Py x P P P. Py x P. sat. dq du PdV. abs Q S. An Innovative Approach in the G U TS PV P P G U TS PV T H U PV H U PV. abs. Py x P. sat.

Size: px
Start display at page:

Download "Py x P P P. Py x P. sat. dq du PdV. abs Q S. An Innovative Approach in the G U TS PV P P G U TS PV T H U PV H U PV. abs. Py x P. sat."

Transcription

1 E a 1 1 sat sat ln Py x P Py x P K H k Ae R E sat a Py x P 1 1 sat ln K1 R Py x P K H k Ae R 1 CO P H 1 1 abs ln K H H 1/ R Q C 1 1 CO P ln S K H K1 R 1 P H abs H P K1 R CP 1 K1 R 1/ R S Q P 1 E a E du q w a du q w du q w Q k Ae R k Ae R E du q w a E a Q sat S Py x P Q Q k Ae R k Ae R S sat S S Py x P G U S PV G U S PV CO P H dq du PdV dq du PdV G abs dq du PdV CO dq du PdV P H abs E a 1/ R E a G E i E a k Ae R N k Ae R i, P, N j i Q a 1/ R S k Ae R i k Ae R N An Innovative Approach in the i, P, N Q j i S CO H H C P H H CO H P abs C P C P H P P CP P 1/ R H abs P 1/ R H C P G U S PV G U S PV Q P G U S PV CP S G U S PV Development of H U PV H Physical P U PV Properties P H U PV H U PV S Q for H U PV H U PV PV nr H PV nr PV nr PV nr H PV nr C PV nr C P P P G G G G G Carbon Capture echnologies P G i Ni PV i,, nr N i i i Ni, P, N Ni i, P, N PV N j i P N,, j i nr i, P, Nj i P N j i j i i N 1 1 ln K H sat i, P, Nj i Py x P CO 1 1 P H ln CO P H K1 R du q w abs K H sat CO P H Py x P CO abs P H abs 1/ R K1 R 1 du q w 1/ R 1 abs 1/ R 1/ R sat Py x P 1 1 sat ln Py x P K H sat sat Py x P 1 1 Py x P ln K H E a CO P H K1 R CO K1 R k Ae 1 R 1 abs P H 1 1 ln K H 1/ R K1 R S Q abs 1 1 ln K H 1/ R 1 K1 R S Q H CP 1 P du q w du q w E du q w E a du q w a S Q S Q k Ae R S Q S Q k Ae R E a k Ae R sat G U S PV G U S PV Py x P By dq du PdV dq du PdV dq du PdV dq du PdV CO G G P H E a E a E a k Ae R k Ae R i E a Marcus abs Ni, P, Hilliard k Ae R i Nj i k Ae R N 1/ R i, P, Nj i H C H CO P CP P P H H S Q abs H CO C CP P P H P 1/ R abs P P 1/ R G U S PV G U S PV S Q G U S PV H G U S PV H U PV S Q CP he Dow Chemical Company P H U PV H U PV H U PV H U PV PV nr PV nr H CP PV nr G i PV nr H C PV nr P P Gary. Rochelle G G N G P G i, P, N i j i i Ni PV nr i i, P, N N N i i j i, P, N, P, N PV nr Ni j i CO sat j i, P, Nj i P H abs 1/ R ln K H 1 1 Py he x P University of exas at Austin CO du q w P ln K H 1 1 sat Py x P CO H abs P H abs

2 background carbon capture technologies his research addresses the solvent development of carbon capture technologies for use in coal fired power plants (CFPP) Post-combustion capture with aqueous alkanolamines is an attractive technology for CO removal in conventional CFPP ail end process Lower capital cost for existing power plants Easy to develop and demonstrate Mature capture technology (30 wt % MEA) Acid gas 70 years CH 4 combustion 30 years Coal in smaller plants 0 years

3 background carbon capture technologies he design of optimal processes and solvents Requires the development of a robust physical property model to describe the reactive separation Key modeling challenges: he design of process equipment he characterization of phase equilibrium and thermal effects Solvents considered Monoethanolamine (MEA) Increase in capacity, faster rates, robustness Piperazine (PZ) K CO 3 /PZ N-methyldiethanolamine (MDEA)

4 process - aqueous absorption Clean Gas 1% CO Cooler -4 mol H O/mol CO Absorber o C 1 atm Stripper o C 1- atm Flue Gas 10% CO Rich Solvent Lean Solvent Reboiler

5 approach for solvent development Mass ransfer Driving force Capacity Speciation Calorimetry C p CO P as f,ldg [amine] kinetics Volatility Amine P* H abs with solvent characterization through rigorous modeling

6 aspen plus framework Enthalpy Hm R Gm / R G x x x x G * * * E m ww k k j ln j m k j P E ngm / R ln i n i ln P,, n i G R K i * m ln K i f C pm, H m P Phase Equilibrium Aqueous Chemistry G o o o o o o m G H H CP CP d ln Ki d R R R R R 0 0 0

7 elecnrl property method Activity coefficient model in Aspen Plus E E E E G PDH Born NRL G G G R R R R Electrolyte NRL model for the liquid phase Redlich-Kwong EoS for the vapor phase Reference state convention: Inf. Dil. Aqu. phase for molecular solutes (i.e. CO ) and ions Pure liquid for molecular solvents (i.e. H O and MEA)

8 elecnrl modeling approach Modeling the phase equilibrium and thermal effects hrough sequential non-linear regressions with multiple, independent data sets Adjusting temperature dependant binary interaction parameters ypically, two types of binary interaction parameters are used in aqueous mixtures: Molecule-Molecule Binary Parameters B mm, A C ln F Electrolyte-Molecule Pair Parameters m, ca D 98.15K C E ln K

9 aqueous chemistry CO Solubility CO H abs Complex Mass ransfer with Chemical Reactions HO CO MEA Vapor Phase Amine Volatility HO CO H O H O OH 3 H O CO H O HCO 3 3 H O HCO H O CO MEA H O MEAH H O MEA l Liquid Phase H O MEACOO MEA l HCO 3 NMR Speciation Specific Heat Capacity

