Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications

Size: px
Start display at page:

Download "Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications"

Transcription

1 Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications (Supporting Information: 33 pages) Hiroyasu Furukawa and Omar M. Yaghi Center for Reticular Chemistry, Department of Chemistry and Biochemistry University of California-Los Angeles, Los Angeles, CA , USA Corresponding authors addresses: Relationship of pore volumes S-2 Low-pressure nitrogen and argon isotherms for COFs S-3 Low-pressure hydrogen isotherms for COFs S-7 High-pressure hydrogen isotherms for COFs S-11 Low-pressure methane isotherms for COFs S-15 High-pressure methane isotherms for COFs S-17 Low-pressure carbon dioxide isotherms for COFs S-21 High-pressure carbon dioxide isotherms for COFs S-22 Estimated absolute adsorbed amounts with different packing density S-26 Effect of packing density on absolute adsorbed amounts S-29 Buoyancy correction for adsorbed layer S-30 S-1

2 Relationship of pore volumes Figure S1. Relationship between pore volume estimated by He buoyancy correction and estimated by DR-plot. Ideally, all plots should be on the broken line. The reason for the deviation is probably attributed to the decomposition of crystals. S-2

3 Low-pressure nitrogen and argon isotherms for COFs Figure S2. N 2 (red) and Ar (blue) isotherms for COF-1 measured at 77 and 87 K, respectively. Filled and open symbols repreent adsorption and desorption branches. Connecting traces are guides for eyes. Figure S3. N 2 (red) and Ar (blue) isotherms for COF-5 taken at 77 and 87 K, respectively. All symbols are the same as in Figure S2. S-3

4 Figure S4. N 2 (red) and Ar (blue) isotherms for COF-6 measured at 77 and 87 K, respectively. All symbols are the same as in Figure S2. Figure S5. N 2 (red) and Ar (blue) isotherms for COF-8 measured at 77 and 87 K, respectively. All symbols are the same as in Figure S2. S-4

5 Figure S6. N 2 (red) and Ar (blue) isotherms for COF-10 measured at 77 and 87 K, respectively. All symbols are the same as in Figure S2. Figure S7. N 2 (red) and Ar (blue) isotherms for COF-102 measured at 77 and 87 K, respectively. All symbols are the same as in Figure S2. S-5

6 Figure S8. N 2 (red) and Ar (blue) isotherms for COF-103 measured at 77 and 87 K, respectively. All symbols are the same as in Figure S2. S-6

7 Low-pressure hydrogen isotherms for COFs Figure S9. H 2 isotherms for COF-1 measured at 77 (red) and 87 K (blue). Filled and open symbols repreent adsorption and desorption branches. Fitted curves are obtained by the virial-type expansion, which were used for the Q st estimation. Figure S10. H 2 isotherms for COF-5 measured at 77 (red) and 87 K (blue). All symbols are the same as in Figure S9. S-7

8 Figure S11. H 2 isotherms for COF-6 measured at 77 (red) and 87 K (blue). All symbols are the same as in Figure S9. Figure S12. H 2 isotherms for COF-8 measured at 77 (red) and 87 K (blue). All symbols are the same as in Figure S9. S-8

9 Figure S13. H 2 isotherms for COF-10 measured at 77 (red) and 87 K (blue). All symbols are the same as in Figure S9. Figure S14. H 2 isotherms for COF-102 measured at 77 (red) and 87 K (blue). All symbols are the same as in Figure S9. S-9

10 Figure S15. H 2 isotherms for COF-103 measured at 77 (red) and 87 K (blue). All symbols are the same as in Figure S9. Figure S16. H 2 isotherms for BPL arbon measured at 77 (red) and 87 K (blue). All symbols are the same as in Figure S9. S-10

11 High-pressure hydrogen isotherms for COFs Figure S17. High-pressure H 2 isotherms for COF-1 measured at 77 K. Circles and squares represent surface excess and absolute adsorbed amounts, and filled and open symbols repreent adsorption and desorption branches. Connecting traces are guides for eyes. Figure S18. High-pressure H 2 isotherms for COF-5 measured at 77 K. All symbols are the same as in Figure S17. S-11

