NOTICE CONCERNING COPYRIGHT RESTRICTIONS

Size: px
Start display at page:

Download "NOTICE CONCERNING COPYRIGHT RESTRICTIONS"

Transcription

1 NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material. The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

2 21 Esl Geothermal Energy R&D Program WATER ADSORPTION Miroslaw S. Gruszkiewicz, Juske Horita, J. Michael Simonson, and Robert E. Mesmer Oak Ridge National Laboratory KEY WORDS geothermal reservoir, adsorption, The Geysers, rocks, porous materials PROJECT BACKGROUND AND STATUS Any reliable model of the behavior of vapor-dominated geothermal reservoirs must include information about the amount of water retained by the rocks as a function of temperature and pressure. All porous materials, including rocks, can retain water as multi-layer adsorbate on all of their internal surface, as pore-filling adsorbate in the micropores (widths up to about 20 A) and as capillary condensate in the mesopores and macropores (widths up to about 1000 A). This retained water has a density close to the density of liquid water even if the temperature and pressure in the reservoir are in the superheated steam region, indicating that only low-density steam should exist in the absence of surface effects. This means that the term "vapor-dominated reservoir" refers to the equilibrium state of the steam present in large rock fractures and the steam produced in the wells, but does not reflect tile fact that water is also stored in such reservoirs in a high-density condensed state. To estimate the size of the available resource and to predict pressure changes during operation it is important to know what fraction of the water is present as adsorbed layers and capillary condensate with an equilibrium vapor pressure lower than that of bulk water. Operating experience suggests that adsorbed and pore water may act as either a source or a potential sink directly influencing the response to reinjection processes. This response may be influenced by the phenomena that cause adsorption/desorption hysteresis. Since the physicochemical complexity of rocks makes it impossible to predict with a reasonable certainty the water retention at different temperatures and pressures, the most useful data would be those obtained at temperatures in the vicinity of the actual reservoir temperatures. The temperature in most of The Geysers reservoir is approximately 240 C, and a higher temperature reservoir is found in the northwest area of the field. The experimental measurements of water adsorption published in the literature have been limited to about 150 C, with most of the experiments conducted at 120 C or 130 C and below (Shang et al., 1995). This project was undertaken in order to significantly expand the knowledge of the adsorption/ desorption processes useful for operating geothermal reservoirs. The following work was completed in this project: 042 Rock cores were prepared and sent to an external laboratory where BET surface area analyses were made using nitrogen and krypton at 77 K. These analyses yielded surface areas and total pore volumes of the samples. Densities were also determined by the helium displacement method. 042 The Oak Ridge National Laboratory (ORNL) isopiestic apparatus was extensively overhauled and modifications were made to achieve the highest possible weighing accuracy. 042 The densities of the samples were measured using the effect of buoyancy in compressed argon gas. 042 All the samples were prepared and submitted for analysis by X-ray powder diffractometry. 4-51

3 U.S. Department of Energy 042 The 150 C, 200 C and 250 C adsorption and desorption isotherms were determined for 12 rock samples taken from three wells at the Geysers geothermal system, in three grain size fractions. Approximately 20 values of p/po from 0 to 0.98 were investigated. 042 Representative samples were also submitted to Micromeritics laboratories for mercury intrusion porosimetry and low temperature nitrogen adsorption/desorption analyses. The results are expected to provide information about pore size distributions in a wide pore size range. 042 The experimental data were reduced by fitting isotherms to empirical correlations of the amount of water retained as a function of relative pressure. Approximate pore size distributions are being calculated from the adsorption/desorption isotherms. PROJECT OBJECTIVES Technical Objectives 042Experimental determination of water retention per unit of mass by rocks from The Geysers geothermal field as a function of vapor pressure at temperatures from 150 C to 250 C when pressure is increasing (*adsorption' isotherms) and decreasing ('desorption' isotherms). 042Characterization of the rocks from The Geysers using the data obtained by us, X-ray diffraction, and low temperature adsorption. 042Correlation of the water retention phenomena in the reservoirs with rock type and T-p conditions. Expected Outcomes 042Obtain accurate and reliable water retention data for representative samples of The Geysers rocks at the reservoir temperature (for the first time). These data, including hysteresis behavior, will be available for use in reservoir models and in injection/production simulations. 042Resolve the issue of the temperature dependence of the amount of water retained. 042Expand the knowledge about the structure of The Geysers rocks and about rock-water interactions. Gain an insight into the type of rock surface-water interactions that are present., both chemical and physical. APPROACH The ORNL high-temperature isopiestic apparatus is a unique facility capable of precise and accurate measurements of the change of mass of a sample under high temperature-high pressure conditions. This ability makes it suitable for measurements of adsorption by materials characterized by small specific surface areas. The parameter measured is the mass of the solid as a function of vapor pressure. The sorptometers used by other investigators for measuring adsorption on geothermal reservoir rocks rely on measurements of vapor pressure in a chamber of known volume containing the sample. The total volume of the instrument is kept small to increase its sensitivity to relative pressure changes, but the small volume also makes the instrument more sensitive to leaks, temperature variation, and errors in calibration of the internal volumes. In the isopiestic apparatus the mass is measured by comparison with a set of standard weights placed inside the pressure vessel together with the samples. The densities of the samples, which have to be known in order to correct the results for the effect of buoyancy, are measured inside the isopiestic apparatus by weighing the samples in vacuum and then in the atmosphere of a compressed gas (e.g. Ar) of known density. The large volume of the isopiestic vessel (about 28 L) makes small leaks 4-52