10 international collaboration High Pres. CO Solubility ( o C) Measured by Marcus Hilliard (NNU) Calorimeter (40 10 o C) Measured by Inna Kim (NNU) AM Pres. Reactor (30 70 o C) (multi-component vapor phase analysis reactor) Measured by Marcus Hilliard (U) Differential Scanning Calorimeter: Specific Heat Capacity & PZ Solubility Measured by Marcus Hilliard (U) NMR Speciation Measured by Steve Sorey and Jim Wallin (U) X-ray Diffraction H abs Crystallization Identification Measured by Vince Lynch (U)

11 sequential regression Number of System Sources Parameters AARD (%) H O MEA 6.3 PZ 3.7 H O-MEA H O-PZ H O-MEA-PZ * H O-MEA-N O H O-K CO 3 -CO H O-MEA-CO H O-PZ-CO H O-K CO 3 -PZ-CO H O-MEA-PZ-CO 4 (6) 37.9

12 approach for solvent development Mass ransfer Driving force Capacity Speciation Calorimetry C p CO P as f,ldg [amine] kinetics Volatility Amine P* H abs with solvent characterization through rigorous modeling

13 CO Partial Pressure (kpa) CO Solubility in 7m MEA at 40 o C Austgen (1989) - Aspen ech (008) 10 Freguia (00) Jou et al. (1995) Hilliard (008) Lee et al. (1976) - corrected Loading (mol CO /mol MEA)

14 CO Partial Pressure (kpa) CO Solubility in 7m MEA at 60 o C Austgen (1989) - Aspen ech (008) Differential Capacity Jou et al. (1995) Hilliard (008) Freguia (00) 0.01 Lee et al. (1976) - corrected Loading (mol CO /mol MEA)

15 Differential Capacity (mol CO /kg-h O) Differential Capacity wrt P CO ( kpa) at 60 o C H O-MEA-CO.5 H O-MEA-PZ-CO 1.5 H O-K CO 3 -MEA-PZ-CO H O-PZ-CO H O-MDEA-CO H O-K CO 3 -MEA-CO H O-K CO 3 -PZ-CO otal Alkalinity (m)

16 approach for solvent development Mass ransfer Driving force Capacity Speciation Calorimetry C p CO P as f,ldg [amine] kinetics Volatility Amine P* H abs with solvent characterization through rigorous modeling

17 MEA Partial Pressure (kpa) MEA Volatility in 7 m MEA Closed Pt: Hilliard (008) Solid Curves: Hilliard (008) Dashed Curves: Austgen (1989) - Aspen ech (008) emperature ( o C)

18 MEA Partial Pressure (kpa) MEA Volatility in 7 m MEA at 40 and 60 o C ppm v 60 o C o C Closed Pt: Hilliard (008) Solid Curves: Hilliard (008) Dashed Curves: Austgen (1989) - Aspen ech (008) Loading (mol CO /mol MEA)

19 H O Partial Pressure (kpa) H O Volatility in 7 m MEA at 40 and 60 o C o C o C 1 Closed Pt: Hilliard (008) Solid Curves: Hilliard (008) Dashed Curves: Austgen (1989) - Aspen ech (008) Loading (mol CO /mol MEA)

20 approach for solvent development Mass ransfer Driving force Capacity Speciation Calorimetry C p CO P as f,ldg [amine] kinetics Volatility Amine P* H abs with solvent characterization through rigorous modeling

21 nmr speciation Phase equilibrium measurements rely on total [amine] and total [CO ] Equilibrium conditions apply to the activities rather than concentrations NMR provides concentrations of: MEA/MEAH + = MEA + MEAH + MEACOO -1 C 13 CO HCO 3-1 /CO 3 - = HCO CO 3 - Reference: 1 wt % Dioxane Regression based on user subroutine

22 C 13 NMR Speciation for 7 m MEA at 40 o C 10 MEA + MEAH + mole/kg-h O of Species i MEACOO -1 MEA HCO CO - 3 Solid Pt: Poplsteinovo (004) Open Pt: Hilliard (008) Solid Curves: Hilliard (008) Dashed Curves: Austgen (1989) - Aspen ech (008) Loading (mol CO /mol MEA)

23 Mole Fraction of Species i CO Speciation for 7 m MEA at 40 o C Solid Curves: Hilliard (008) Dashed Curves: Austgen (1989) - Aspen ech (008) HCO CO CO Loading (mol CO /mol MEA)

24 approach for solvent development Mass ransfer Driving force Capacity Speciation Calorimetry C p CO P as f,ldg [amine] kinetics Volatility Amine P* H abs with solvent characterization through rigorous modeling

25 enthalpy of co absorption Characterized by the heat of CO dissolution and the reaction between CO and the amine he magnitude of the H abs : determining the gas treating thermal effects Heat required for regeneration emperature dependence of P CO Can be measured directly or estimated from CO solubility H ln R 1/ Px, i Regression based on user subroutine abs f i

26 Differential -H CO (kj/mol-co ) Enthalpy of CO Absorption in 7 m MEA at 40 and 10 o C o C o C Solid Pt: Kim and Svendsen (007) Solid Curves: Hilliard (008) Dashed Curves: Austgen (1989) - Aspen ech (008) Loading (mol CO /mol MEA)

27 enthalpy of co absorption Kim (009) determined the H abs based on equilibrium constants n k i Habs i n 1 O coz H r is evaluated through H i H R i ln K i P emperature dependant K i ln f K i Apply this method to H O-MDEA-CO

28 Integral - H CO (kj/mol-co ) Enthalpy of CO Absorption in 40 wt% MDEA at 60 and 115 o C o C o C Solid Pt: Merkley et al. (1986) Solid Curves: his work Dashed Curves: Aspen ech (008) Loading (mol CO /mol MDEA)

29 differences By implementing temperature dependant K i Process simulations converge faster Greater predictive capacity and robustness wrt concentrated solvents Allows a simplified yet accurate treatment of chemical reaction equilibrium Both approaches provide a rigorous characterization of the electrolyte thermodynamics and solution chemistry

