMENT 2 DETERMINATION OF K a USING THE CONDUCTANCE METHOD EXPERIMENT 2 DETERMINATION OF K a USING THE CONDUCTANCE METHOD Introduction Equilibrium Processes When a pure sample of liquid-state acetic acid (i.e., CH 3 COOH (l) /HAc (l) ) is added to a beaker of

More information

Reactions in Aqueous Solutions Chang & Goldsby modified by Dr. Hahn

Reactions in Aqueous Solutions Chang & Goldsby modified by Dr. Hahn Reactions in Aqueous Solutions Chang & Goldsby modified by Dr. Hahn Chapter 4 Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of

More information

Equation Writing for a Neutralization Reaction

Equation Writing for a Neutralization Reaction Equation Writing for a Neutralization Reaction An Acid-Base reaction is also called a Neutralization reaction because the acid (generates H + or H 3 O + ) and base (generates OH ) properties of the reactants

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Acquisition of reaction rate data Dr. Zifei Liu Uncertainties in real world reaction rate data Most interesting reaction systems involves multiple reactions,

More information

Class 3 8/31/10. Friday, August 27 th. Mass & Volume Flow Rate Chemical Composition

Class 3 8/31/10. Friday, August 27 th. Mass & Volume Flow Rate Chemical Composition Class 3 Friday, August 27 th Which of the following cannot be linearized? (P is in mm Hg and T is in degrees Celsius, m, a, b and c are constants). The concentrations of [H 2 ], [Br 2 ], and [H 2 O] are

More information

Survey Calculations Single Surveys

Survey Calculations Single Surveys Survey Calculations Single Surveys Introduction Survey calculations are single point calculations strung together in series. They are also referred to as multiple point calculations. These calculations

More information

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form Ummm Solutions Solutions Solutions are homogeneous mixtures of two or more pure substances. In a solution, the solute is dispersed uniformly throughout the solvent. Solutions The intermolecular forces

More information

The Refined Electrolyte-NRTL Model applied to CO 2 -H 2 O-alkanolamine systems

The Refined Electrolyte-NRTL Model applied to CO 2 -H 2 O-alkanolamine systems 1 The Refined Electrolyte-NRTL Model applied to CO 2 -H 2 O-alkanolamine systems - Equilibrium model predictions - Implementation into the CO2SIM simulator., Finn Andrew Tobiesen*, Mehdi Karimi, Xiao Luo,

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

Chemistry 116. Dr. Michelle Richards-Babb Dr. Babb. Tasks for first week of class:

Chemistry 116. Dr. Michelle Richards-Babb Dr. Babb. Tasks for first week of class: Chemistry 116 Dr. Michelle Richards-Babb Dr. Babb Read syllabus. Tasks for first week of class: Purchase lab goggles, lab apron, and Chem 116 Lab Manual from WVU Bookstore or Book Exchange. NOTE: White

More information

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM I-Lung Chien and Kai-Luen Zeng Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei

More information

15. Studio ScaleChem Getting Started

15. Studio ScaleChem Getting Started 15. Studio ScaleChem Getting Started Terminology Analysis Brines Gases Oils Reconciliation Before we can discuss how to use Studio ScaleChem we must first discuss some terms. This will help us define some

More information

Synergy between Data Reconciliation and Principal Component Analysis.

Synergy between Data Reconciliation and Principal Component Analysis. Plant Monitoring and Fault Detection Synergy between Data Reconciliation and Principal Component Analysis. Th. Amand a, G. Heyen a, B. Kalitventzeff b Thierry.Amand@ulg.ac.be, G.Heyen@ulg.ac.be, B.Kalitventzeff@ulg.ac.be

More information

Homework #4 Solution. μ 1. μ 2

Homework #4 Solution. μ 1. μ 2 Homework #4 Solution 4.20 in Middleman We have two viscous liquids that are immiscible (e.g. water and oil), layered between two solid surfaces, where the top boundary is translating: y = B y = kb y =

More information

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual Ch 4 Chemical Reactions Ionic Theory of Solutions - Ionic substances produce freely moving ions when dissolved in water, and the ions carry electric current. (S. Arrhenius, 1884) - An electrolyte is a

More information

Chapter 8 Acids, Bases, and Acid-Base Reactions. An Introduction to Chemistry by Mark Bishop

Chapter 8 Acids, Bases, and Acid-Base Reactions. An Introduction to Chemistry by Mark Bishop Chapter 8 Acids, Bases, and Acid-Base Reactions An Introduction to Chemistry by Mark Bishop Chapter Map Arrhenius Base Definitions A base is a substance that generates OH when added to water. A basic solution

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions Solutions Homogeneous mixtures of two or more substances Composition is uniform throughout the sample No chemical reaction between the components of the mixture Solvents

