HTU of Acetone-Toluene-Water Extraction in a Pulsed Column

Size: px
Start display at page:

Download "HTU of Acetone-Toluene-Water Extraction in a Pulsed Column"

Transcription

1 HU of Acetone-oluene-Water Etraction in a Pulsed Column erdthai Vatanatham*, Pisan erasukaporn, and Paisan Lorpongpaiboon Department of Chemical Engineering, Kasetsart University ABSRAC he mass transfer correlation in a pulsed column particularly the HU is needed for column design. evertheless, scarce information is available. his work aims to study the HU of pulsed perforatedplate tower for liquid-liquid etraction. In the eperimental ternary system, water etraction solvent was used to etract acetone solute from toluene feed solvent in a counter-current etraction scheme. Operating variables such as pulsing frequency and amplitude, solute concentration, drop diameter, and flow rate of heavy liquid and light solution were investigated. Each eperimental variable was varied while holding other variables constant. he outlet concentrations of each component of the pulsedcolumn were analyzed by using a refractometer. HU and erwood number correlation was obtained. In addition, the mass transfer coefficient and ynolds number correlation was illustrated. he results are: HU 0.5 = 4.4 sh K ma = Key Words: Liquid-Liquid Etraction, HU, Perforated-Plate Column, and Pulsed ower.

2 Introduction Liquid-liquid etraction is a separation process that involves the transfer of mass from one liquid phase into a second immiscible liquid phase. he simplest one is a transfer of one component from a binary miture into a second phase. It is used primarily when distillation is impractical due to close relative volatility of the two components, both are nonvolatile components, or the components are heat sensitive. Continuous or differential contact equipment is arranged for countercurrent contact of the insoluble liquids without complete separation of the liquids from each other. he two immiscible liquids are in continuous contact through out their passage through the equipment. One of the phases can remain dispersed as droplets in the contactor while passing countercurrently to another continuous phase. Rate of mass transfer and driving force are related by a general epression (McCabe et al., 1993) as eq.(1). A = k ma (C A C Ai ) = k ( A - A e ) (1) From the mechanism of mass transfer, the coefficient k s would depend on the diffusivity D V, fluid velocity u, the viscosity µ, the density ρ, and some linear dimension D. For any given surface Dimensional analysis gives km u = k = ψ (D V, D, u, µ, ρ) Multiplying eq.() by ( Du ρ / µ )( µ / ρdv ) yields Duρ µ, () µ ρdv kmd D V Duρ µ = ψ, (3) µ ρdv hat is = ψ (, ) (4) Sc For a low viscosity drop falling through a viscous liquid, the velocity boundary layer in the eternal fluid almost disappears. Eternal liquid elements are eposed to the drop for a short time and the penetration theory applies. he effective contact time is the time for the drop to fall a distance of its own diameter. Equation (4) becomes = Dpuρ µ π µ ρdv 1 or, Sc = (5) Prediction of km is difficult for a practical application. A volumetric mass transfer coefficient, k m a, estimated from laboratory or pilot plant test is generally used in mass transfer calculations. Height of ransfer Units For differential contact etractor, the concept of mass transfer unit was developed many years ago. For liquid-liquid etraction in perforated-plate towers, mass transfer rates may be epressed in terms of overall heights of transfer units and successfully correlated for any tower and system ( Perry

3 and Green, 1997). Even though there are many methods for estimating the etraction rates, a pilotplant test of any new process is recommended. Application of mass transfer unit concept to pulsed column with perforated-plate can be done using eq.(1) and mass balance as follow. Mass balance of solute transferred between continuous phase and immiscible dispersed phase, in a differential section dh of a pulsed column is - d(r ) = - R d dr = A a S dz (6) and for one solute, dr = - a S dz (7) Substituting for dr into eq.(6) and integration with A from eq.(1), in terms of overall driving force, will obtain = R d Z or, 1 e K as(1 )( ) Z R d = 1 e K as (1 )( ) (8) In the H or and or or HU R and U R format Z = H = HU U (9) or or R R Equations (8) and (9) are useful to obtain values of HU and K from eperimental data. Dimensions of a pulsed column and equilibrium data are needed for the calculations (erasukaporn, and Lorpongpaiboon, 1996). he value of HU reflects the mass transfer rate and mass transfer coefficient. As seen in eq. (8), the HU is lower for higher mass transfer coefficient. In view of eq.(5), empirical correlations correlating HU and K A to and are tested in this work. Eperimental Procedure Etraction of acetone in ternary system of acetone-toluene-water was done in a glass pulsed column. Acetone was the solute and fed into the column at the bottom with toluene as feed solvent. Water was the etraction solvent and flowed down the column as a continuous phase. Dispersed toluene droplets of average sizes varied from mm rose through the column and perforated plates. he column is a perforated plate type with 50-mm nominal diameter size. Perforated holes are mm in diameter with 140 holes per plate of 50 mm diameter. here are 38 plates inside with a plate spacing of 50 mm. Plate free area is 5%. Height of two-phase contact in column is.45 meters. Liquid inside the column was pulsed with a piston pump. Pulsing frequency varied from 0.8 to.3 Hz while pulsing amplitude varied from cm. Concentrations of acetone in toluene and acetone in water were measured using refractive inde and calibration curve. he U R was calculated. hen HU R was obtained from eq. (9). After that K could be etracted out. sults and Discussions Eperimental results show that HU R decreases as increases. It is obvious that lower HU R reflects more efficient mass transfer rate or higher mass transfer coefficient. Meanwhile higher mass transfer coefficient brings higher. Comparison of eperimental HU R to raffinate yields a correlation HU R 0.5 = 4.4 sh (10)