30 approach for solvent development Mass ransfer Driving force Capacity Speciation Calorimetry C p CO P as f,ldg [amine] kinetics Volatility Amine P* H abs with solvent characterization through rigorous modeling

31 Cp (kj/kg-k) Specific Heat Capacity for loaded 7 m MEA 4.3 H O Loading (a) = 0.0 a = a = MEA emperature ( o C)

32 summary In this work: he Aspen Plus provides a robust framework for modeling of reactive mixtures and can be used as a starting point for more complex process model development Developed a new VLE apparatus = P CO, P Amine, P HO Amine blends illustrate an enhanced capacity over MEA At typical lean absorber conditions: P MEA = 43 ppm v Improved the enthalpy of CO absorption predictions ln K f Implementing through i Allows a simplified yet accurate treatment of chemical reaction equilibrium Improved the specific heat capacity predictions By including multiple independent data sets, into a sequential non-linear regression methodology, allows for substantial improvements in a model s overall predictive ability

33 his concludes my presentation hank you for your attention.

34 Additional Information

35 PZ Partial Pressure (kpa) PZ Volatility in m PZ at 40 o C 0.1 Hilliard (005) ppm v his work Loading (mol CO / mol PZ)

36 Solubility emperature ( o C) SLE Results for Mixtures of H O-PZ using DSC Liquid Solution Bishnoi (00) m PZ his work 5 m PZ PZ (s) 0 0 m PZ 10 PZ 6H O (s) Piperazine (weight fraction)

37 emperature ( o C) SLE Predictions for loaded PZ Solutions m PZ Possible Operating Region 40 5 m PZ 4 m PZ 30 3 m PZ Liquid 0 m PZ 10 1 m PZ 0 PZ 6H O (s) Loading (mol CO / mol PZ)

38 unit cell of K PZ(COO) COO - complex SEM image PZ K Crystal Size: 0.43 x 0.33 x 0.08 mm

39 SLE Results for K + + PZ Solutions KHCO 3 (s) emperature ( o C) m K m PZ K PZ(COO) (s) 30 5 K + /PZ Ratio m K m PZ 6 m K m PZ Loading (mol CO /mol K + + mol PZ)

40 K + (m) Systems Exhibiting SLE Behavior for K + + PZ Solutions m K m PZ Systems which may exhibit solid phase precipitation 5 m K m PZ 5 m K m PZ PZ (m)

Volatility of MEA and Piperazine

Volatility of MEA and Piperazine Volatility of MEA and Piperazine Department of Chemical Engineering The University of Texas at Austin Austin, Texas 78712 USA Marcus Hilliard, John M c Lees, Dr. Gary T. Rochelle June 16, 2006 This presentation

More information

A rational approach to amine mixture formulation for CO 2 capture applications. Trondheim CCS Conference - 6 June 14 16, 2011 Graeme Puxty

A rational approach to amine mixture formulation for CO 2 capture applications. Trondheim CCS Conference - 6 June 14 16, 2011 Graeme Puxty A rational approach to amine mixture formulation for CO 2 capture applications Trondheim CCS Conference - 6 June 14 16, 2011 Graeme Puxty The ideal solvent for CO 2 post-combustion capture: Process challenges

More information

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT USA

Available online at  ScienceDirect. Energy Procedia 63 (2014 ) GHGT USA Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 1487 1496 GHGT-12 CO 2 mass transfer and solubility in aqueous primary and secondary amine Le Li a, Gary Rochelle a, *

More information

Updating 8 m 2MPZ and Independence Models

Updating 8 m 2MPZ and Independence Models Updating 8 m 2MPZ and Independence Models Quarterly Report for January 1 March 31, 2013 by Brent Sherman Supported by the Texas Carbon Management Program and Carbon Capture Simulation Initiative McKetta

More information

Current status of R&D in post combustion CO 2 capture

Current status of R&D in post combustion CO 2 capture Current status of R&D in post combustion CO 2 capture Kaj Thomsen, Ph.D. Center for Energy Resources Engineering, CERE DTU Chemical Engineering Technical University of Denmark Outline Choice of solvent

More information

CO 2 Capture by Absorption with Potassium Carbonate

CO 2 Capture by Absorption with Potassium Carbonate CO 2 Capture by Absorption with Potassium Carbonate Quarterly Progress Report Reporting Period Start Date: April 1, 2004 Reporting Period End Date: June 30, 2004 Authors: Gary T. Rochelle, Eric Chen, J.

More information

Heat of absorption of CO 2 in aqueous ammonia, piperazine solutions and their mixtures

Heat of absorption of CO 2 in aqueous ammonia, piperazine solutions and their mixtures Heat of absorption of CO 2 in aqueous ammonia, piperazine solutions and their mixtures Jinzhao Liu, Shujuan Wang, Hallvard F Svendsen*, Muhammad Usman Idrees, Inna Kim and Changhe Chen The 6th Trondheim

More information

Development of reactive chemical absorbents at the CSIRO

Development of reactive chemical absorbents at the CSIRO Development of reactive chemical absorbents at the CSIRO HiPerCap Workshop, March 25 2015 Graeme Puxty Research Team Leader CSIRO ENERGY FLAGSHIP CSIRO s chemical absorbent research program Concept Kinetics,

More information

Enthalpy of absorption of CO 2 in the aqueous solutions of amines

Enthalpy of absorption of CO 2 in the aqueous solutions of amines Enthalpy of absorption of CO 2 in the aqueous solutions of amines Inna Kim and Hallvard F. Svendsen The Norwegian University of Science and Technology (NTNU), Norway Outline Background Experimental set-up

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION CO Absorption Rate and Solubility in Monoethanolamine/Piperazine/Water Hongyi Dang (dang@che.utexas.edu) Gary T. Rochelle* (gtr@che.utexas.edu, 51-471-70) The University of Texas at Austin Department of