12 Figure S19. High-pressure H 2 isotherms for COF-6 measured at 77 K. All symbols are the same as in Figure S17. Figure S20. High-pressure H 2 isotherms for COF-8 measured at 77 K. All symbols are the same as in Figure S17. S-12

13 Figure S21. High-pressure H 2 isotherms for COF-10 measured at 77 K. All symbols are the same as in Figure S17. Figure S22. High-pressure H 2 isotherms for COF-102 measured at 77 K. All symbols are the same as in Figure S17. S-13

14 Figure S23. High-pressure H 2 isotherms for COF-103 measured at 77 K. All symbols are the same as in Figure S17. Figure S24. High-pressure H 2 isotherms for BPL carbon measured at 77 K. All symbols are the same as in Figure S17. S-14

15 Low-pressure methane isotherms for COFs Figure S25. CH 4 isotherms for COF-10 measured at 273 (red), 283 (green), and 298 K (blue). Filled and open symbols repreent adsorption and desorption branches. Fitted curves are obtained by the virialtype expansion, which were used for the Q st estimation. Figure S26. Coverage dependency of adsorption enthalpy of CH 4 for COF-10. S-15

16 Figure S27. CH 4 isotherms for COF-102 measured at 273 (red), 283 (green), and 298 K (blue). All symbols are the same as in Figure S25. Figure S28. Coverage dependency of adsorption enthalpy of CH 4 for COF-102. S-16

17 High-pressure methane isotherms for COFs Figure S29. CH 4 isotherms for COF-1 measured at 273 (blue) and 298 K (red). Circles and squares represent surface excess and absolute adsorbed amounts, and filled and open symbols repreent adsorption and desorption branches. Fitted curves are obtained by the virial-type expansion, which were used for the Q st estimation. Figure S30. CH 4 isotherms for COF-5 measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S29. S-17

18 Figure S31. CH 4 isotherms for COF-6 measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S29. Figure S32. CH 4 isotherms for COF-8 measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S29. S-18

19 Figure S33. CH 4 isotherms for COF-10 measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S29. Figure S34. CH 4 isotherms for COF-102 measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S29. S-19

20 Figure S35. CH 4 isotherms for COF-103 measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S29. Figure S36. CH 4 isotherms for BPL carbon measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S29. S-20

21 Low-pressure carbon dioxide isotherms for COFs Figure S37. CO 2 isotherms for COFs measured at 273 K. Red triangles: COF-1, blue triangles: COF-6, red squares: COF-5, blue squares: COF-8, green squares: COF-10, red circles: COF-102, blue circles: COF-103, black circles: BPL carbon. Adsorption data are shown as closed symbols, desorption data as open symbols, and connecting traces are guides for the eye. S-21

22 High-pressure carbon dioxide isotherms for COFs Figure S38. High-pressure CO 2 isotherms for COF-1 measured at 273 (blue) and 298 K (red). Circles and squares represent surface excess and absolute adsorbed amounts, and filled and open symbols repreent adsorption and desorption branches. Connecting traces are guides for eyes. Figure S39. High-pressure CO 2 isotherms for COF-5 measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S38. S-22

23 Figure S40. High-pressure CO 2 isotherms for COF-6 measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S38. Figure S41. High-pressure CO 2 isotherms for COF-8 measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S38. S-23

24 Figure S42. High-pressure CO 2 isotherms for COF-10 measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S38. Figure S43. High-pressure CO 2 isotherms for COF-102 measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S38. S-24

25 Figure S44. High-pressure CO 2 isotherms for COF-103 measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S38. Figure S45. High-pressure CO 2 isotherms for BPL carbon measured at 273 (blue) and 298 K (red). All symbols are the same as in Figure S38. S-25

26 Effect of packing density on absolute adsorbed amounts Figure S46. Estimated absolute adsorbed amounts of H 2 in COF-6 (A), COF-5 (B), and COF-102 (C) at 77 K with different packing density. Red, blue, green, and purple symbols represent adsorption branche of the isotherms with the packing density of 1.0, 0.7, 0.5 and 0.3, respectively. Broken line demonstrates the bulk density of H 2 (i.e. packing density = 0). Connecting traces are guides for eyes. S-26