4 Geothermal Energy R&D Program of less consequence. These characteristics of the isopiestic apparatus make it relatively easy to evaluate the time needed for reaching equilibrium, as the samples may be left under the same vapor pressure for many days and the change of mass with time can be monitored. The isopiestic apparatus is capable of, and has been previously used for, measurements at 250 C and 40 bar. In conjunction with the water adsorption measurements, BET surface area analyses were performed by Porous Materials Inc. on the same rock samples using nitrogen or krypton adsorption measurements at 77 K in order to obtain specific surfaces and total pore volumes.. These parameters are the most important in estimating water retention capability of a porous material. More extensive and precise low temperature adsorption measurements as well as mercury intrusion porosimetry tests are now being performed by Micromeritics Instruments Inc. on the same samples that were used for high temperature water adsorption measurements. These analyses will yield pore size distributions covering both the mesopore and macropore ranges. Simultaneously, X-ray diffraction data will provide sample compositions which might be helpful in explaining the differences in water retention behavior between various samples. RESEARCH RESULTS The measurements were performed on cores taken from the producing steam reservoir. Well numbers and approximate depths are as follows (per Jeff Hulen of the University of Utah who supplied the samples): NEGU-17, ft PRATI-STATE 12, ft MLM-3, ft. The rocks were crushed and sieved. Three fractions were prepared of each core with the following grain sizes: mm ('coarse'), mm ('medium'), and <0.355 mm ('fine'). The surface areas as determined by PMI ranged from 0.64 to 3.52 mvg. Four samples of each rock were loaded in the titanium cups of the isopiestic apparatus (the medium fraction of each of the rocks was loaded in two cups, so that the repeatability of the measurements could be verified). Four of the remaining cups contained pure minerals (silica gel, chlorite, magnetite, and anatase). The data obtained on these samples, which have surface areas and water retaining capacities significantly higher than The Geysers rocks, can be compared with literature results. It was found that the water retention behavior of the fine fraction samples was quite different from either coarse or medium fractions. The mass of the fine fraction samples in vacuum increased significantly and irreversibly after each p/po cycle (vacuum-saturation with steam-vacuum), while the mass of the coarse and medium fraction samples did not change significantly. For example, the mass in vacuum ofthe fine grain size sample of the MLM-3 rock increased irreversibly by about 21.5 mg/g. The coarse grain size fraction of the same rock can retain only up to 3 mg/g water at p/po=0.8 or up to 7 mg/g at the highest relative pressure reached during the experiments (0.98). This indicates that a part of the retained water was bonded chemically to the fresh surfaces created during grinding. The differences in water retention between the coarse and medium grain sizes were not statistically significant. Adsorption on these samples was nearly completely reversible, indicating that only physical adsorption/capillary condensation were taking place. Most of the samples of the coarse and medium fractions showed 'closed' hysteresis loops (no hysteresis below p/po = 0.55). It seems likely that purely physical adsorption with completely closed hysteresis loops would occur on all intact cores of these rocks, since the available internal surface of the solid has already been saturated with chemically bonded water. However, the bulk of the solid is not in chemical equilibrium with water. The shape of the isotherms and the hysteresis loops (type H3 according to the IUPAC recommended classification) is consistent with a pore system composed of open parallel slits (which produce flat isotherms with hysteresis) and wedges closed on the narrow side (which produce sloping isotherms 4-53

5 without hysteresis). U.S. Department of Energy The shapes of the pore size distribution curves suggest that two distinct groups of capillaries may be present: wider mesopores with radii from 40 A up with quite evenly distributed sizes, and narrow pores with radii below 20 A. A relatively large part of the water is retained in the second group of pores. It is tempting to identify the larger pores as slits between constituent grains and crystallites and the smaller pores as cleavage planes or dislocations inside the crystals. They may also represent the structure of two different mineral components of the rocks that may be present in varying proportions in different samples. Finally, it is possible that such pore size distribution curves may be simply the result of the particular mechanism of filling/emptying the pores where instabilities and transitions occur as the saturation of the rock with the condensed phase increases or decreases. The fraction oftotal retention capability attributed to the narrow pores increases in the sequence MLM-3, PRATI-STATE 12, NEGU-17. In all three rocks this fraction appears to be significant (between 30 and 70 per cent). This means that a significant portion of all the water present in the reservoir might require a rather large pressure drop to be produced. Of the three wells investigated the rocks from MLM-3 have the best characteristics from the point of view of geothermal reservoir operation: total capacity is the largest, and most of the water is retained by the pores in the middle of the mesopore range, with high equilibrium vapor pressure. One of the consequences of the presence of hysteresis loops is that the well pressure is not in general a reliable indicator of the amount of the resource available. For example for the NEGU-17 rocks, with the same total amount ofwater retained, the equilibrium vapor pressure (reservoir pressure) may be either 0.7 po or 0.95 po. It is more desirable to remain on the adsorption branch, where at constant water content the equilibrium pressure is higher. If after the injection the system is on the desorption branch, the amount of water retained which is necessary to maintain the same pressure (e.g. p/po = 0.8 ) may significantly exceed the amount required on the adsorption branch. At relative pressures lower than about 0.6, where water is retained mainly by multilayer adsorption and pore filling, there is very little change with temperature of the amount of water retained at a given relative pressure. This change is probably below the limit of accuracy of our experiments, and it may be superposed on mass increases due to the presence of residual powdered rock present on all samples, or mass decreases due to possible traces of volatile and/or soluble materials. However, the effects of increasing temperature should be seen in the high relative pressure range, where capillary condensation occurs, and where the geothermal reservoirs usually operate. Water retention should decrease with increasing temperature, as the capillary condensation region is shrinking closer to p/po = 1. Thus, assuming the validity of the Newton equation and bulk values for surface tension and density of water, pores with a radius of 17 A (corresponding to an arbitrarily set beginning of capillary condensation) would fill at relative pressures (0.54, 0.73, 0.79, and 0.85) at temperatures (25, 150, 200, 250) C, respectively. This is due to the decrease of the surface tension, which is responsible for the capillary condensation, with temperature. As a result, at high temperatures, the relative pressure region where water condenses in wide mesopores would be in a very steep portion of the isotherm, beyond the range of accurate measurements. At 250 C measurements of water retention in pores with radii above about 100 A are not practical. For this reason, there is no plateau on the isotherm as p/po approaches 1, and adsorption measurements can not supply a value for total water retention of the rock. Experimental results for average isotherms of the coarse and medium grain size fractions (see Figure 1 ) show a decrease in water retention with temperature on the desorption branch for all three rocks between 200 C and 250 C. This decrease causes the hysteresis loops to be much flatter at 250 C. The observed changes in water retention are, however, small compared to the prediction of the Newton equation except perhaps at relative pressures very close to saturation. This may indicate that even at high relative pressures, a significant fraction of the water is retained on the surface by multilayer adsorption which is less sensitive to temperature changes. Satik et al. (1995) concluded that the effect of temperature is negligible on the adsorption branch while retention of water increases with temperature on the desorption 4-54