4 which is shown in Fig.1, where HU R is in meter. he is estimated from dispersed droplet diameter, diffusivity of acetone in toluene, and K A which is obtained form eq.(1) through application of eperimental data. he eperimental data was obtained with droplet ynolds number varied from 5 to 18. For mass transfer coefficient, eperimental data show that it varries almost linearly with under the eperimental feed concentration of 13 to 47 weight percent of acetone in toluene feed solvent. he empirical epression, with K ma in m/s, is K ma = (11) which is shown in Fig.1, where K ma is in micrometer. his is in line with the epression shown in eq. (5), i.e. mass transfer coefficient increases with ynolds number. he dependency is stronger than in eq.(5) as it is a pulsed column in which breaking and forming of droplet depends strongly on the pulse action of the equipment. HU, m y = erwood umber Figure 1. lationship between Height of ransfer Unit and erwood umber Km, micrometer/s y = ynolds umber. Figure. lationship of overall mass transfer coefficient to ynolds umber. Conclusions Height of transfer unit for pulsed perforated-plate column was obtained from an application of mass transfer unit concept. It s value decreases as erwood number increases as epected. he mass transfer coefficient relation to ynolds number is also obtained. he relation is almost linear. he data were obtain with acetone-toluene-water system under a limited range of operating condition as epected in it s nature of application.

5 omenclature a Area of interface between phases per unit volume of equipment, m -1 C A1 Concentration of component A at location 1, moles per unit volume D Linear dimension or diameter, m D V Volumetric diffusivity, m /h E Etract rate, kg mol per unit time H or Height of transfer unit based on overall mass transfer and raffinate concentration, m/s HU R Height of transfer unit based on overall mass transfer and raffinate concentration, m/s k ma Mass transfer coefficient for component A, rate of mass transfer per unit area per unit concentration difference, or unit length per unit time K ma Overall mass transfer coefficient for component A, rate of mass transfer per unit area per unit concentration difference, or m/s k Mass transfer coefficient based on mole-fraction differences, kg-mol / m -s-unit mol fraction K A Overall mass transfer coefficient based on mole-fraction differences, kg-mol / m -s-unit mol fraction A Mass transfer flu of component A, moles of component A (solute) transferred in a unit time across a unit area or umber of transfer unit based on overall mass transfer and raffinate concentration ynolds number, Duρ / µ Sc Schmidt number, µ / ρdv erwood number, k C D / DV U R umber of transfer unit based on overall mass transfer and raffinate concentration R Raffinate rate, kg mol per unit time S Cross sectional area of column, m u Velocity, m/s A Mole fraction of component A e A Mole fraction of component A in another phase which is in equilibrium with y A µ Viscosity, kg/m-s ρ Density, kg/m 3 ψ Functions ferences Perry, R.H. and Chilton, C.H Perry s Chemical Engineers Handbook, McGraw-Hill, ew York. McCabe, W.L., Smith, J.C., and Harriott, P Unit Operations of Chemical Engineering, McGraw-Hill, ew York. erasukaporn, Pisan and Lorpongpaiboon, Paisan HU of Pulsed Perforated Liquid-Liquid Etractor: Acetone-oluene-Water, ChE Senior Project, Kasetsart University, Bangkok

Outline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer

Outline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer Diffusion 051333 Unit operation in gro-industry III Department of Biotechnology, Faculty of gro-industry Kasetsart University Lecturer: Kittipong Rattanaporn 1 Outline Definition and mechanism Theory of

More information

EXPERIMENT 1 DETERMINATION OF GAS DIFFUSION COEFFICIENT

EXPERIMENT 1 DETERMINATION OF GAS DIFFUSION COEFFICIENT EXPERIMENT 1 DETERMINATION OF GAS DIFFUSION COEFFICIENT Objective: The objective of this experiment is to calculate diffusion coefficient of a volatile organic compound in air by means of Chapman Enskog

More information

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method Syed Mujahed Ali Rizwan Senior Lecturer in Chemistry Challenger College, Moinabad, Hyderabad. Abstract: In this

More information

MASS TRANSFER AND GAS ABSORPTION EQUIPMENT

MASS TRANSFER AND GAS ABSORPTION EQUIPMENT MASS TRANSFER AND GAS ABSORPTION EQUIPMENT Mark J McCready University of Notre Dame Indiana, USA TOPICS Review of heat transfer and heat exchangers Some fundamental aspects of mass transfer Analysis of

More information

See section and the dew and bubble point calculations in example 11.9.