More information

Name: Period: Date: solution

Name: Period: Date: solution Name: Period: Date: ID: A Solutions Test A Matching Use the choices below to answer the following 5 questions. a. Hydrogen bond d. Electrolyte b. Polar molecule e. Nonelectrolyte c. Nonpolar molecule 1.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Oxidation is the and reduction is the. A) loss of oxygen, gain of electrons B) gain of

More information

ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. Sunday, August 18, 13

ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. Sunday, August 18, 13 ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. A solution is a homogenous mixture of 2 or more substances at the molecular level The solute(s) is(are)

More information

Primary Topics in Equilibrium

Primary Topics in Equilibrium Primary Topics in Equilibrium Outline 1. Equilibrium Expression 2. Calculating Concentration Given K 3. Calculating K Given Concentration Review 1. Equilibrium Expression (only gas and aqueous do not include

More information

Introduction to Mass Transfer

Introduction to Mass Transfer Introduction to Mass Transfer Introduction Three fundamental transfer processes: i) Momentum transfer ii) iii) Heat transfer Mass transfer Mass transfer may occur in a gas mixture, a liquid solution or

More information

CHE-201. I n t r o d u c t i o n t o Chemical E n g i n e e r i n g. I N S T R U CTOR: D r. N a b e e l S a l i m A b o - Ghander.

CHE-201. I n t r o d u c t i o n t o Chemical E n g i n e e r i n g. I N S T R U CTOR: D r. N a b e e l S a l i m A b o - Ghander. I n t r o d u c t i o n t o Chemical E n g i n e e r i n g CHE-201 I N S T R U CTOR: D r. N a b e e l S a l i m A b o - Ghander C h a p t e r 3 Processes and Process Variables Introduction What is a process?

More information

different model parameter correlations and thermodynamic models

different model parameter correlations and thermodynamic models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CO2 absorption into loaded aqueous MEA solutions: impact of different model parameter correlations and thermodynamic models on the absorption rate

More information

MOCK FINALS APPCHEN QUESTIONS

MOCK FINALS APPCHEN QUESTIONS MOCK FINALS APPCHEN QUESTIONS For questions 1-3 Aluminum dissolves in an aqueous solution of NaOH according to the following reaction: 2 NaOH + 2 Al + 2 H2O 2 NaAlO2 + 3 H2 If 84.1 g of NaOH and 51.0 g

More information

HEMISTRY 110 EXAM 3 April 6, 2011 FORM A When the path is blocked, back up and see more of the way. 1. A 250 L vessel is evacuated and then connected to a 50.0 L bulb with compressed nitrogen. The pressure

More information

Mathematical model for neutralization system

Mathematical model for neutralization system Mathematical model for neutralization system Ahmmed Saadi IBREHEM UCSI University Kuala Lumpur, Malaysia Ahmadsaadi1@yahoo.com ABSTRACT A modified model for the neutralization process of Stirred Tank Reactors

More information

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet Part 1: Vocabulary Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet A solution is a mixture The solvent is the medium in a solution. The particles are the solute.

More information

Chapter 11. Properties of Solutions Solutions

Chapter 11. Properties of Solutions Solutions Chapter 11. Properties of Solutions Solutions Homogeneous Mixture 1 Solution Composition Equivalent moles of solute (mol) Acid-Base reaction Molarity (M) = liter of solution (L) 1 eq: the quantity of acid

More information

Chapter 10: CHM 2045 (Dr. Capps)

Chapter 10: CHM 2045 (Dr. Capps) Phase Diagram Phase diagrams for CO 2 and H 2 O Chapter 13. Solutions and Their Physical Properties Shows pressures and temperatures at which gaseous, liquid, and solid phases can exist. Allows us to predict

More information

Modified Mathematical Model For Neutralization System In Stirred Tank Reactor

Modified Mathematical Model For Neutralization System In Stirred Tank Reactor Available online at BCREC Website: http://bcrec.undip.ac.id Bulletin of Chemical Reaction Engineering & Catalysis, (), 0, - Research Article Modified Mathematical Model For Neutralization System In Stirred

More information

MAE 320 THERODYNAMICS FINAL EXAM - Practice. Name: You are allowed three sheets of notes.

MAE 320 THERODYNAMICS FINAL EXAM - Practice. Name: You are allowed three sheets of notes. 50 MAE 320 THERODYNAMICS FINAL EXAM - Practice Name: You are allowed three sheets of notes. 1. Fill in the blanks for each of the two (Carnot) cycles below. (a) 5 a) Heat engine or Heat pump/refrigerator

More information

Modeling Viscosity of Multicomponent Electrolyte Solutions 1

Modeling Viscosity of Multicomponent Electrolyte Solutions 1 International Journal of Thermophysics, Vol. 19, No. 2, 1998 Modeling Viscosity of Multicomponent Electrolyte Solutions 1 M. M. Lencka, 2 A. Anderko, 2,3 S. J. Sanders, 2 and R. D. Young 2 A comprehensive

More information

ANSWERS CIRCLE CORRECT SECTION

ANSWERS CIRCLE CORRECT SECTION CHEMISTRY 162 - EXAM I June 08, 2009 Name: SIGN: RU ID Number Choose the one best answer for each question and write the letter preceding it in the appropriate space on this answer sheet. Only the answer

More information

Phase Equilibrium in Amino Acid Salt Systems for CO2 Capture

Phase Equilibrium in Amino Acid Salt Systems for CO2 Capture Downloaded from orbit.dtu.dk on: Dec 22, 217 Phase Equilibrium in Amino Acid Salt Systems for CO2 Capture Sengeløv, Louise With; Thomsen, Kaj Publication date: 211 Document Version Early version, also

More information

Final Review Chemistry 101 You should know density, specific heat, dilution, ideal gas, and light equations.