6 Geothermal Energy R&D Program branch. Lack of a significant temperature effect on water retention on the adsorption branch in various geothermal reservoir rocks was noted by Bertani et al. (1996) between 170 C and 200 C. FUTURE PLANS The treatment of the experimental data and description of the results will be continued. This will include the compositions of the samples obtained by X-ray diffraction and the low temperature adsorption and mercury porosimetry results which will be available soon. This information will be analyzed in conjunction with available mineralogic and petrographic data. INDUSTRY INTEREST AND TECHNOLOGY TRANSFER Partial results of this study were presented at the Twenty-First Annual Stanford Geothermal Reservoir Engineering Workshop in Stanford, California, January 22-24, 1996 and published in the workshop Proceedings. The results are expected to be of interest to companies operating geothermal reservoirs where a vapor phase zone is present. The knowledge of the adsorption/desorption isotherms and of the hysteresis characteristics is considered to be essential in modeling the behavior of the reservoirs including the reservoir response to reinjection processes. REFERENCES Gruszkiewicz, M. S., Horita, J., Simmonson, J. M, Mesmer, R. E. (1996) Measurements ofwater vapor adsorption on The Geysers rocks. PROCEEDINGS, Twenty-First Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, January 22-24, Bertani, R., Parisi, L., Perini, R., Tarquini, B. (1996) High temperature adsorption measurements. PROCEEDINGS, Twenty-First Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, January 22-24, Satik, C., Horne, R. N. (1995) An experimental study of adsorption in Vapor-dominated geothermal systems. PROCEEDINGS, Twentieth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, January 24-26, Shang, S. B., Horne, R. N., Ramey, H. J. (1995) Water vapor adsorption on geothermal reservoir rocks. Geothermics,

7 U.S. Department of Energy 4-56

HIGH-TEMPERATURE WATER ADSORPTION ON GEOTHERMAL RESERVOIR ROCKS

HIGH-TEMPERATURE WATER ADSORPTION ON GEOTHERMAL RESERVOIR ROCKS HIGH-TEMPERATURE WATER ADSORPTION ON GEOTHERMAL RESERVOIR ROCKS Miroslaw Gruszkiewicz, Juske Horita, John M. Simonson, and Robert E. Mesmer Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6110,

More information

The Effects of Adsorption and Desorption on Production and Reinjection in Vapor- Dominated Geothermal Fields

The Effects of Adsorption and Desorption on Production and Reinjection in Vapor- Dominated Geothermal Fields Home et al The Effects of Adsorption and Desorption on Production and Reinjection in Vapor- Dominated Geothermal Fields Roland N Horne, Henry J Ramey, Jr, Shubo Shang, Antonio Correa, John Hornbrook Stanford

More information

Experimental Study of Water Vapor Adsorption on Geothermal Reservoir Rocks

Experimental Study of Water Vapor Adsorption on Geothermal Reservoir Rocks SGP-TR-148 Experimental Study of Water Vapor Adsorption on Geothermal Reservoir Rocks Shubo Shang, Roland N. Home and Henry J. Ramey, Jr. May 1994 Financial support was provided through the Stanford Geothermal

More information

HIGH TEMPERATURE ADSORPTION MEASUREMENTS R. Bertani, L. Parisi, R. Perini and B. Tarquini

HIGH TEMPERATURE ADSORPTION MEASUREMENTS R. Bertani, L. Parisi, R. Perini and B. Tarquini PROCEEDNGS, Twenty-First Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California. January 22-24, 996 SGP-TR-9 ABSTRACT Adsorption phenomena are a rich and rather new field

More information

EXPERIMENTAL STUDY OF WATER ADSORPTION ON GEYSERS RESERVOIR ROCKS

EXPERIMENTAL STUDY OF WATER ADSORPTION ON GEYSERS RESERVOIR ROCKS PROCEEDINGS, Eighteenth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 26-28, 1993 SGP-m-14s EXPERIMENTAL STUDY OF WATER ADSORPTION ON GEYSERS RESERVOIR