See section and the dew and bubble point calculations in example 11.9. Solution 1.1 See section 11.3.2 and the dew and bubble point calculations in example 11.9. This type of problem is best solved using a spread-sheet, see the solution to problem 11.2. Solution 11.2 This

More information

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE CONTINUOUS BINARY DISTILLATION

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE CONTINUOUS BINARY DISTILLATION UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 CONTINUOUS BINARY DISTILLATION OBJECTIVE The objective of this experiment is to determine the overall column efficiency for

More information

Analysis of Performance of Packed Columns

Analysis of Performance of Packed Columns Analysis of Performance of Packed Columns There are two packed column experiments in the Unit Operations lab: Liquid-Liquid Extraction (LLE) and Gas Absorption (GA). In both of these experiments, a solute

More information

LIQUID-LIQUID EQUILIBRIUM FOR THE DESIGN OF EXTRACTION COLUMN

LIQUID-LIQUID EQUILIBRIUM FOR THE DESIGN OF EXTRACTION COLUMN LIQUID-LIQUID EQUILIBRIUM FOR THE DESIGN OF EXTRACTION COLUMN Magdah Abdelbasit Nory Salih Faculty of Engineering, Red sea University, Port Sudan- SUDAN ABSTRACT Liquid-Liquid Extraction is a mass transfer

More information

Chapter 3. Solution

Chapter 3. Solution Chapter 3 Eample 3.2-2 1. ---------------------------------------------------------------------------------- In an eperimental stud of the absorption of ammonia b water in a wetted-wall column, the value

More information

Liquid Liquid Extraction

Liquid Liquid Extraction Liquid Liquid Extraction By Dr. Salih Rushdi 1 Introduction Liquid-liquid extraction (sometimes abbreviated LLX) is a mass transfer operation in which a solution (called the feed which is a mixture of

More information

ERT 313 BIOSEPARATION ENGINEERING EXTRACTION. Prepared by: Miss Hairul Nazirah Abdul Halim

ERT 313 BIOSEPARATION ENGINEERING EXTRACTION. Prepared by: Miss Hairul Nazirah Abdul Halim ERT 313 BIOSEPARATION ENGINEERING EXTRACTION Prepared by: Miss Hairul Nazirah Abdul Halim Definition of Extraction Liquid-Liquid extraction is a mass transfer operation in which a liquid solution (the

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

ChE 4162 Liquid-Liquid Extraction Operating Manual

ChE 4162 Liquid-Liquid Extraction Operating Manual ChE 4162 Liquid-Liquid Extraction Operating Manual Introduction Liquid-liquid extraction is used to separate materials that cannot easily be separated by other methods such as distillation. The driving

More information

ChE 4162 Liquid-Liquid Extraction Operating Manual

ChE 4162 Liquid-Liquid Extraction Operating Manual ChE 4162 Liquid-Liquid Extraction Operating Manual Introduction Liquid-liquid extraction is a relatively new unit operation in industry, though it has been used for centuries in laboratories. It is used

More information

Chapter 2 Mass Transfer Coefficient

Chapter 2 Mass Transfer Coefficient Chapter 2 Mass Transfer Coefficient 2.1 Introduction The analysis reported in the previous chapter allows to describe the concentration profile and the mass fluxes of components in a mixture by solving

More information

Distillation. Senior Design CHE 396 Andreas Linninger. Innovative Solutions. Michael Redel Alycia Novoa Tanya Goldina Michelle Englert

Distillation. Senior Design CHE 396 Andreas Linninger. Innovative Solutions. Michael Redel Alycia Novoa Tanya Goldina Michelle Englert Distillation Senior Design CHE 396 Andreas Linninger Innovative Solutions Michael Redel Alycia Novoa Tanya Goldina Michelle Englert Table of Contents Introduction 3 Flowsheet 4 Limitations 5 Applicability

More information

Unit operations are ubiquitous in any chemical process. Equilibrium-Staged Separations using Matlab and Mathematica. ChE class and home problems

Unit operations are ubiquitous in any chemical process. Equilibrium-Staged Separations using Matlab and Mathematica. ChE class and home problems ChE class and home problems The object of this column is to enhance our readers collections of interesting and novel problems in chemical engineering. Problems of the type that can be used to motivate

More information

Contents. 1 Introduction 4. 2 Methods Results and Discussion 15

Contents. 1 Introduction 4. 2 Methods Results and Discussion 15 Contents 1 Introduction 4 2 Methods 11 3 Results and Discussion 15 4 Appendices 21 4.1 Variable Definitions................................ 21 4.2 Sample Calculations............................... 22

More information

Distillation is a method of separating mixtures based

Distillation is a method of separating mixtures based Distillation Distillation is a method of separating mixtures based on differences in their volatilities in a boiling liquid mixture. Distillation is a unit operation, or a physical separation process,

More information

Distilla l tion n C olum u n

Distilla l tion n C olum u n Distillation Column Distillation: Process in which a liquid or vapour mixture of two or more substances is separated into its component fractions of desired purity, by the application and removal of heat

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 2 Mass Transfer Coefficient Lecture - 4 Boundary Layer Theory and