27 Figure S47. Estimated absolute adsorbed amounts of CH 4 in COF-6 (A), COF-5 (B), and COF-102 (C) at 298 K with different packing density. Red, blue, green, and purple symbols represent adsorption branche of the isotherms with the packing density of 1.0, 0.7, 0.5 and 0.3, respectively. Broken line demonstrates the bulk density of CH 4 (i.e. packing density = 0). Connecting traces are guides for eyes. S-27

28 Figure S48. Estimated absolute adsorbed amounts of CO 2 in COF-6 (A), COF-5 (B), and COF-102 (C) at 298 K with different packing density. Red, blue, green, and purple symbols represent adsorption branche of the isotherms with the packing density of 1.0, 0.7, 0.5 and 0.3, respectively. Broken line demonstrates the bulk density of CO 2 (i.e. packing density = 0). Connecting traces are guides for eyes. S-28

29 Relationship between absolute hydrogen uptake and absolute methane uptake Figure S49. Relationship between absolute hydrogen (77 K, 70 bar) and methane uptakes (298 K, 70 bar). S-29

30 Buoyancy correction for adsorbed layer As the reviewer pointed out, it is better if one can perform the buoyancy correction for the adsorbed layer. We have noticed this issue and actually mentioned it in our former report. 1 However, the underestimation is not a fundamental problem for just the gravimetric measurements. That is, even volumetric instruments underestimate the adsorbed amounts, because it is assumed that the void space in the sample cell is constant throughout the experiments. The volume of adsorbate is derived from the adsorbed gas amounts and density of adsorbate (i.e. adsorbed volume = (adsorbed amount)/(adsorbate density)); 2 however, the adsorbate density and the density profiles in the pore cannot be measured by today s technology. Therefore we assumed that the adsorbate density in the pore is same as a liquid density of the adsorbate. As shown in Figures S50-S52, corrected values are greater than original ones; CO 2 and CH 4 uptakes are increased by ca. 10% and 20% in the high pressure region, respectively, while in H 2 isotherms the values are close or even higher than their absolute adsorbed uptakes (i.e. 50%). We don t report these higher values because we are not convinced because of their reliability and for the following additional reasons: (i) It is unlikely that adsorbed molecules, especially H 2 and CH 4, form multi layers; therefore actual adsorbate volume should be smaller than present estimation. (ii) If the degree of underestimation by the gravimetric system is much greater than that by volumetric one, we cannot explain the results presented in Ref. 1. (iii) Several CO 2 and CH 4 isotherms measured on a gravimetric system are also well-reproduced by simulation calculations. 3 (iv) If volumetric data contains similar degree of the deviation, it is not necessary to correct only the gravimetric data. And (v) even if, it is necessary to correct the data, we cannot estimate the adsorbed volume using a volumetric gas adsorption analyzer, indicating that it is meaningless to compare isotherms measured by two different methods. We note that this is a universal problem with routine gas adsorption measurements, however, the methods we employ in this study are standard in the field and have been routinely practiced by zeolite and other scientists long working on porous materials. References: (1) Furukawa, H.; Miller, M. A.; Yaghi, O. M. J. Mater. Chem. 2007, 17, (2) Sircar, S. Ind. Eng. Chem. Res. 1999, 38, (3) (a) Walton, K. S.; Millward, A. R.; Dubbeldam, D.; Frost, H.; Low, J. J.; Yaghi, O. M.; Snurr, R. Q. J. Am. Chem. Soc. 2008, 130, (b) Duren, T.; Sarkisov, L.; Yaghi, O. M.; Snurr, R. Q. Langmuir 2004, 20, S-30

31 Figure S50. Corrected surface excess and absolute adsorbed amounts of H 2 in COF-6 (A), COF-5 (B), and COF-102 (C) at 77 K. Red and blue symbols represent isotherms before and after correction, and circles and squares represent excess and total mass, respectively. Connecting traces are guides for eyes. S-31

32 Figure S51. Corrected surface excess and absolute adsorbed amounts of CH 4 in COF-6 (A), COF-5 (B), and COF-102 (C) at 298 K. Red and blue symbols represent isotherms before and after correction, and circles and squares represent excess and total mass, respectively. Connecting traces are guides for eyes. S-32