Final Review Chemistry 101 You should know density, specific heat, dilution, ideal gas, and light equations. You should know density, specific heat, dilution, ideal gas, and light equations. 1) Which of the following elements is a transition metal? a) V b) Mg c) Si d) Br 2) Convert 0.0825 kg into milligrams.

More information

3a. Oxalic acid should be the most readily soluble in water because it is polar and can form hydrogen bonds. by simple mixing.

3a. Oxalic acid should be the most readily soluble in water because it is polar and can form hydrogen bonds. by simple mixing. Chapter 13 Answers Practice Examples 1a. 16.% ethanol by mass 1b. (a) 0.97 ; (b) 3.73 M ; (c).3 m. a. 0.03593 b. (a) 0.3038 M ; (b) 0.36m ; (c) 0.005815. 3a. Oxalic acid should be the most readily soluble

More information

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

Chapter 11 Gases 1 Copyright McGraw-Hill 2009 Chapter 11 Gases Copyright McGraw-Hill 2009 1 11.1 Properties of Gases The properties of a gas are almost independent of its identity. (Gas molecules behave as if no other molecules are present.) Compressible

More information

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation Chem 106 3--011 Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation 3//011 1 The net ionic equation for the reaction of KOH(aq) and

More information

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES Phase Diagrams Solutions Solution Concentrations Colligative Properties Brown et al., Chapter 10, 385 394, Chapter 11, 423-437 CHEM120 Lecture Series Two : 2013/01

More information

Supporting Information

Supporting Information Supporting Information Mass transfer studies in a pilot scale RPB with different packing diameters Kolja Neumann a,*, Sira Hunold a, Michiel de Beer c, Mirko Skiborowski a, Andrzej Górak a,b a TU Dortmund

More information

Chem. 1C Midterm 2 Version B May 17, 2017

Chem. 1C Midterm 2 Version B May 17, 2017 First initial of last name Chem. 1C Midterm 2 Version B May 17, 2017 Name: rint Neatly. You will lose 1 point if I cannot read your name or perm number. erm Number: All work must be shown on the exam for

More information

Useful Information Provided on Exam 1. Sections Covered on Exam , 10.2, 10.8,

Useful Information Provided on Exam 1. Sections Covered on Exam , 10.2, 10.8, Chem 101B Exam 1 Study Questions Name: Chapters 10(partial), 11 & 12(partial) Review Tuesday 2/7/2017 Due on Exam Thursday 2/9/2017 (Exam 1 date) This is a homework assignment. Please show your work for

More information

A First Course on Kinetics and Reaction Engineering Example 11.5

A First Course on Kinetics and Reaction Engineering Example 11.5 Example 11.5 Problem Purpose This problem illustrates the use of the age function measured using a step change stimulus to test whether a reactor conforms to the assumptions of the ideal PFR model. Then

More information

Resource Conservation and Waste Minimization for Property Networks

Resource Conservation and Waste Minimization for Property Networks Resource Conservation and Waste Minimization or Property Networks Vasiliki Kazantzi, Abdulaziz M. Almutlaq and Mahmoud M. El-Halwagi Department o Chemical Engineering Dominic C.Y. Foo and Zainuddin A.

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 12 REVIEW Solutions SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Match the type of mixture on the left to its representative particle diameter on the right. solutions

More information

Chapter 15. Acid-Base Equilibria

Chapter 15. Acid-Base Equilibria Chapter 15 Acid-Base Equilibria The Common Ion Effect The common-ion effect is the shift in an ionic equilibrium caused by the addition of a solute that provides an ion already involved in the equilibrium

More information

Intermolecular Forces and Phase Equilibria

Intermolecular Forces and Phase Equilibria Intermolecular Forces and Phase Equilibria Chemistry 36 Spring 2002 Intermolecular Forces What happens to gas phase molecules when subjected to increased pressure? Volume occupied by gas decreases (IGL)

More information

Colligative properties CH102 General Chemistry, Spring 2011, Boston University

Colligative properties CH102 General Chemistry, Spring 2011, Boston University Colligative properties CH12 General Chemistry, Spring 211, Boston University here are four colligative properties. vapor-pressure lowering boiling-point elevation freezing-point depression osmotic pressure

More information