More information

Solid-Liquid Extraction

Solid-Liquid Extraction Chapter (10) Solid-Liquid Extraction (( Leaching )) Leaching: is the separation of a solute from solid mixture by dissolving it in a liquid phase. Leaching occurs in two steps: 1. Contacting solvent and

More information

Mass Transfer Fundamentals. Chapter#3

Mass Transfer Fundamentals. Chapter#3 Mass Transfer Fundamentals Chapter#3 Mass Transfer Co-efficient Types of Mass Transfer Co-efficient Convective mass transfer can occur in a gas or liquid medium. Different types of mass transfer coefficients

More information

CHAPTER 3 MODELLING AND ANALYSIS OF THE PACKED COLUMN

CHAPTER 3 MODELLING AND ANALYSIS OF THE PACKED COLUMN 37 CHAPTER 3 MODELLING AND ANALYSIS OF THE PACKED COLUMN Absorption in a chemical process refers to a mass transfer between gas and liquid which transfers one or more components from the gas phase to the

More information

2, where dp is the constant, R is the radius of

2, where dp is the constant, R is the radius of Dynamics of Viscous Flows (Lectures 8 to ) Q. Choose the correct answer (i) The average velocity of a one-dimensional incompressible fully developed viscous flow between two fixed parallel plates is m/s.

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 4 Absorption Lecture - 3 Packed Tower Design Part 2 (Refer Slide

More information

Differential equations of mass transfer

Differential equations of mass transfer Differential equations of mass transfer Definition: The differential equations of mass transfer are general equations describing mass transfer in all directions and at all conditions. How is the differential

More information

Density modelling NH 3 -CO 2 -H 2 O liquid mixtures. Technology for a better society

Density modelling NH 3 -CO 2 -H 2 O liquid mixtures. Technology for a better society 1 Density modelling NH 3 -CO 2 -H 2 O liquid mixtures 2 Liquid density model in Aspen Plus Clarke model (for aqueous electrolyte molar volume) Molar volume for electrolyte solutions (V m l ), applicable

More information

DYNAMIC STUDIES ON A SCF COUNTERCURRENT EXTRACTION PROCESS

DYNAMIC STUDIES ON A SCF COUNTERCURRENT EXTRACTION PROCESS DYNAMIC STUDIES ON A SCF COUNTERCURRENT EXTRACTION PROCESS Rui Ruivo, Alexandre Paiva, Pedro C. Simões Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia,

More information

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis Lecture 5. Single Equilibrium Stages (1) Phase Separation [Ch. 4] Degree of Freedom Analysis - Gibbs phase rule F CP2 -General analysis Binary Vapor-Liquid Systems - Examples of binary system - Phase equilibrium

More information

Adsorption (Ch 12) - mass transfer to an interface

Adsorption (Ch 12) - mass transfer to an interface Adsorption (Ch 12) - mass transfer to an interface (Absorption - mass transfer to another phase) Gas or liquid adsorption (molecular) onto solid surface Porous solids provide high surface area per weight

More information

Chemical absorption in Couette Taylor reactor with micro bubbles generation by rotating porous plate

Chemical absorption in Couette Taylor reactor with micro bubbles generation by rotating porous plate 2016; 4(4): 38-42 P-ISSN2349 8528 E-ISSN 2321 4902 IJCS 2016; 4(4): 38-42 2016 JEZS Received: 05-05-2016 Accepted: 06-06-2016 Chemical absorption in Couette Taylor reactor with micro bubbles generation

More information

CHAPTER / CONTENT. Definition & Application. Solvent selectivity. LLE for Partially Miscible Solvent. LLE for Immiscible Solvent

CHAPTER / CONTENT. Definition & Application. Solvent selectivity. LLE for Partially Miscible Solvent. LLE for Immiscible Solvent CHAPTER / COTET Definition & Application Solvent selectivit LLE for Partiall Miscible Solvent LLE for Immiscible Solvent Liquid liquid etraction equipment Definition & Application The separation of constituents

More information

Separationsteknik / Separation technology

Separationsteknik / Separation technology Separationsteknik / Separation technology 424105 1. Introduktion / Introduction Page 47 was added Nov. 2017 Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering Laboratory / Värme- och strömningsteknik

More information

ChEg 355 Fall 1999 Final Exam

ChEg 355 Fall 1999 Final Exam ChEg 355 Fall 1999 Final Eam 1. Flow between parallel plates (75 points) Consider a pair of infinitely wide parallel plates that have a liquid trapped between them, which will be flowing somewhere at sometime

More information

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs Unit 22. Analysis of Steady State CSRs Overview Reaction engineering involves constructing an accurate mathematical model of a real world reactor and then using that model to perform an engineering task

More information

Steady-State Molecular Diffusion

Steady-State Molecular Diffusion Steady-State Molecular Diffusion This part is an application to the general differential equation of mass transfer. The objective is to solve the differential equation of mass transfer under steady state

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

Vega-Mercado, Humberto Bio Sterile Validation, Merck & Co., Inc., West Point, Pennsylvania,USA