More information

Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling

Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling P.J.G. Huttenhuis, E.P. van Elk, S. Van Loo, G.F. Versteeg Procede Gas Treating B.V., The Netherlands 11 th MEETING of the INTERNATIONAL

More information

CO 2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007

CO 2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007 CO 2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007 Quarterly Progress Report Reporting Period Start Date: January 1, 2007 Reporting Period End Date: March 31, 2007 Authors:

More information

Simulation of gas sweetening process using new formulated amine solutions by developed package and HYSYS

Simulation of gas sweetening process using new formulated amine solutions by developed package and HYSYS Simulation of gas sweetening process using new formulated amine solutions by developed package and Mohammad Irani 1 ١, Reza Dorosti 2, Akbar Zamaniyan 1, Marziye Zare 1- Research Institute of Petroleum

More information

Experimental study into carbon dioxide solubility and species distribution in aqueous alkanolamine solutions

Experimental study into carbon dioxide solubility and species distribution in aqueous alkanolamine solutions Air Pollution XX 515 Experimental study into carbon dioxide solubility and species distribution in aqueous alkanolamine solutions H. Yamada, T. Higashii, F. A. Chowdhury, K. Goto S. Kazama Research Institute

More information

Simulation of CO 2 Removal by Potassium Taurate Solution

Simulation of CO 2 Removal by Potassium Taurate Solution A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 57, 2017 Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza, Serafim Bakalis Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-48-8;

More information

Available online at Energy Procedia 00 (2008) GHGT-9

Available online at   Energy Procedia 00 (2008) GHGT-9 Available online at www.sciencedirect.com Energy Procedia (8) Energy Procedia www.elsevier.com/locate/xxx GHGT-9 Quantitative Evaluation of the Aqueous-Ammonia Process for CO Capture Using Fundamental

More information

different model parameter correlations and thermodynamic models

different model parameter correlations and thermodynamic models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CO2 absorption into loaded aqueous MEA solutions: impact of different model parameter correlations and thermodynamic models on the absorption rate

More information

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth University of Groningen Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine

Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine Indian Journal of Chemical Technology Vol. 17, November 2010, pp. 431-435 Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine M K Mondal Department of Chemical Engineering

More information

Regeneration Section of CO 2 Capture Plant by MEA Scrubbing with a Rate-Based Model

Regeneration Section of CO 2 Capture Plant by MEA Scrubbing with a Rate-Based Model A publication of 1849 CHEMICAL ENGINEERING TRANSACTIONS VOL. 3, 013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 013, AIDIC Servizi S.r.l., ISBN 978-88-95608-3-5; ISSN 1974-9791 The Italian

More information

Ionic Liquids for Post Combustion CO 2 -Absorption

Ionic Liquids for Post Combustion CO 2 -Absorption Ionic Liquids for Post Combustion CO 2 -Absorption 12th MEETING of the INTERNATIONAL POST-COMBUSTION CO 2 CAPTURE NETWORK David Wappel 1), Guenter Gronald 2), Roland Kalb 3) and Josef Draxler 1) 1) University

More information

Copyright. Bich-Thu Ngoc Nguyen

Copyright. Bich-Thu Ngoc Nguyen Copyright by Bich-Thu Ngoc Nguyen 2013 The Dissertation Committee for Bich-Thu Ngoc Nguyen certifies that this is the approved version of the following dissertation: Amine Volatility in CO 2 Capture Committee

More information

Carbon Dioxide Absorption into Aqueous Blends of Potassium Carbonate and Amine

Carbon Dioxide Absorption into Aqueous Blends of Potassium Carbonate and Amine Asian Journal of Chemistry; Vol. 24, No. 8 (2012), 33863390 Carbon Dioxide Absorption into Aqueous Blends of Potassium Carbonate and Amine Y.E. KIM, J.H. CHOI, S.C. NAM and Y.I. YOON Korea Institute of

More information

Optimal design of a CO 2 absorption unit and assessment of solvent degradation

Optimal design of a CO 2 absorption unit and assessment of solvent degradation Optimal design of a CO 2 absorption unit and assessment of solvent degradation Mid-term Presentation Grégoire Léonard Table of Content 1. Introduction 2. Objectives 3. Modeling and optimal design 4. Solvent

More information

Heat of Absorption of CO 2 in Aqueous Solutions of DEEA, MAPA and their Mixture

Heat of Absorption of CO 2 in Aqueous Solutions of DEEA, MAPA and their Mixture Available online at www.sciencedirect.com Energy Procedia 37 (2013 ) 1532 1542 GHGT-11 Heat of Absorption of CO 2 in Aqueous Solutions of DEEA, MAPA and their Mixture Muhammad Waseem Arshad a, Nicolas

More information

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth University of Groningen Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

The Refined Electrolyte-NRTL Model applied to CO 2 -H 2 O-alkanolamine systems

The Refined Electrolyte-NRTL Model applied to CO 2 -H 2 O-alkanolamine systems 1 The Refined Electrolyte-NRTL Model applied to CO 2 -H 2 O-alkanolamine systems - Equilibrium model predictions - Implementation into the CO2SIM simulator., Finn Andrew Tobiesen*, Mehdi Karimi, Xiao Luo,

More information

Simulation of CO 2 removal in a split-flow gas sweetening process

Simulation of CO 2 removal in a split-flow gas sweetening process Korean J. Chem. Eng., 28(3), 643-648 (2011) DOI: 10.1007/s11814-010-0446-6 INVITED REVIEW PAPER Simulation of CO 2 removal in a split-flow gas sweetening process Hyung Kun Bae, Sung Young Kim, and Bomsock

More information

Available online at Energy Procedia 1 (2009) (2008) GHGT-9

Available online at  Energy Procedia 1 (2009) (2008) GHGT-9 Available online at www.sciencedirect.com Energy Procedia 1 (2009) (2008) 1257 1264 000 000 Energy Procedia www.elsevier.com/locate/procedia www.elsevier.com/locate/xxx GHGT-9 Solubility of CO 2 in Aqueous

More information

A NEW SOLVENT FOR CO2 CAPTURE R.