33 Figure S52. Corrected surface excess and absolute adsorbed amounts of CO 2 in COF-6 (A), COF-5 (B), and COF-102 (C) at 298 K. Red and blue symbols represent isotherms before and after correction, and circles and squares represent excess and total mass, respectively. Connecting traces are guides for eyes. S-33

Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks. Supporting Information

Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks. Supporting Information Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks Krista S. Walton 1, Andrew R. Millward 2, David Dubbeldam 3, Houston Frost 3, John J. Low 4, Omar

More information

Characterisation of Porous Hydrogen Storage Materials: Carbons, Zeolites, MOFs and PIMs

Characterisation of Porous Hydrogen Storage Materials: Carbons, Zeolites, MOFs and PIMs Characterisation of Porous Hydrogen Storage Materials: Carbons, Zeolites, MOFs and PIMs Steven Tedds, a * Allan Walton, a Darren P. Broom, b and David Book a DOI:.39/c0fd00022a Electronic Supplementary

More information

Simultaneously High Gravimetric and Volumetric Gas Uptake Characteristics of the Metal Organic Framework NU-111

Simultaneously High Gravimetric and Volumetric Gas Uptake Characteristics of the Metal Organic Framework NU-111 Simultaneously High Gravimetric and Volumetric Gas Uptake Characteristics of the Metal Organic Framework NU-111 Yang Peng, a,b Gadipelli Srinivas a,b, Christopher E. Wilmer, c Ibrahim Eryazici, d Randall

More information

Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture

Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture Carbon Capture Workshop, Tuesday, April 3 rd, Texas A&M, Qatar Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture J. P. Sculley, J.-R. Li, J. Park, W. Lu, and H.-C. Zhou Texas A&M

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Pyrene-Directed Growth of Nanoporous Benzimidazole-Linked Nanofibers and their Application to Selective Capture and Separation Mohammad Gulam Rabbani, Ali Kemal Sekizkardes,

More information

High-Pressure Volumetric Analyzer

High-Pressure Volumetric Analyzer High-Pressure Volumetric Analyzer High-Pressure Volumetric Analysis HPVA II Benefits Dual free-space measurement for accurate isotherm data Free space can be measured or entered Correction for non-ideality

More information

Supporting Information. High-throughput Computational Screening of the MOF Database for. CH 4 /H 2 Separations. Sariyer, 34450, Istanbul, Turkey

Supporting Information. High-throughput Computational Screening of the MOF Database for. CH 4 /H 2 Separations. Sariyer, 34450, Istanbul, Turkey Supporting Information High-throughput Computational Screening of the MOF Database for CH 4 /H 2 Separations Cigdem Altintas, a Ilknur Erucar b and Seda Keskin a* a Department of Chemical and Biological

More information

Quantifying hydrogen uptake by porous materials

Quantifying hydrogen uptake by porous materials Quantifying hydrogen uptake by porous materials Nuno Bimbo Postdoctoral Research Officer Department of Chemical Engineering University of Bath N.M.M.Bimbo@bath.ac.uk http://www.bath.ac.uk/chem-eng/people/bimbo

More information

Supporting Information

Supporting Information Supporting Information Highly Selective Carbon Dioxide Sorption in an Organic Molecular Porous Material Hyunuk Kim, Yonghwi Kim, Minyoung Yoon, Soyoung Lim, Se Min Park, Gon Seo, Kimoon Kim*, National

More information

Metal organic Frameworks as Adsorbents for Hydrogen Purification and Pre-Combustion Carbon Dioxide Capture

Metal organic Frameworks as Adsorbents for Hydrogen Purification and Pre-Combustion Carbon Dioxide Capture Supporting Information for: Metal organic Frameworks as Adsorbents for Hydrogen Purification and Pre-Combustion Carbon Dioxide Capture Zoey R. Herm, Joseph A. Swisher, Berend Smit, Rajamani Krishna, Jeffrey

More information

Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture

Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture Supporting Information Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture Christopher E. Wilmer, 1 Omar K. Farha, 2 Youn-Sang Bae, 3,a Joseph T. Hupp, 2 and