Vega-Mercado, Humberto Bio Sterile Validation, Merck & Co., Inc., West Point, Pennsylvania,USA SEPARATION Vega-Mercado, Humberto Bio Sterile Validation, Merck & Co., Inc., West Point, Pennsylvania,USA Keywords: Liquid-Liquid Extraction, solvent; thermodynamic, Molar Excess Gibbs Energy, single stage,

More information

Centrifugation. Tubular Bowl Centrifuge. Disc Bowl Centrifuge

Centrifugation. Tubular Bowl Centrifuge. Disc Bowl Centrifuge CENTRIFUGATION Centrifugation Centrifugation involves separation of liquids and particles based on density. Centrifugation can be used to separate cells from a culture liquid, cell debris from a broth,

More information

Mass Transfer Operations

Mass Transfer Operations College of Engineering Tutorial # 1 Chemical Engineering Dept. 14/9/1428 1. Methane and helium gas mixture is contained in a tube at 101.32 k Pa pressure and 298 K. At one point the partial pressure methane

More information

CHBE 344 Unit Operations I Fall 2009 Course Syllabus

CHBE 344 Unit Operations I Fall 2009 Course Syllabus CHBE 344 Course Syllabus page 1 CHBE 344 Unit Operations I Fall 2009 Course Syllabus Course (Calendar) Description Characterization of particles; comminution, screening and classification; filtration,

More information

Cork Institute of Technology. Autumn 2005 CE 2.7 Separation Process & Particle Technology (Time: 3 Hours) Section A

Cork Institute of Technology. Autumn 2005 CE 2.7 Separation Process & Particle Technology (Time: 3 Hours) Section A Cork Institute of Technology Bachelor of Engineering (Honours) in Chemical and Process Engineering Stage 2 (Bachelor of Engineering in Chemical and Process Engineering Stage 2) (NFQ Level 8) Autumn 2005

More information

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process Development of Dynamic Models Illustrative Example: A Blending Process An unsteady-state mass balance for the blending system: rate of accumulation rate of rate of = of mass in the tank mass in mass out

More information

Part 1 Principles of the Fluid Dynamic Design of Packed Columns for Gas/Liquid Systems

Part 1 Principles of the Fluid Dynamic Design of Packed Columns for Gas/Liquid Systems Part 1 Principles of the Fluid Dynamic Design of Packed Columns for Gas/Liquid Systems List of Symbols for Part 1 Formula Variables, Latin Letters a m 2 m 3 geometric surface area of packing per unit volume

More information

AGITATION/GAS-LIQUID DISPERSION. CHEM-E Fluid Flow in Process Units

AGITATION/GAS-LIQUID DISPERSION. CHEM-E Fluid Flow in Process Units AGITATION/GAS-LIQUID DISPERSION CHEM-E7160 - Fluid Flow in Process Units 1. INTRODUCTION Agitation: Mixing: Blending: Suspension: Dispersion: Induced motion of a material in a specific way, usually in

More information

Mass Transfer II Prof. Nishith Verma Department of Chemical Engineering Indian Institute of Technology, Kanpur. Lecture No. # 9

Mass Transfer II Prof. Nishith Verma Department of Chemical Engineering Indian Institute of Technology, Kanpur. Lecture No. # 9 Mass Transfer II Prof. Nishith Verma Department of Chemical Engineering Indian Institute of Technology, Kanpur Lecture No. # 9 In today s lecture, we take up this absorption unit operation, and we address

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 4 Absorption Lecture - 4 Packed Tower Design Part - 3 Welcome to

More information

Solving mass transfer problems on the computer using Mathcad

Solving mass transfer problems on the computer using Mathcad Solving mass transfer problems on the computer using Mathcad E. N. Bart, J. Kisutcza NJIT, Department of Chemical Engineering, University Heights, Newark NJ 712-1982 Tel 973 596 2998, e-mail: Bart@NJIT.edu

More information

Volumetric, Viscometric and Refractive Indices Properties of Binary Mixtures of Acetyl Acetone with 1-Butanol at Different Temperatures

Volumetric, Viscometric and Refractive Indices Properties of Binary Mixtures of Acetyl Acetone with 1-Butanol at Different Temperatures Volumetric, Viscometric and Refractive Indices Properties of Binary Mixtures of Acetyl Acetone with 1-Butanol at Different Temperatures Aisha Al-Abbasi *, Salsabil Almorabt, Omassad Ibrahim, Fatima Almahjoob

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1 Course plan 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume nalysis 4. Differential nalysis of Fluid Flow

More information

Problem Appendix Antoine constants Important properties of unordered packings... 22

Problem Appendix Antoine constants Important properties of unordered packings... 22 Contents Sample problems and eercises Distillation... 3 Sample problems... 3 Sample : Calculating vapor phase composition for immiscible liquids... 3 Sample 2: Calculating boiling point and vapor phase

More information

L/O/G/O 單元操作 ( 三 ) Chapter 23 Leaching and Extraction 化學工程學系李玉郎

L/O/G/O 單元操作 ( 三 ) Chapter 23 Leaching and Extraction 化學工程學系李玉郎 L/O/G/O 單元操作 ( 三 ) Chapter 23 Leaching and Extraction 化學工程學系李玉郎 Leaching Solid extraction, dissolve soluble matter from its mixture with an insoluble solid solid (solute A+ inert B) solvent (C) concentrated