More information

Specific Surface Area and Porosity Measurements of Aluminosilicate Adsorbents

Specific Surface Area and Porosity Measurements of Aluminosilicate Adsorbents ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2016, Vol. 32, No. (5): Pg. 2401-2406 Specific Surface

More information

Powder Surface Area and Porosity

Powder Surface Area and Porosity Powder Surface Area and Porosity Powder Technology Series Edited by B. Scarlett Department of Chemical Engineering University of Technology Loughborough Powder Surface Area and Porosity S. Lowell PhD Quantachrome

More information

Effect of Sorption/Curved Interface Thermodynamics on Pressure transient

Effect of Sorption/Curved Interface Thermodynamics on Pressure transient PROCEEDINGS, Twentieth Workshop on Geothermal Rey~volr Englneerlng Stanford Unhrenlty, Stanfoni, Callfornla, January 2426 1995 SGP-m-150 Effect of Sorption/Curved Interface Thermodynamics on Pressure transient

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials These materials have been made available for use in research, teaching, and private study, but may not be used for

More information

Gas content evaluation in unconventional reservoir

Gas content evaluation in unconventional reservoir Gas content evaluation in unconventional reservoir Priyank Srivastava Unconventional reservoirs 1 Average monthly prod. (mscf) The Problem Gas in-place calculation Prediction of production decline Total

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTCE CONCERNNG COPYRGHT RESTRCTONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any

More information

High-Pressure Volumetric Analyzer

High-Pressure Volumetric Analyzer High-Pressure Volumetric Analyzer High-Pressure Volumetric Analysis HPVA II Benefits Dual free-space measurement for accurate isotherm data Free space can be measured or entered Correction for non-ideality

More information

3.10. Capillary Condensation and Adsorption Hysteresis

3.10. Capillary Condensation and Adsorption Hysteresis 3.10. Capillary Condensation and Adsorption Hysteresis We shall restrict our attention to the adsorption behavior of porous solids. Hysteresis: two quantities of adsorbed material for each equilibrium

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

BET Surface Area Analysis of Nanoparticles *

BET Surface Area Analysis of Nanoparticles * OpenStax-CNX module: m38278 1 BET Surface Area Analysis of Nanoparticles * Nina Hwang Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

ISO 9277 INTERNATIONAL STANDARD. Determination of the specific surface area of solids by gas adsorption BET method

ISO 9277 INTERNATIONAL STANDARD. Determination of the specific surface area of solids by gas adsorption BET method INTERNATIONAL STANDARD ISO 9277 Second edition 2010-09-01 Determination of the specific surface area of solids by gas adsorption BET method Détermination de l'aire massique (surface spécifique) des solides

More information

AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION WITH RADIAL FLOW IN A FRACTURE

AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION WITH RADIAL FLOW IN A FRACTURE PROCEEDINGS, Twenty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 25-27, 1999 SGP-TR-162 AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

Electronic Supporting information (ESI) for

Electronic Supporting information (ESI) for Electronic Supporting information (ESI) for Experimental assessment of physical upper limit for hydrogen storage capacity at 20 K in densified MIL-101 monoliths Hyunchul Oh a, Dan Lupu b, Gabriela Blanita

More information

THERMOPHYSICAL PROPERTIES OF PORE-CONFINED SUPERCRITICAL CO 2 BY VIBRATING TUBE DENSIMETRY

THERMOPHYSICAL PROPERTIES OF PORE-CONFINED SUPERCRITICAL CO 2 BY VIBRATING TUBE DENSIMETRY PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 THERMOPHYSICAL PROPERTIES OF PORE-CONFINED SUPERCRITICAL

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials These materials have been made available for use in research, teaching, and private study, but may not be used for

More information

SCAL, Inc. Services & Capabilities

SCAL, Inc. Services & Capabilities SCAL, Inc. Services & Capabilities About Us 30 years of service 2019 marks the 30th year in operation for Midlandbased Special Core Analysis Laboratories, Inc. (SCAL, Inc.). We're proud to celebrate this

More information

Multilayer Adsorption Equations. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Multilayer Adsorption Equations. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Multilayer Adsorption Equations Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Empirical isotherm equations BET Surface area determination Limitation Measurement method BDDT

More information

CHARACTERIZATION OF 3A MOLECULAR SIEVE USING TRISTAR MICROMERITICS DEVICE

CHARACTERIZATION OF 3A MOLECULAR SIEVE USING TRISTAR MICROMERITICS DEVICE CHARACTERIZATION OF 3A MOLECULAR SIEVE USING TRISTAR MICROMERITICS DEVICE Sh. Azarfar 1i, S. Mirian 2, H. Anisi 3, R. Soleymani 4, S. Sadighi 5 1i, 4 Research & Development division, Nitelpars.Co (Fateh

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

Lab. Standard Methods

Lab. Standard Methods Lab Standard Methods Quantachrome Instruments LabQMC 1900 Corporate Drive, Boynton Beach, FL 33426. 561.731.4999 Fax: 561.732.9888 www.labqmc.quantachrome.com lab.qt@anton-paar.com Standard Methods Technical

More information

Powder Surface Area and Porosity

Powder Surface Area and Porosity Powder Surface Area and Porosity Powder Technology Series EDITED BY BRIAN SCARLETI Delft University of Technology The Netherlands Many materials exist in the form of a disperse system, for example powders,

More information

Accurate Determination of Pore Size Distributions

Accurate Determination of Pore Size Distributions Accurate Determination of Pore Size Distributions Of Catalysts and Supports: Emphasis on Alumina Calvin H. Bartholomew, Kyle Brunner, and Baiyu Huang Departments of Chemical Engineering and Chemistry,