A NEW SOLVENT FOR CO2 CAPTURE R. A NEW SOLVENT FOR CO 2 CAPTURE R. Viscardi, G. Vanga and V. Barbarossa vincenzo.barbarossa@enea.it C.R. Casaccia ENEA; via Anguillarese, 301; 00123 S. M. Galeria-Roma Abstract This experimental study describes

More information

A Thermodynamic Model for Determination of Carbon Dioxide Solubility and Ionic Speciation in Aqueous Alkanolamine Solutions

A Thermodynamic Model for Determination of Carbon Dioxide Solubility and Ionic Speciation in Aqueous Alkanolamine Solutions Humbul Suleman et al., J.Chem.Soc.Pak., Vol. 9, No. 0, 07 74 A Thermodynamic Model for Determination of Carbon Dioxide Solubility and Ionic Speciation in Aqueous Alkanolamine Solutions Humbul Suleman,

More information

Carbon dioxide removal by alkanolamines in aqueous organic solvents Hamborg, Espen S.; Derks, Peter W.J.; Elk, Edwin P. van; Versteeg, Geert F.

Carbon dioxide removal by alkanolamines in aqueous organic solvents Hamborg, Espen S.; Derks, Peter W.J.; Elk, Edwin P. van; Versteeg, Geert F. University of Groningen Carbon dioxide removal by alkanolamines in aqueous organic solvents Hamborg, Espen S.; Derks, Peter W.J.; Elk, Edwin P. van; Versteeg, Geert F. Published in: Energy Procedia DOI:

More information

Rigorous Modeling of a CO 2 -MEA Stripping System

Rigorous Modeling of a CO 2 -MEA Stripping System A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 57, 2017 Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza, Serafim Bakalis Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-48-8;

More information

University of Groningen

University of Groningen University of Groningen Experimental and theoretical study of the solubility of carbon dioxide in aqueous blends of piperazine and N-methyldiethanolamine Derks, P. W. J.; Hogendoorn, J. A.; Versteeg, G.

More information

CO 2 Capture by Aqueous Absorption

CO 2 Capture by Aqueous Absorption CO 2 Capture by Aqueous Absorption Summary of First Quarterly Progress Reports 2012 by Gary T. Rochelle Supported by the Luminant Carbon Management Program and the Industrial Associates Program for CO

More information

SIMULATION OF METHYLDIETHANOLAMINE- CARBON DIOXIDE-WATER SYSTEM USING EQUILIBRIUM APPROACH

SIMULATION OF METHYLDIETHANOLAMINE- CARBON DIOXIDE-WATER SYSTEM USING EQUILIBRIUM APPROACH SIMULATION OF METHYLDIETHANOLAMINE- CARBON DIOXIDE-WATER SYSTEM USING EQUILIBRIUM APPROACH A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Technology in Chemical

More information

Faculty of Technology, Telemark University College, Kjølnes Ring 56, 3918 Porsgrunn, Norway. 2. Tel-Tek, Kjølnes Ring 30, 3918 Porsgrunn, Norway.

Faculty of Technology, Telemark University College, Kjølnes Ring 56, 3918 Porsgrunn, Norway. 2. Tel-Tek, Kjølnes Ring 30, 3918 Porsgrunn, Norway. Attempts to Predict Absorption Equilibria Klaus J. Jens 1,2, Dag A. Eimer 1,2, Bjørnar Arstad 3, Zulkifli Idris 1, Cristina Perinu 1, Gamunu Samarakoon 1 and John Arild Svendsen 1 1 Faculty of Technology,

More information

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic EXECUTIVE SUMMARY Introduction The concentration of CO 2 in atmosphere has increased considerably in last 100 years, especially in last 50 years. Industries, especially power industry, are the large anthropogenic

More information

Miho Nitta a, Masaki Hirose a, Toru Abe a, Yukio Furukawa a, *, Hiroshi Sato b, Yasuro Yamanaka c

Miho Nitta a, Masaki Hirose a, Toru Abe a, Yukio Furukawa a, *, Hiroshi Sato b, Yasuro Yamanaka c Available online at www.sciencedirect.com Energy Procedia 37 (013 ) 869 876 GHGT-11 13 C-NMR Spectroscopic Study on Chemical Species in H O System before and after Heating Miho Nitta a, Masaki Hirose a,

More information

ScienceDirect. Impact of heat stable salts on equilibrium CO 2 absorption

ScienceDirect. Impact of heat stable salts on equilibrium CO 2 absorption Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 1781 1794 GHGT-12 Impact of heat stable salts on equilibrium CO 2 absorption Ugochukwu Edwin Aronu*, Kristin Giske Lauritsen,

More information

Fuel, Air, and Combustion Thermodynamics

Fuel, Air, and Combustion Thermodynamics Chapter 3 Fuel, Air, and Combustion Thermodynamics 3.1) What is the molecular weight, enthalpy (kj/kg), and entropy (kj/kg K) of a gas mixture at P = 1000 kpa and T = 500 K, if the mixture contains the

More information

PCC3 CONFERENCE The role of bicarbonate(hco 3- ) in the VLE of DEAB and blended MEA-DEAB systems under

PCC3 CONFERENCE The role of bicarbonate(hco 3- ) in the VLE of DEAB and blended MEA-DEAB systems under 1 PCC3 CONFERENCE The role of bicarbonate(hco 3- ) in the VLE of DEAB and blended MEA-DEAB systems under room and regeneration temperatures, an NMR study. Huancong Shi, 1, 2 Raphael Idem, 1 * Abdulaziz

More information

Prediction of N 2. O solubilities in alkanolamine solutions from density data

Prediction of N 2. O solubilities in alkanolamine solutions from density data Prediction of N O solubilities in alkanolamine solutions from density data 1 Ardi Hartono and Hallvard F. Svendsen 1 st Post Combustion Capture Conference Abu Dhabi, UAE, May 17-19, 011 Outline Introduction

More information

Benefits from the Rigorous Mass Transfer Rate Approach to Modelling Acid Gas Absorption Using Mixed Amines