More information

A Shrinking Core Model for Steam Hydration of CaO-Based Sorbents Cycled for CO2 Capture: Supplementary Information

A Shrinking Core Model for Steam Hydration of CaO-Based Sorbents Cycled for CO2 Capture: Supplementary Information A Shrinking Core Model for Steam Hydration of CaO-Based Sorbents Cycled for CO2 Capture: Supplementary Information John Blamey 1, Ming Zhao 2, Vasilije Manovic 3, Edward J. Anthony 3, Denis R. Dugwell

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017 Transient Heat Transfer Experiment ME 331 Introduction to Heat Transfer June 1 st, 2017 Abstract The lumped capacitance assumption for transient conduction was tested for three heated spheres; a gold plated

More information

Design of A chemical Absorption System for The Separation of Propane/Propylene Mixture

Design of A chemical Absorption System for The Separation of Propane/Propylene Mixture Design of A chemical Absorption System for The Separation of Propane/Propylene Mixture Reda Zein, Ahmed F. Nassar, Tarek M. Mostafa Chemical Engineering Department Cairo University Giza Egypt reda.zein@eng1.cu.edu.eg

More information

LOSSES DUE TO PIPE FITTINGS

LOSSES DUE TO PIPE FITTINGS LOSSES DUE TO PIPE FITTINGS Aim: To determine the losses across the fittings in a pipe network Theory: The resistance to flow in a pipe network causes loss in the pressure head along the flow. The overall

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 5 Fractional Distillation Welcome to the

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

University School of Chemical Technology

University School of Chemical Technology University School of Chemical Technology Guru Gobind Singh Indraprastha University Syllabus of Examination B.Tech/M.Tech Dual Degree (Chemical Engineering) (4 th Semester) (w.e.f. August 2004 Batch) Page

More information

Equilibrated Vapor Concentrations for Bicomponent Organic Solvents

Equilibrated Vapor Concentrations for Bicomponent Organic Solvents J Occup Health 1998; 40: 13 136 Journal of Occupational Health Equilibrated Vapor Concentrations for Bicomponent Organic Solvents Hajime HORI 1 and Isamu TANAKA 1 Department of Environmental Management

More information

SOLUTION CONCENTRATIONS

SOLUTION CONCENTRATIONS SOLUTION CONCENTRATIONS The amount of solute in a solution (concentration) is an important property of the solution. A dilute solution contains small quantities of solute relative to the solvent, while

More information

Liquid Liquid Extraction: Comparision in Micro and Macro Systems. Presentation ID#: Abstract

Liquid Liquid Extraction: Comparision in Micro and Macro Systems. Presentation ID#: Abstract Liquid Liquid Extraction: Comparision in Micro and Macro Systems Presentation ID#: 329008 Prof. Sankarshana Talapuru 1, Ilaiah S 2, Dr. Usha Virendra 3 1, 2 University College of Technology, Osmania University,

More information

THE STUDY OF MOLECULAR INTERACTIONS IN STABILIZERS AND PLASTICIZER THROUGH ULTRASONIC MEASUREMENTS

THE STUDY OF MOLECULAR INTERACTIONS IN STABILIZERS AND PLASTICIZER THROUGH ULTRASONIC MEASUREMENTS 27 THE STUDY OF MOLECULAR INTERACTIONS IN STABILIZERS AND PLASTICIZER THROUGH ULTRASONIC MEASUREMENTS 1 R. KAVITHA, 2 S. JAYAKUMAR, 3 R. UMA 1 Department of Chemistry, Easwari Engineering College, Chennai

More information

Mass Transfer Coefficients (MTC) and Correlations II

Mass Transfer Coefficients (MTC) and Correlations II Mass Transfer Mass Transfer Coefficients (MTC) and Correlations II 7.2- Correlations of Mass Transfer Coefficients Mass transfer coefficients (MTCs) are not physical properties like the diffusion coefficient.

More information

Investigation of Packing Effect on Mass Transfer Coefficient in a Single Drop Liquid Extraction Column

Investigation of Packing Effect on Mass Transfer Coefficient in a Single Drop Liquid Extraction Column Iranian Journal of Chemical Engineering Vol. 7, No. 4 (Autumn), 2010, IAChE Investigation of Packing Effect on Mass Transfer Coefficient Z. Azizi, A. Rahbar, H. Bahmanyar Engineering College, Chemical

More information

CHEM 254 EXPERIMENT 7. Phase Diagrams - Liquid Vapour Equilibrium for two component solutions

CHEM 254 EXPERIMENT 7. Phase Diagrams - Liquid Vapour Equilibrium for two component solutions pressure CHEM 254 EXPERIMENT 7 Phase Diagrams - Liquid Vapour Equilibrium for two component solutions The partial pressures of the components of an ideal solution of two volatile liquids are related to

More information

EFFECT OF SALT MAGNESIUM CHLORIDE ON VAPOUR - LIQUID EQUILIBRIA OF BINARY AZEOTROPIC LIQUID MIXTURE: ETHYL ACETATE ETHANOL