More information

David I. Norman and Joseph N. Moore

David I. Norman and Joseph N. Moore PROCEEDINGS, TwentyThird Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 2527, 1999 SGPTR162 METHANE AND EXCESS AND Ar IN GEOTHERMAL FLUID INCLUSIONS David

More information

Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications

Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications (Supporting Information: 33 pages) Hiroyasu Furukawa and Omar M. Yaghi Center

More information

ISO 9277 INTERNATIONAL STANDARD. Determination of the specific surface area of solids by gas adsorption BET method

ISO 9277 INTERNATIONAL STANDARD. Determination of the specific surface area of solids by gas adsorption BET method INTERNATIONAL STANDARD ISO 9277 Second edition 2010-09-01 Determination of the specific surface area of solids by gas adsorption BET method Détermination de l'aire massique (surface spécifique) des solides

More information

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity 1 Electronic Supplementary Information (ESI) Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity for Chao Chen, Seung-Tae Yang, Wha-Seung Ahn* and

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials These materials have been made available for use in research, teaching, and private study, but may not be used for

More information

Adsorption equilibrium and dynamics of toluene vapors onto three kinds of silica gels

Adsorption equilibrium and dynamics of toluene vapors onto three kinds of silica gels IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Adsorption equilibrium and dynamics of toluene vapors onto three kinds of silica gels To cite this article: K L Yan and Q Wang

More information

CONTENTS INTRODUCTION...2

CONTENTS INTRODUCTION...2 Contents CONTENTS...1 1. INTRODUCTION...2 2. SAMPLING...3 2.1 CUTTINGS SAMPLES....3 2.2 CORE SAMPLES....3 3. ANALYTICAL METHODS...4 3.1 CLAY MINERALOGY...4 3.2 GAS ADSORPTION, SPECIFIC SURFACE AREA...4

More information

High H2 Adsorption by Coordination Framework Materials

High H2 Adsorption by Coordination Framework Materials Arianna Marchioro Florian Degueldre High H2 Adsorption by Coordination Framework Materials Xiang Lin, Junhua Jia, Xuebo Zhao, K. Mark Thomas, Alexender J. Black, Gavin S. Walker, Neil R. Champness, Peter

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

Laboratory Measurement of Sorption in Porous Media

Laboratory Measurement of Sorption in Porous Media Laboratory Measurement of Sorption in Porous Media A REPORT SUBMITTED TO THE DEPARTMENT OF PETROLEUM ENGINEERING OF STANFCRD UNIVERSITY IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER

More information

Experimental Methods and Analysis

Experimental Methods and Analysis Chapter 3 28 Experimental Methods and Analysis 1. Equipment The fundamental basis of quantitative adsorption analysis is the measurement of excess adsorption isotherms. Each isotherm comprises a series

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc.

More information

Earth: The Water Planet

Earth: The Water Planet Earth: The Water Planet Water is essential for living things to grow, reproduce, and carry out important processes. About 97% of Earth s water is salt water found in the ocean, while the other 3% is fresh

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

More information

Hydrocarbon Geochemistry and Pore Characterization of Bakken Formation and Implication to Oil Migration and Oil Saturation*

Hydrocarbon Geochemistry and Pore Characterization of Bakken Formation and Implication to Oil Migration and Oil Saturation* Hydrocarbon Geochemistry and Pore Characterization of Bakken Formation and Implication to Oil Migration and Oil Saturation* Tongwei Zhang 1, Xun Sun 1, and Stephen C. Ruppel 1 Search and Discovery Article

More information

Pressure Swing Adsorption: A Gas Separation & Purification Process

Pressure Swing Adsorption: A Gas Separation & Purification Process Pressure Swing Adsorption: A Gas Separation & Purification Process Pressure swing adsorption is an adsorption-based process that has been used for various gas separation and purification purposes. Separation

More information

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption EVE 402 Air Pollution Generation and Control Chapter #6 Lectures Adsorption Recap: Solubility: the extent of absorption into the bulk liquid after the gas has diffused through the interface An internal

More information

Hydrogen adsorption by graphite intercalation compounds

Hydrogen adsorption by graphite intercalation compounds 62 Chapter 4 Hydrogen adsorption by graphite intercalation compounds 4.1 Introduction Understanding the thermodynamics of H 2 adsorption in chemically modified carbons remains an important area of fundamental

More information

Effect of temperature and humidity on vegetable grade magnesium stearate

Effect of temperature and humidity on vegetable grade magnesium stearate Powder Technology 147 (2004) 79 85 www.elsevier.com/locate/powtec Effect of temperature and humidity on vegetable grade magnesium stearate Mikko Koivisto a, *, Hannu Jalonen b, Vesa-Pekka Lehto a a Department

More information

DIRECT MEASUREMENT OF IN-SITU WATER SATURATION IN THE GEYSERS ROCK

DIRECT MEASUREMENT OF IN-SITU WATER SATURATION IN THE GEYSERS ROCK PROCEEDINGS, Twenty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 27-29, 2003 SGP-TR-173 DIRECT MEASUREMENT OF IN-SITU WATER SATURATION IN THE GEYSERS

More information

STATE-OF-THE-ART ZEOLITE CHARACTERIZATION: ARGON ADSORPTION AT 87.3 K AND NONLOCAL DENSITY FUNCTIONAL THEORY (NLDFT)