More information

Separation of CO 2 from CH 4 using Mixed-Ligand Metal-Organic Frameworks

Separation of CO 2 from CH 4 using Mixed-Ligand Metal-Organic Frameworks Langmuir Supporting Information Separation of CO 2 from CH 4 using Mixed-Ligand Metal-Organic Frameworks Youn-Sang Bae, Karen L. Mulfort, %, Houston Frost, Patrick Ryan, Sudeep Punnathanam, Linda J. Broadbelt,

More information

Electronic Supporting information (ESI) for

Electronic Supporting information (ESI) for Electronic Supporting information (ESI) for Experimental assessment of physical upper limit for hydrogen storage capacity at 20 K in densified MIL-101 monoliths Hyunchul Oh a, Dan Lupu b, Gabriela Blanita

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI) Structural flexibility of a

More information

Supporting Information. Table of Contents

Supporting Information. Table of Contents Supporting Information Polyamine-Cladded 18-Ring-Channel Gallium Phosphites with High-Capacity Hydrogen Adsorption and Carbon Dioxide Capture Ming-Jhe Sie, 1 Chia-Her Lin, 2, * and Sue-Lein Wang, 1, *

More information

Modeling the Adsorption of Carbon Monoxide on Zeolites. Eric Feise

Modeling the Adsorption of Carbon Monoxide on Zeolites. Eric Feise Modeling the Adsorption of Carbon Monoxide on Zeolites Eric Feise Background The research on this topic involves two fundamental pieces: 1)The chemistry part: the physical realities that we are trying

More information

High H2 Adsorption by Coordination Framework Materials

High H2 Adsorption by Coordination Framework Materials Arianna Marchioro Florian Degueldre High H2 Adsorption by Coordination Framework Materials Xiang Lin, Junhua Jia, Xuebo Zhao, K. Mark Thomas, Alexender J. Black, Gavin S. Walker, Neil R. Champness, Peter

More information

Hydrogen adsorption by graphite intercalation compounds

Hydrogen adsorption by graphite intercalation compounds 62 Chapter 4 Hydrogen adsorption by graphite intercalation compounds 4.1 Introduction Understanding the thermodynamics of H 2 adsorption in chemically modified carbons remains an important area of fundamental

More information

ADSORPTION IN MICROPOROUS MATERIALS: ANALYTICAL EQUATIONS FOR TYPE I ISOTHERMS AT HIGH PRESSURE

ADSORPTION IN MICROPOROUS MATERIALS: ANALYTICAL EQUATIONS FOR TYPE I ISOTHERMS AT HIGH PRESSURE ADSORPTION IN MICROPOROUS MATERIALS: ANALYTICAL EQUATIONS FOR TYPE I ISOTHERMS AT HIGH PRESSURE A. L. MYERS Department of Chemical and Biomolecular Engineering University of Pennsylvania, Philadelphia

More information

WORK EXPRERIENCE EDUCATION:

WORK EXPRERIENCE EDUCATION: Curriculum Vitae of Dinesh Singh Rawat 410 West Freeman Apt#4, IL-62901 Ph: (618) 529-3637 Emails: (a) dines_rawat@hotmail.com (b) dinesh1_rawat@yahoo.com WORK EXPRERIENCE Research Assistant and Teaching

More information

Adsorption Separations

Adsorption Separations Molecular Modeling and Design of Metal-Organic Frameworks for CO 2 Capture Randy Snurr Department of Chemical & Biological Engineering Northwestern University, Evanston, IL 60208 http://zeolites.cqe.northwestern.edu

More information

Ethers in a Porous Metal-Organic Framework

Ethers in a Porous Metal-Organic Framework Supporting Information Enhanced Isosteric Heat of H 2 Adsorption by Inclusion of Crown Ethers in a Porous Metal-Organic Framework Hye Jeong Park and Myunghyun Paik Suh* Department of Chemistry, Seoul National

More information

A new tetrazolate zeolite-like framework for highly selective CO 2 /CH 4 and CO 2 /N 2 separation

A new tetrazolate zeolite-like framework for highly selective CO 2 /CH 4 and CO 2 /N 2 separation Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Material (ESI) for ChemComm. Supporting Information A new tetrazolate

More information

Hydrogen Adsorption and Storage on Porous Materials. School of Chemical Engineering and Advanced Materials. Newcastle University United Kingdom