Benefits from the Rigorous Mass Transfer Rate Approach to Modelling Acid Gas Absorption Using Mixed Amines Benefits from the Rigorous Mass Transfer Rate Approach to Modelling Acid Gas Absorption Using Mixed Amines David J. Vickery and John T. Adams ChemShare Corporation, Houston Texas and Robert D. Wright Amoco

More information

Systematic selection of mixtures as postcombustion

Systematic selection of mixtures as postcombustion ARISTOTLE UNIVERSITY of THESSALONIKI Systematic selection of mixtures as postcombustion CO 2 capture solvent candidates T. Zarogiannis, A. I. Papadopoulos, P. Seferlis Department of Mechanical Engineering

More information

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions Carbon Dioxide Capture Using Amine Solutions Bull. Korean Chem. Soc. 2013, Vol. 34, No. 3 783 http://dx.doi.org/10.5012/bkcs.2013.34.3.783 Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA,

More information

Introduction. Acid gas is defined as gas containing significant amounts of contaminants, such as hydrogen sulfide (H 2. S), carbon dioxide (CO 2

Introduction. Acid gas is defined as gas containing significant amounts of contaminants, such as hydrogen sulfide (H 2. S), carbon dioxide (CO 2 Acid Gas Cleaning Using Amine Solvents: Validation with Experimental and Plant Data Jennifer Dyment, Product Marketing, Aspen Technology, Inc. Suphat Watanasiri, Senior Director R&D, Aspen Technology,

More information

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C.

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C. CHAPER LECURE NOES he First Law of hermodynamics: he simplest statement of the First Law is as follows: U = q + w. Here U is the internal energy of the system, q is the heat and w is the work. CONVENIONS

More information

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

Available online at   ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 1854 1862 GHGT-12 Screening tests of new hybrid solvents for the post-combustion CO 2 capture process by chemical absorption

More information

Simulation of Electrolyte Processes: Status and Challenges

Simulation of Electrolyte Processes: Status and Challenges Simulation of Electrolyte Processes: Status and Challenges Paul M Mathias and Chau-Chyun Chen Aspen Technology, Inc. 12 March 2002 AIChE Spring 2002 Meeting AIChE 2002 Spring Meeting. Summary Opportunities/needs

More information

The solubility of carbon dioxide in aqueous N-methyldiethanolamine solutions

The solubility of carbon dioxide in aqueous N-methyldiethanolamine solutions Available online at www.sciencedirect.com Fluid Phase Equilibria 264 (2008) 99 112 The solubility of carbon dioxide in aqueous N-methyldiethanolamine solutions P.J.G. Huttenhuis a,, N.J. Agrawal a, E.

More information

Effect of Precipitation on Operation Range of the CO 2

Effect of Precipitation on Operation Range of the CO 2 Korean Chem. Eng. Res., Vol. 45, No. 3, June, 007, pp. 58-63 g g o mk m o oi n m oi iii i lo Ç Ç k Ç p *Ç p * o 305-701 re o 373-1 * l v l o rl 305-343 re o q 71- (006 1o 18p r, 007 1o 11p }ˆ) Effect of

More information

Available online at ScienceDirect. Energy Procedia 114 (2017 )

Available online at  ScienceDirect. Energy Procedia 114 (2017 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 114 (2017 ) 1949 1955 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne,

More information

Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol

Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol Fluid Phase Equilibria 202 (2002) 359 366 Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol Jung-Yeon Park a, Sang Jun Yoon a, Huen Lee a,, Ji-Ho Yoon b, Jae-Goo Shim

More information

Density modelling NH 3 -CO 2 -H 2 O liquid mixtures. Technology for a better society

Density modelling NH 3 -CO 2 -H 2 O liquid mixtures. Technology for a better society 1 Density modelling NH 3 -CO 2 -H 2 O liquid mixtures 2 Liquid density model in Aspen Plus Clarke model (for aqueous electrolyte molar volume) Molar volume for electrolyte solutions (V m l ), applicable

More information

Viscosity data of aqueous MDEA [Bmim][BF 4 ] solutions within carbon capture operating conditions

Viscosity data of aqueous MDEA [Bmim][BF 4 ] solutions within carbon capture operating conditions Available online at www.sciencedirect.com Energy Procedia 00 (2016) 000 000 www.elsevier.com/locate/procedia The 8 th International Conference on Applied Energy ICAE2016 Viscosity data of aqueous MDEA

More information

ChE 201 August 26, ChE 201. Chapter 8 Balances on Nonreactive Processes Heat of solution and mixing

ChE 201 August 26, ChE 201. Chapter 8 Balances on Nonreactive Processes Heat of solution and mixing ChE 201 Chapter 8 Balances on Nonreactive Processes Heat of solution and mixing Definitions A solution is a homogeneous mixture A solute is dissolved in a solvent. solute is the substance being dissolved

More information

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

Available online at   ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 1099 1105 GHGT-12 Theoretical Study of Temperature dependent Enthalpy of Absorption, Heat Capacity, and Entropy changes

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

A Comparative Study of Carbon Capture for Different Power Plants

A Comparative Study of Carbon Capture for Different Power Plants 1783 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 45, 2015 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Sharifah Rafidah Wan Alwi, Jun Yow Yong, Xia Liu Copyright 2015, AIDIC Servizi

More information

Modeling and Simulation of Absorption Column of Natural Gas Sweetening Unit by Mass Transfer Method

Modeling and Simulation of Absorption Column of Natural Gas Sweetening Unit by Mass Transfer Method Modeling and Simulation of Absorption Column of Natural Gas Sweetening Unit by Mass Transfer Method Mahmood Sahabi, Mansoor Shirvani*, Mohammad Reza Dehghani * Faculty of Chemical Engineering, Iran University

More information

Reaction kinetics of carbon dioxide with 2-amino-2-hydroxymethyl-1,3-propanediol in aqueous solution obtained from the stopped flow method