STATE-OF-THE-ART ZEOLITE CHARACTERIZATION: ARGON ADSORPTION AT 87.3 K AND NONLOCAL DENSITY FUNCTIONAL THEORY (NLDFT) STATE-OF-THE-ART ZEOLITE CHARACTERIZATION: ARGON ADSORPTION AT 87.3 K AND NONLOCAL DENSITY FUNCTIONAL THEORY (NLDFT) Physical adsorption in materials consisting of micropores, as for instance in zeolites

More information

APPLICATION OF DIFFERENTIAL SCANNING CALORIMETRY TO CORE ANALYSIS

APPLICATION OF DIFFERENTIAL SCANNING CALORIMETRY TO CORE ANALYSIS SCA2013-055 1/7 APPLICATION OF DIFFERENTIAL SCANNING CALORIMETRY TO CORE ANALYSIS Evgeny Dyshlyuk, Schlumberger This paper was prepared for presentation at the International Symposium of the Society of

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc. Permission

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

Adsorption (Ch 12) - mass transfer to an interface

Adsorption (Ch 12) - mass transfer to an interface Adsorption (Ch 12) - mass transfer to an interface (Absorption - mass transfer to another phase) Gas or liquid adsorption (molecular) onto solid surface Porous solids provide high surface area per weight

More information

DENSITY FUNCTIONAL THEORY FOR STUDIES OF MULTIPLE STATES OF INHOMOGENEOUS FLUIDS AT SOLID SURFACES AND IN PORES.

DENSITY FUNCTIONAL THEORY FOR STUDIES OF MULTIPLE STATES OF INHOMOGENEOUS FLUIDS AT SOLID SURFACES AND IN PORES. J. Smith, D. Stroud, MRS Symposium Proceedings Series, v.49, p.7-33, 998. DENSITY FUNCTIONAL THEORY FOR STUDIES OF MULTIPLE STATES OF INHOMOGENEOUS FLUIDS AT SOLID SURFACES AND IN PORES. A.. NEIMARK, and

More information

IUPAC Technical Report

IUPAC Technical Report Pure Appl. Chem. 2015; aop IUPAC Technical Report Matthias Thommes*, Katsumi Kaneko, Alexander V. Neimark, James P. Olivier, Francisco Rodriguez-Reinoso, Jean Rouquerol and Kenneth S.W. Sing Physisorption

More information

PROCEEDINGS THIRD WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING. December 14-15,1977

PROCEEDINGS THIRD WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING. December 14-15,1977 SGPTR258 PROCEEDINGS THIRD WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING December 1415,1977 *Conducted under Subcontract No. 16735 with Lawrence Berkeley Laboratory, Universityof California, sponsored by the

More information

SOPHISTICATED DESIGN, INTUITIVE OPERATION, RESEARCH-GRADE RESULTS

SOPHISTICATED DESIGN, INTUITIVE OPERATION, RESEARCH-GRADE RESULTS SOPHISTICATED DESIGN, INTUITIVE OPERATION, RESEARCH-GRADE RESULTS ASAP 2020 Plus: Accelerated Surface Area and Porosimetry System The Micromeritics ASAP 2020 Plus integrates a variety of automated gas

More information

BUTANE CONDENSATION IN KEROGEN PORES AND IN SMECTITE CLAY: NMR RELAXATION AND COMPARISON IN LAB STUDY

BUTANE CONDENSATION IN KEROGEN PORES AND IN SMECTITE CLAY: NMR RELAXATION AND COMPARISON IN LAB STUDY SCA212-46 1/6 BUTANE CONDENSATION IN KEROGEN PORES AND IN SMECTITE CLAY: NMR RELAXATION AND COMPARISON IN LAB STUDY Jilin Zhang, Jin-Hong Chen, Guodong Jin, Terrence Quinn and Elton Frost Baker Hughes

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTIC CONCRNING COPYRIGHT RSTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for

More information

ADSORPTION IN MICROPOROUS MATERIALS: ANALYTICAL EQUATIONS FOR TYPE I ISOTHERMS AT HIGH PRESSURE

ADSORPTION IN MICROPOROUS MATERIALS: ANALYTICAL EQUATIONS FOR TYPE I ISOTHERMS AT HIGH PRESSURE ADSORPTION IN MICROPOROUS MATERIALS: ANALYTICAL EQUATIONS FOR TYPE I ISOTHERMS AT HIGH PRESSURE A. L. MYERS Department of Chemical and Biomolecular Engineering University of Pennsylvania, Philadelphia

More information

CLAY MINERALS BULLETIN

CLAY MINERALS BULLETIN CLAY MINERALS BULLETIN DECEMBER, 1959 Vol. 4, NO. 22 A GAS ADSORPTION METHOD FOR RAPID COMPARISON OF SPECIFIC SURFACE AREAS By J. M. HAYNES Research Laboratories, English Clays Lovering Pochin & Co. Ltd.,

More information

Faculty of Mechanical Engineering Institute of Wood and Paper Technology

Faculty of Mechanical Engineering Institute of Wood and Paper Technology Faculty of Mechanical Engineering Institute of Wood and Paper Technology Investigations to the unsteady sorption behaviour of thermally modified wood and its connection to the alteration of pore structure

More information

Thermodynamics I. Properties of Pure Substances

Thermodynamics I. Properties of Pure Substances Thermodynamics I Properties of Pure Substances Dr.-Eng. Zayed Al-Hamamre 1 Content Pure substance Phases of a pure substance Phase-change processes of pure substances o Compressed liquid, Saturated liquid,