Hydrogen Adsorption and Storage on Porous Materials. School of Chemical Engineering and Advanced Materials. Newcastle University United Kingdom Hydrogen Adsorption and Storage on Porous Materials K. M. Thomas. School of Chemical Engineering and Advanced Materials H2FC SUPERGEN Conference Birmingham University, 16-18 th December 2013 Newcastle

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Novel Nanoporous Ferrocenyl Framework for Clean Energy Application Qingquan

More information

Schwarzites for Natural Gas Storage: A Grand- Canonical Monte Carlo Study

Schwarzites for Natural Gas Storage: A Grand- Canonical Monte Carlo Study Schwarzites for Natural Gas Storage: A Grand- Canonical Monte Carlo Study Daiane Damasceno Borges 1, Douglas S. Galvao 1 1 Applied Physics Department and Center of Computational Engineering and Science,

More information

Supplementary information for

Supplementary information for Supplementary information for Adsorption Induced Transitions in Soft Porous Crystals: An Osmotic Potential Approach to Multistability and Intermediate Structures D. Bousquet, F.-X. Coudert, A. G. J. Fossati,

More information

Supporting Information

Supporting Information S1 Submitted to J. Am. Chem. Soc. Supporting Information A porous coordination copolymer with over 5000 m 2 /g BET surface area Kyoungmoo Koh, Antek G. Wong-Foy, and Adam J. Matzger* Department of Chemistry,

More information

Preparation of biomass derived porous carbon: Application for methane energy storage

Preparation of biomass derived porous carbon: Application for methane energy storage Edith Cowan University Research Online ECU Publications Post 013 016 Preparation of biomass derived porous carbon: Application for methane energy storage Yong Sun Edith Cowan University, y.sun@ecu.edu.au

More information

Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules

Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules Alan L. Myers Chemical and Biomolecular Engineering University of Pennsylvania Philadelphia, PA, 19104, USA

More information

DMOF-1 as a Representative MOF for SO 2 Adsorption in both Humid and Dry Conditions

DMOF-1 as a Representative MOF for SO 2 Adsorption in both Humid and Dry Conditions DMOF-1 as a Representative MOF for SO 2 Adsorption in both Humid and Dry Conditions Julian Hungerford, Souryadeep Bhattacharyya, Uma Tumuluri, Sankar Nair, Zili Wu, and Krista S. Walton* School of Chemical

More information

The Interplay between Experiment and Simulation for the Design of New Metal-Organic Frameworks

The Interplay between Experiment and Simulation for the Design of New Metal-Organic Frameworks The Interplay between Experiment and Simulation for the Design of New Metal-Organic Frameworks Randall Q. Snurr Department of Chemical & Biological Engineering Northwestern University, Evanston, IL 60208

More information

Supporting Information. Directing the Breathing Behavior of Pillared-Layered. Metal Organic Frameworks via a Systematic Library of

Supporting Information. Directing the Breathing Behavior of Pillared-Layered. Metal Organic Frameworks via a Systematic Library of Supporting Information Directing the Breathing Behavior of Pillared-Layered Metal Organic Frameworks via a Systematic Library of Functionalized Linkers Bearing Flexible Substituents Sebastian Henke, Andreas

More information

Microporous Organic Polymers for Carbon Dioxide Capture

Microporous Organic Polymers for Carbon Dioxide Capture Microporous Organic Polymers for Carbon Dioxide Capture R. Dawson, E. Stöckel, J.R. Holst, D.J. Adams and A.I. Cooper Contents Synthetic Procedures Nitrogen isotherms CO 2 isotherms PXRD BET plots Pore

More information

Chemical Engineering Science

Chemical Engineering Science Chemical Engineering Science 66 (2) 63 7 Contents lists available at ScienceDirect Chemical Engineering Science journal homepage: www.elsevier.com/locate/ces building unit has a direct impact on toxic

More information

1. Materials All chemicals and solvents were purchased from Sigma Aldrich or SAMCHUN and used without further purification.