Reaction kinetics of carbon dioxide with 2-amino-2-hydroxymethyl-1,3-propanediol in aqueous solution obtained from the stopped flow method Turk J Chem 36 (2012), 427 435. c TÜBİTAK doi:10.3906/kim-1107-33 Reaction kinetics of carbon dioxide with 2-amino-2-hydroxymethyl-1,3-propanediol in aqueous solution obtained from the stopped flow method

More information

CO 2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups

CO 2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups Korean J. Chem. Eng., 33(11), 3222-3230 (2016) DOI: 10.1007/s11814-016-0180-9 INVITED REVIEW PAPER pissn: 0256-1115 eissn: 1975-7220 CO 2 absorption characteristics of a piperazine derivative with primary,

More information

O solubility at high amine concentration and validation of O Analogy

O solubility at high amine concentration and validation of O Analogy N O solubility at high amine concentration and validation of N O Analogy Ardi Hartono, Emmanuel, O. Mba and Hallvard F. Svendsen The 6 th Trondheim CO Capture, Transport and Storage Conference Trondheim,

More information

Enthalpy and Adiabatic Changes

Enthalpy and Adiabatic Changes Enthalpy and Adiabatic Changes Chapter 2 of Atkins: The First Law: Concepts Sections 2.5-2.6 of Atkins (7th & 8th editions) Enthalpy Definition of Enthalpy Measurement of Enthalpy Variation of Enthalpy

More information

Engage Education Foundation

Engage Education Foundation 2016 Mid-Year Seminar Exam Engage Education Foundation Practice Exam Solutions Stop! Any questions? Check the Engage website for updated solutions, then email practiceexams@ee.org.au. Section A Question

More information

Kinetics of carbonate systems

Kinetics of carbonate systems 1 Kinetics of carbonate systems Hanna Knuutila Trondheim, 15 June 009 Outline Activity and concentration based kinetic constant Kinetic constant of infinite dilution Promotion Conclusions 3 String of discs

More information

1. (25 points) C 6 H O 2 6CO 2 + 7H 2 O C 6 H O 2 6CO + 7H 2 O

1. (25 points) C 6 H O 2 6CO 2 + 7H 2 O C 6 H O 2 6CO + 7H 2 O MEEBAL Exam 2 November 2013 Show all work in your blue book. Points will be deducted if steps leading to answers are not shown. No work outside blue books (such as writing on the flow sheets) will be considered.

More information

Copyright. Ross E. Dugas

Copyright. Ross E. Dugas Copyright by Ross E. Dugas 2009 The Dissertation Committee for Ross Edward Dugas certifies that this is the approved version of the following dissertation: Carbon Dioxide Absorption, Desorption, and Diffusion

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3 Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas Variation of Entropy with emperature

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 11 Aleksey Kocherzhenko March 12, 2015" Last time " W Entropy" Let be the number of microscopic configurations that correspond to the same macroscopic state" Ø Entropy

More information

Solubility of Carbon Dioxide in Aqueous Piperazine Solutions

Solubility of Carbon Dioxide in Aqueous Piperazine Solutions THERMODYNAMICS Solubility of Carbon Dioxide in Aqueous Piperazine Solutions P. W. J. Derks, H. B. S. Dijkstra, J. A. Hogendoorn, and G. F. Versteeg Dept. of Science and Technology, University of Twente,

More information

Chapter 11 Review Packet

Chapter 11 Review Packet Chapter 11 Review Packet Name Multiple Choice Portion: 1. Which of the following terms is not a quantitative description of a solution? a. molarity b. molality c. mole fraction d. supersaturation 2. Which

More information

CHEMICALLY COMPLEXING IONIC LIQUIDS FOR POST-COMBUSTION CO 2 CAPTURE

CHEMICALLY COMPLEXING IONIC LIQUIDS FOR POST-COMBUSTION CO 2 CAPTURE CHEMICALLY COMPLEXING IONIC LIQUIDS FOR POST-COMBUSTION CO 2 CAPTURE Burcu E. Gurkan, Juan C. de la Fuente, Elaine M. Mindrup, Lindsay E. Ficke, Brett F. Goodrich, Erica A. Price, William F. Schneider*,

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Dynamic Modeling of the Solvent Regeneration Part of a CO 2 Capture Plant

Dynamic Modeling of the Solvent Regeneration Part of a CO 2 Capture Plant Available online at www.sciencedirect.com Energy Procedia 37 (2013 ) 2058 2065 GHGT-11 Dynamic Modeling of the Solvent Regeneration Part of a CO 2 Capture Plant Nina Enaasen a *, Andrew Tobiesen b, Hanne

More information

Phase Equilibrium in Amino Acid Salt Systems for CO2 Capture

Phase Equilibrium in Amino Acid Salt Systems for CO2 Capture Downloaded from orbit.dtu.dk on: Dec 22, 217 Phase Equilibrium in Amino Acid Salt Systems for CO2 Capture Sengeløv, Louise With; Thomsen, Kaj Publication date: 211 Document Version Early version, also

More information

Stoichiometry, Energy Balances, Heat Transfer, Chemical Equilibrium, and Adiabatic Flame Temperatures. Geof Silcox

Stoichiometry, Energy Balances, Heat Transfer, Chemical Equilibrium, and Adiabatic Flame Temperatures. Geof Silcox Stoichiometry, Energy Balances, Heat ransfer, Chemical Equilibrium, and Adiabatic Flame emperatures Geof Silcox geoff@che.utah.edu (80)58-880 University of Utah Chemical Engineering Salt Lake City, Utah

More information

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Exam Date: Tuesday 12/6/2018 CCS:Chem.6a,6b,6c,6d,6e,6f,7a,7b,7d,7c,7e,7f,1g Chapter(12):Solutions Sections:1,2,3 Textbook pages 378 to 408 Chapter(16):Reaction

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Chemistry 1A, Spring 2008 Midterm Exam III, Version A April 14, 2008 (90 min, closed book)