EFFECT OF SALT MAGNESIUM CHLORIDE ON VAPOUR - LIQUID EQUILIBRIA OF BINARY AZEOTROPIC LIQUID MIXTURE: ETHYL ACETATE ETHANOL IJRET: International Journal of Research in Engineering and Technology eissn: 239-63 pissn: 232-738 EFFECT OF SALT MAGNESIUM CHLORIDE ON VAPOUR - LIQUID EQUILIBRIA OF BINARY AZEOTROPIC LIQUID MIXTURE:

More information

Heat Augmentation Using Non-metallic Flow Divider Type Inserts in Forced Convection

Heat Augmentation Using Non-metallic Flow Divider Type Inserts in Forced Convection IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 62-67 www.iosrjournals.org Heat Augmentation Using Non-metallic Flow Divider Type Inserts in Forced

More information

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, 2013 Closed Book, Web, and Notes Name Honor Code (Sign at the end of exam period) 1) / 5 pts 2) / 5 pts 3) / 5 pts 4) / 5 pts 5) / 5 pts 6) / 5

More information

PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS

PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS Jaime Benitez iwiley- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface Nomenclature xiii xv 1. FUNDAMENTALS OF MASS TRANSFER 1

More information

Examples Liquid- Liquid- Extraction

Examples Liquid- Liquid- Extraction Examples Liquid- Liquid- Extraction Lecturer: Thomas Gamse ao.univ.prof.dipl.-ing.dr.techn. Department of Chemical Engineering and Environmental Technology Graz University of Technology Inffeldgasse 25,

More information

Thermodynamics of diffusion (extracurricular material - not tested)

Thermodynamics of diffusion (extracurricular material - not tested) Thermodynamics of diffusion (etracurricular material - not tested) riving force for diffusion iffusion in ideal and real solutions Thermodynamic factor iffusion against the concentration gradient Spinodal

More information

Simulation of Heat and Mass Transfer in the Corrugated Packing of the Counter Flow Cooling Tower

Simulation of Heat and Mass Transfer in the Corrugated Packing of the Counter Flow Cooling Tower Kasetsart J. (Nat. Sci.) 42 : 59-577 (2008) Simulation of Heat and Mass Transfer in the Corrugated Packing of the Counter Flow Cooling Tower Montri Pirunkaset* and Santi Laksitanonta BSTRCT This paper

More information

McCabe Thiele Graphical Equilibrium-Stage

McCabe Thiele Graphical Equilibrium-Stage Limiting condition McCabe Thiele Graphical Equilibrium-Stage When analzing or designing a process, it is useful to look at limiting cases to assess the possible values of process parameters. In distillation

More information

Vapor-liquid equilibrium

Vapor-liquid equilibrium Vapor-liquid equilibrium From Wikipedia, the free encyclopedia Vapor-liquid equilibrium, abbreviated as VLE by some, is a condition where a liquid and its vapor (gas phase) are in equilibrium with each

More information

Analyzing solubility of acid gas and light alkanes in triethylene glycol

Analyzing solubility of acid gas and light alkanes in triethylene glycol From the SelectedWorks of ali ali 208 Analyzing solubility of acid gas and light alkanes in triethylene glycol ali ali Available at: https://works.bepress.com/bahadori/8/ Journal of Natural Gas Chemistry

More information

APPLICATION OF DENSITOMETERS TO LIQUID MEASUREMENT Class #

APPLICATION OF DENSITOMETERS TO LIQUID MEASUREMENT Class # APPLICATION OF DENSITOMETERS TO LIQUID MEASUREMENT Class # 2010.1 Joe Harris National Sales Manager Anton Paar USA 10215 Timber Ridge Drive Ashland, VA 23005 Introduction There are a variety of accurate

More information

Research Article HEAT TRANSFER ENHANCEMENT IN LAMINAR FLOW OVER FLAT PLATE USING SMALL PULSATING JET

Research Article HEAT TRANSFER ENHANCEMENT IN LAMINAR FLOW OVER FLAT PLATE USING SMALL PULSATING JET Transactions of the TSME (2017) Vol. 5, No. 1, 20 29 Journal of Research and Applications in Mechanical Engineering Copyright 2017 by TSME ISSN 2229-2152 print DOI: 10.14456/jrame.2017.2 Research Article

More information

Unit Operations Lecture June 2010

Unit Operations Lecture June 2010 Unit Operations Lecture 10 23 June 2010 1 Last time Column Internals; sizing Batch (Rayleigh) Distillation Evaporation Crystallization Overview 2 Evaporation Evaporate a solvent from a solution to concentrate

More information

Reflections on the use of the McCabe and Thiele method

Reflections on the use of the McCabe and Thiele method From the Selectedorks of João F Gomes January 2007 Reflections on the use of the McCabe and Thiele method Contact Author Start Your Own Selectedorks Notify Me of New ork Available at: http://works.bepress.com/joao_gomes/42

More information

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy 33 PHASE CHANGES - To understand solids and liquids at the molecular level, it will help to examine PHASE CHANGES in a little more detail. A quick review of the phase changes... Phase change Description

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

Distillation the most important unit operation. Predict Distillation Tray Efficiency. Reactions and Separations

Distillation the most important unit operation. Predict Distillation Tray Efficiency. Reactions and Separations Predict Distillation Tray Efficiency Markus Duss Sulzer Chemtech Ltd Ross Taylor Clarkson Univ. An empirical technique the O Connell correlation is widely used to estimate the efficiency of cross-flow

More information

QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as:

QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as: QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as: B C D Hydrogen bonding. Dipole-dipole interactions. Dispersion forces.