More information

CHARCOAL SORPTION STUDIES I. THE PORE DISTRIBUTION IN ACTIVATED CHARCOALS1

CHARCOAL SORPTION STUDIES I. THE PORE DISTRIBUTION IN ACTIVATED CHARCOALS1 CHARCOAL SORPTION STUDIES I. THE PORE DISTRIBUTION IN ACTIVATED CHARCOALS1 BY H. L. MCDERMOT AND J. C. ARNEI-I. ABSTRACT The pore distributions of three activated charcoals have been calculated from the

More information

Unsaturated Flow (brief lecture)

Unsaturated Flow (brief lecture) Physical Hydrogeology Unsaturated Flow (brief lecture) Why study the unsaturated zone? Evapotranspiration Infiltration Toxic Waste Leak Irrigation UNSATURATAED ZONE Aquifer Important to: Agriculture (most

More information

ELECTRICAL RESISTIVITY MEASUREMENTS OF INTACT AND FRACTURED GEOTHERMAL RESERVOIR ROCKS

ELECTRICAL RESISTIVITY MEASUREMENTS OF INTACT AND FRACTURED GEOTHERMAL RESERVOIR ROCKS PROCEEDINGS, Twenty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 29-31, 2001 SGP-TR-168 ELECTRICAL RESISTIVITY MEASUREMENTS OF INTACT AND FRACTURED

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

INTRODUCTION AND BASIC CONCEPTS. Chapter 1. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

INTRODUCTION AND BASIC CONCEPTS. Chapter 1. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

More information

Ethers in a Porous Metal-Organic Framework

Ethers in a Porous Metal-Organic Framework Supporting Information Enhanced Isosteric Heat of H 2 Adsorption by Inclusion of Crown Ethers in a Porous Metal-Organic Framework Hye Jeong Park and Myunghyun Paik Suh* Department of Chemistry, Seoul National

More information

This is a repository copy of Optimised PEI impregnation of activated carbons - Enhancement of CO2 capture under post-combustion conditions.

This is a repository copy of Optimised PEI impregnation of activated carbons - Enhancement of CO2 capture under post-combustion conditions. This is a repository copy of Optimised PEI impregnation of activated carbons - Enhancement of CO2 capture under post-combustion conditions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/89498/

More information

CHARACTERIZATION OF FLUID-ROCK INTERACTION BY ADSORPTION CALORIMETRY

CHARACTERIZATION OF FLUID-ROCK INTERACTION BY ADSORPTION CALORIMETRY SCA2018_053 1/8 CHARACTERIZATION OF FLUID-ROCK INTERACTION BY ADSORPTION CALORIMETRY D. Korobkov 1, V. Pletneva 1, E. Dyshlyuk 2 1 Schlumberger, Moscow Research Center and 2 Dahran Carbonate Research Center

More information

Supporting Information. Nanoscale Kirkendall Growth of Silicalite-1 Zeolite Mesocrystals with. Controlled Mesoporosity and Size

Supporting Information. Nanoscale Kirkendall Growth of Silicalite-1 Zeolite Mesocrystals with. Controlled Mesoporosity and Size Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Nanoscale Kirkendall Growth of Silicalite-1 Zeolite Mesocrystals with Controlled

More information

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor Supporting Information Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor Liuan Gu, Jingyu Wang *, Hao Cheng, Yunchen Du and Xijiang Han* Department

More information

CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS

CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS S. I. Abdel-Khalik (2014) 1 CHAPTER 6 -- The Second Law of Thermodynamics OUTCOME: Identify Valid (possible) Processes as those that satisfy both the first and

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

WM 00 Conference, February 27 March 2, 2000, Tucson, AZ

WM 00 Conference, February 27 March 2, 2000, Tucson, AZ MULTI-LAYERED DISTRIBUTED WASTE-FORM OF I-129 - STUDY ON IODINE FIXATION OF IODINE ADSORBED ZEOLITE BY SILICA CVD ABSTRACT J. Izumi, I. Yanagisawa, K. Katurai, N. Oka, N. Tomonaga, H. Tsutaya Mitsubishi

More information

A COMPARATIVE STUDY OF SHALE PORE STRUCTURE ANALYSIS

A COMPARATIVE STUDY OF SHALE PORE STRUCTURE ANALYSIS SCA2017-092 1 of 9 A COMPARATIVE STUDY OF SHALE PORE STRUCTURE ANALYSIS R. Cicha-Szot, P. Budak, G. Leśniak, P. Such, Instytut Nafty i Gazu - Państwowy Instytut Badawczy, Kraków, Poland This paper was

More information

Adsorption Equilibrium and Kinetics of H 2 O on Zeolite 13X

Adsorption Equilibrium and Kinetics of H 2 O on Zeolite 13X Korean J. Chem. Eng., 8(4), 55-530 (00) Adsorption Equilibrium and Kinetics of H O on Zeolite 3X Young Ki Ryu*, Seung Ju Lee, Jong Wha Kim and Chang-Ha Lee *External Relations Department, Procter & Gamble

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

STUDY ON THE IMPROVEMENT OF THE REDUCTION CAPACITY OF ACTIVATED CARBON FIBER

STUDY ON THE IMPROVEMENT OF THE REDUCTION CAPACITY OF ACTIVATED CARBON FIBER STUDY ON THE IMPROVEMENT OF THE REDUCTION CAPACITY OF ACTIVATED CARBON FIBER Chen Shuixia, Zeng Hanmin Materials Science Institute, Zhongshan University, Guangzhou 51275, China Key Laboratory for Polymeric

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Cyclic Molecule Aerogels: A Robust Cyclodextrin

More information

Modification In Charging Composition In Order To Arrive At Desired Circulation Composition In The Context Of Sorption Compressor Based J-T Cooler