Chemistry 1A, Spring 2008 Midterm Exam III, Version A April 14, 2008 (90 min, closed book) Chemistry 1A, Spring 2008 Midterm Exam III, Version A April 14, 2008 (90 min, closed book) Name: KEY SID: A Name: 1.) Write your name on every page of this exam. 2.) his exam has 15 multiple-choice questions

More information

Chapter 17 Thermochemistry

Chapter 17 Thermochemistry Chapter 17 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Summit:Technology and Opportunity

Summit:Technology and Opportunity Study of the gas-liquid CO 2 absorption in aqueous monoethanolamine solutions: development of a new experimental tool C. Wylock, S. Dehaeck, E. Boulay, P. Colinet and B. Haut CO 2 Summit:Technology and

More information

Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant

Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant Marc R. Roussel February 12, 2019 Marc R. Roussel Temperature dependence of equilibrium February 12, 2019 1 / 15 Temperature

More information

Incorporation of Reaction Chemicals Testing Data in Reactivity Hazard Evaluation. Ken First Dow Chemical Company Midland, MI

Incorporation of Reaction Chemicals Testing Data in Reactivity Hazard Evaluation. Ken First Dow Chemical Company Midland, MI Incorporation of Reaction Chemicals Testing Data in Reactivity Hazard Evaluation Ken First Dow Chemical Company Midland, MI Reactivity Hazard Screening Evaluation Evaluation of reactivity hazards involves

More information

Supplementary material

Supplementary material Ionic Liquid Design and Process Simulation for Decarbonization of Shale Gas XinyanLiu,, Ying Huang, Yongsheng Zhao, RafiqulGani, XiangpingZhang, *, SuojiangZhang *, Beijing Key Laboratory of Ionic Liquids

More information

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings.

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Name Class Date Thermochemistry 17.1 The Flow of Energy As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Process Cause Effect endothermic

More information

3.012 PS Issued: Fall 2004 Due: pm

3.012 PS Issued: Fall 2004 Due: pm 3.012 PS 2 3.012 Issued: 09.15.04 Fall 2004 Due: 09.22.04 5pm Graded problems: 1. In discussing coordination numbers and deriving the permitted range of radius ratio, R A / R B, allowed for each ( where

More information

ANSWERS CIRCLE CORRECT SECTION

ANSWERS CIRCLE CORRECT SECTION CHEMISTRY 162 - EXAM I June 08, 2009 Name: SIGN: RU ID Number Choose the one best answer for each question and write the letter preceding it in the appropriate space on this answer sheet. Only the answer

More information

Kinetics of absorption of carbon dioxide in aqueous piperazine solutions

Kinetics of absorption of carbon dioxide in aqueous piperazine solutions Chemical Engineering Science 61 (2006) 6837 6854 www.elsevier.com/locate/ces Kinetics of absorption of carbon dioxide in aqueous piperazine solutions P.W.J. Derks, T. Kleingeld, C. van Aken, J.A. Hogendoorn,

More information

Chapter 8 Thermochemistry: Chemical Energy

Chapter 8 Thermochemistry: Chemical Energy Chapter 8 Thermochemistry: Chemical Energy 國防醫學院生化學科王明芳老師 2011-11-8 & 2011-11-15 Chapter 8/1 Energy and Its Conservation Conservation of Energy Law: Energy cannot be created or destroyed; it can only be

More information

Hence. The second law describes the direction of energy transfer in spontaneous processes

Hence. The second law describes the direction of energy transfer in spontaneous processes * Heat and Work The first law of thermodynamics states that: Although energy has many forms, the total quantity of energy is constant. When energy disappears in one form, it appears simultaneously in other

More information

Chemistry 1A, Spring 2007 Midterm Exam 3 April 9, 2007 (90 min, closed book)

Chemistry 1A, Spring 2007 Midterm Exam 3 April 9, 2007 (90 min, closed book) Chemistry 1A, Spring 2007 Midterm Exam 3 April 9, 2007 (90 min, closed book) Name: KEY SID: TA Name: 1.) Write your name on every page of this exam. 2.) This exam has 34 multiple choice questions. Fill

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a paper published in Chemical Engineering Science. This paper has been peer-reviewed but does not include the final publisher proof-corrections

More information

PCCP PAPER. First-principles assessment of CO 2 capture mechanisms in aqueous piperazine solution. 1. Introduction

PCCP PAPER. First-principles assessment of CO 2 capture mechanisms in aqueous piperazine solution. 1. Introduction PAPER Cite this: Phys. Chem. Chem. Phys., 2016, 18, 25296 First-principles assessment of CO 2 capture mechanisms in aqueous piperazine solution Haley M. Stowe, a Eunsu Paek b and Gyeong S. Hwang* ab Received

More information

DOCTORAL T H E SIS. Thermodynamic Analysis and Screening ILs/DESs-based Absorbents for CO 2. Separation. Yingying Zhang. Energy Engineering

DOCTORAL T H E SIS. Thermodynamic Analysis and Screening ILs/DESs-based Absorbents for CO 2. Separation. Yingying Zhang. Energy Engineering DOCTORAL T H E SIS Thermodynamic Analysis and Screening ILs/DESs-based Absorbents for CO 2 Separation Yingying Zhang Energy Engineering Thermodynamic Analysis and Screening ILs/DESs-based Absorbents for

More information

Chemistry 452 July 23, Enter answers in a Blue Book Examination

Chemistry 452 July 23, Enter answers in a Blue Book Examination Chemistry 45 July 3, 014 Enter answers in a Blue Book Examination Midterm Useful Constants: 1 Newton=1 N= 1 kg m s 1 Joule=1J=1 N m=1 kg m /s 1 Pascal=1Pa=1N m 1atm=10135 Pa 1 bar=10 5 Pa 1L=0.001m 3 Universal

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

Dynamic Data Reconciliation and Model Validation of a MEA-Based CO2 Capture System using Pilot Plant Data

Dynamic Data Reconciliation and Model Validation of a MEA-Based CO2 Capture System using Pilot Plant Data Preprint, 11th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems Dynamic Data Reconciliation and Model Validation of a MEA-Based CO2 Capture System using Pilot Plant Data

More information