More information

Computer Aided Design Module for a Binary Distillation Column

Computer Aided Design Module for a Binary Distillation Column Computer Aided Design Module for a Binary Distillation Column K. R. Onifade Department of Chemical Engineering, Federal University of Technology Minna, Nigeria Abstract A Computer Aided Design (CAD) module

More information

Homework #4 Solution. μ 1. μ 2

Homework #4 Solution. μ 1. μ 2 Homework #4 Solution 4.20 in Middleman We have two viscous liquids that are immiscible (e.g. water and oil), layered between two solid surfaces, where the top boundary is translating: y = B y = kb y =

More information

PREDICTION OF PHYSICAL PROPERTIES OF FOODS FOR UNIT OPERATIONS

PREDICTION OF PHYSICAL PROPERTIES OF FOODS FOR UNIT OPERATIONS PERIODICA POLYTECHNICA SER. CHEM. ENG. VOL. 45, NO. 1, PP. 35 40 (2001) PREDICTION OF PHYSICAL PROPERTIES OF FOODS FOR UNIT OPERATIONS Ágnes BÁLINT Department of Chemical Technology Budapest University

More information

Chapter 11. General Chemistry. Chapter 11/1

Chapter 11. General Chemistry. Chapter 11/1 Chapter 11 Solutions and Their Properties Professor Sam Sawan General Chemistry 84.122 Chapter 11/1 Solutions Solution: A homogeneous mixture. Solvent: The major component. Solute: A minor component. Copyright

More information

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Mass Transfer Lab

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Mass Transfer Lab DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore Mass Transfer Lab Introduction Separation equipments account for a major part of the capital investment in process industry.

More information

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz Reaction and Diffusion in a Porous Catalyst Pellet by Richard K. Herz Solid catalysts are often called "heterogeneous catalysts" meaning that they are in a different phase from fluid reactants

More information

A Multiphase Microreactor for Organic Nitration

A Multiphase Microreactor for Organic Nitration A Multiphase Microreactor for Organic Nitration Dr. John R.Burns Dept. Chemical & Process Engineering, University of Newcastle, U.K. Intensifying Multiphase Reactions Using Narrow Channel Flow Key Points

More information

A Risk Assessment Methodology for Toxic Chemicals Evaporation from Circular Pools

A Risk Assessment Methodology for Toxic Chemicals Evaporation from Circular Pools JASEM ISSN 9-86 All rights reserved Full-text Available Online at www.bioline.org.br/ja J. Appl. Sci. Environ. Manage. March, 7 Vol. () 9 - A Risk Assessment Methodology for Toxic Chemicals Evaporation

More information

Absorption/Stripping

Absorption/Stripping Absorption/Stripping Gas-liquid separation processes (Ch. 10) Cooling (condenser) Feed A+B Distillation(Ch.11) Absorption (Ch.10) Stripping (Ch.10) B COUNTER-CURRENT MULTISTAGE CONTACT OF GAS AND LIQUID

More information

4 Results of the static and dynamic light scattering measurements

4 Results of the static and dynamic light scattering measurements 4 Results of the static and dynamic light scattering measurements 4 Results of the static and dynamic light scattering measurements In this section we present results of statistic and dynamic light scattering

More information

DISCHARGE COEFFICIENT OF SMALL SONIC NOZZLES

DISCHARGE COEFFICIENT OF SMALL SONIC NOZZLES THERMAL SCIENCE, Year 2014, Vol. 18, No. 5, pp. 1505-1510 1505 Introduction DISCHARGE COEFFICIENT OF SMALL SONIC NOZZLES by Zhao-Qin YIN *, Dong-Sheng LI, Jin-Long MENG, and Ming LOU Zhejiang Province

More information

Heat and Mass Transfer in Tray Drying

Heat and Mass Transfer in Tray Drying Heat and Mass Transfer in Tray Drying Group # 11: Sami Marchand (GL), Chase Kairdolf (WR), Tiffany Robinson (OR) Instructor: Dr. Wetzel Objective: The objective of this experiment is to exhibit how accurately

More information

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2 Multicomponent Distillation All Rights Reserved. Armando B. Corripio, PhD, P.E., 2013 Contents Multicomponent Distillation... 1 1 Column Specifications... 2 1.1 Key Components and Sequencing Columns...

More information

Modeling, design and control of cyclic distillation systems

Modeling, design and control of cyclic distillation systems Available online at www.sciencedirect.com Procedia Engineering 42 (22 ) 22 23 2 th International Congress of Chemical and Process Engineering CHISA 22 25 29 August 22, Prague, Czech Republic Modeling,

More information