Modification In Charging Composition In Order To Arrive At Desired Circulation Composition In The Context Of Sorption Compressor Based J-T Cooler Modification In Charging Composition In Order To Arrive At Desired Circulation Composition In The Context Of Sorption Compressor Based J-T Cooler R. N. Mehta, S. L. Bapat, M. D. Atrey Department of Mechanical

More information

Full GAED Characterization with Aqueous-phase comparisons for Sample EE-541 February 22, 2015

Full GAED Characterization with Aqueous-phase comparisons for Sample EE-541 February 22, 2015 1 Full GAED Characterization with Aqueous- comparisons for Sample February 22, 2015 Executive Summary One sample of granular activated carbon (GAC) was fully characterized for aqueous comparison using

More information

COMPUTER MODELLING OF HEAT AND MASS FLOW IN STEAMING GROUND AT KARAPITI THERMAL AREA, NEW ZEALAND

COMPUTER MODELLING OF HEAT AND MASS FLOW IN STEAMING GROUND AT KARAPITI THERMAL AREA, NEW ZEALAND PROCEEDINGS, Twenty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 26-28, 2004 SGP-TR-175 COMPUTER MODELLING OF HEAT AND MASS FLOW IN STEAMING GROUND

More information

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions 2015 2 nd International Conference on Material Engineering and Application (ICMEA 2015) ISBN: 978-1-60595-323-6 Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different

More information

Full GAED Characterization with Aqueous-phase comparisons for Sample EE-541 February 22, 2015

Full GAED Characterization with Aqueous-phase comparisons for Sample EE-541 February 22, 2015 1 Full GAED Characterization with Aqueous- comparisons for Sample February 22, 2015 Executive Summary One sample of granular activated carbon (GAC) was fully characterized for aqueous comparison using

More information

MECHANISM OF ACID ACTIVATION OF MAGNESIC PALYGORSKITE

MECHANISM OF ACID ACTIVATION OF MAGNESIC PALYGORSKITE Clays and Clay Minerals, Vol. 37, No. 3, 258-262, 1989. MECHANISM OF ACID ACTIVATION OF MAGNESIC PALYGORSKITE F. GONZALEZ, C. PESQUERA, AND I. BENITO Departamento de Quimica, Universidad de Cantabria Avda.

More information

R&D on adsorption processing technology using pitch activated carbon fiber

R&D on adsorption processing technology using pitch activated carbon fiber 1999D.4.1.1 R&D on adsorption processing technology using pitch activated carbon fiber 1. Contents of empirical research With respect to waste water, exhausts and other emissions in the petroleum refining

More information

MOLECULAR SIEVE EFFECTS IN THE ADSORPTION OF ORGANIC VAPORS ON POLYARAMIDE-DERIVED ACTIVATED CARBON FIBERS

MOLECULAR SIEVE EFFECTS IN THE ADSORPTION OF ORGANIC VAPORS ON POLYARAMIDE-DERIVED ACTIVATED CARBON FIBERS MOLECULAR SIEVE EFFECTS IN THE ADSORPTION OF ORGANIC VAPORS ON POLYARAMIDE-DERIVED ACTIVATED CARBON FIBERS M.C. Almazán-Almazán 1, I. Fernández-Morales 1, M. Domingo-García 1, F.J. López- Garzón 1, M.

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

OMICS Group International is an amalgamation of Open Access publications

OMICS Group International is an amalgamation of Open Access publications About OMICS Group OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of

More information

Application of Low Pressure N 2 Adsorption on Shale Nanoscale Pore Structure: Examples from the Permian Shanxi Formation of Transitional Facies Shale

Application of Low Pressure N 2 Adsorption on Shale Nanoscale Pore Structure: Examples from the Permian Shanxi Formation of Transitional Facies Shale International Journal of Oil, Gas and Coal Engineering 2018; 6(6): 134-141 http://www.sciencepublishinggroup.com/j/ogce doi: 10.11648/j.ogce.20180606.12 ISSN: 2376-7669 (Print); ISSN: 2376-7677(Online)

More information

Supplementary information

Supplementary information Supplementary information Supplementary Information for Exceptional Ammonia Uptake by a Covalent Organic Framework Christian J. Doonan, David J. Tranchemontagne,T. Grant Glover, Joseph R. Hunt, Omar M.

More information

Synthesis of a Zeolite Column with a Monolithic Microhoneycomb Structure Using the Ice Template Method

Synthesis of a Zeolite Column with a Monolithic Microhoneycomb Structure Using the Ice Template Method Synthesis of a Zeolite Column with a Monolithic Microhoneycomb Structure Using the Ice Template Method Shin R. Mukai, Shinya Murata, Kazufusa Onodera and Izumi Yamada *1 Graduate School of Engineering,

More information

SUPERCRITICAL CARBON DIOXIDE DESORPTION OF XYLENE FROM ZEOLITE

SUPERCRITICAL CARBON DIOXIDE DESORPTION OF XYLENE FROM ZEOLITE SUPERCRITICAL CARBON DIOXIDE DESORPTION OF XYLENE FROM ZEOLITE Stéphane VITU and Danielle BARTH ( * ) Institut National Polytechnique de Lorraine Ecole Nationale Supérieure des Industries Chimiques Laboratoire

More information

Report on Preparation of Nanotemplates for mab Crystallization

Report on Preparation of Nanotemplates for mab Crystallization Deliverable number D2.1 Due date 30/09/2017 Deliverable title Report on Preparation of Nanotemplates for mab Crystallization Issue date 21/09/2017 WP number WP2 Author(s) J. Heng, W. Chen, H. Yang Lead

More information