1. Materials All chemicals and solvents were purchased from Sigma Aldrich or SAMCHUN and used without further purification. 1. Materials All chemicals and solvents were purchased from Sigma Aldrich or SAMCHUN and used without further purification. 2. Experimental procedures Benzo[1,2-c:3,4-c':5,6-c'']trifuran, 1: The synthesis

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

BET Surface Area Analysis of Nanoparticles *

BET Surface Area Analysis of Nanoparticles * OpenStax-CNX module: m38278 1 BET Surface Area Analysis of Nanoparticles * Nina Hwang Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems. Hong-Cai Joe Zhou Department of Chemistry Texas A&M University

Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems. Hong-Cai Joe Zhou Department of Chemistry Texas A&M University Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems Hong-Cai Joe Zhou Department of Chemistry Texas A&M University 2 US primary energy consumption by fuel, 1980-2035 (quadrillion Btu per year)

More information

MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations

MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations Zhu Feng( ), Dong Shan( ), and Cheng Gang( ) State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors,

More information

Module 5: "Adsoption" Lecture 25: The Lecture Contains: Definition. Applications. How does Adsorption occur? Physisorption Chemisorption.

Module 5: Adsoption Lecture 25: The Lecture Contains: Definition. Applications. How does Adsorption occur? Physisorption Chemisorption. The Lecture Contains: Definition Applications How does Adsorption occur? Physisorption Chemisorption Energetics Adsorption Isotherms Different Adsorption Isotherms Langmuir Adsorption Isotherm file:///e

More information

Experiment and Simulation Study of Multi-component Gas Adsorption On MSC3A By Volumetric method

Experiment and Simulation Study of Multi-component Gas Adsorption On MSC3A By Volumetric method Experiment and Simulation Study of Multi-component Gas Adsorption On MSC3A By Volumetric method Kazuyuki. Chihara, Shohei. Koide, Masashi Nomoto, Yuzo. Amari, Meiji University,Kawasaki,Japan Abstruct Equilibria

More information

Hydrophobic Metal-Organic Frameworks for Separation of Biofuel/Water Mixtures Introduction Methods

Hydrophobic Metal-Organic Frameworks for Separation of Biofuel/Water Mixtures Introduction Methods Hydrophobic Metal-Organic Frameworks for Separation of Biofuel/Water Mixtures Hongda Zhang and Randall Q. Snurr Department of Chemical & Biological Engineering, Northwestern University Introduction Biofuels

More information

SUPPORTING INFORMATION. Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate

SUPPORTING INFORMATION. Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2014 SUPPORTING INFORMATION Enhanced gas-sorption properties of a high surface area, ultramicroporous

More information

Electronic Supporting Information (ESI) Porous Carbon Materials with Controllable Surface Area Synthsized from Metal-Organic Frameworks

Electronic Supporting Information (ESI) Porous Carbon Materials with Controllable Surface Area Synthsized from Metal-Organic Frameworks Electronic Supporting Information (ESI) Porous Carbon Materials with Controllable Surface Area Synthsized from Metal-Organic Frameworks Seunghoon Lim, Kyungwon Suh, Yelin Kim, Minyoung Yoon, Hyeran Park,

More information

Supporting Information

Supporting Information Supporting Information Hydrogen Storage in the Dehydrated Prussian Blue Analogues M 3 [Co(CN) 6 ] 2 (M = Mn, Fe, Co, Ni, Cu, Zn) Steven S. Kaye and Jeffrey R. Long* Dept. of Chemistry, University of California,

More information

Supporting Information for the manuscript. Metastable interwoven mesoporous metal-organic frameworks

Supporting Information for the manuscript. Metastable interwoven mesoporous metal-organic frameworks S1 Supporting Information for the manuscript Metastable interwoven mesoporous metal-organic frameworks Yabing He, ab Zhiyong Guo, b Shengchang Xiang, c Zhangjing Zhang, c Wei Zhou, d,e Frank R. Fronczek,

More information

Characterisation of Microporous Materials by Finite Concentration Inverse Gas Chromatography

Characterisation of Microporous Materials by Finite Concentration Inverse Gas Chromatography Characterisation of Microporous Materials by Finite Concentration Inverse Gas Chromatography Surface Measurement Systems Ltd. Finite concentration IGC SEA is a useful tool for the investigation of surface

More information

Electronic Supplementary Information (ESI) Framework

Electronic Supplementary Information (ESI) Framework Electronic Supplementary Information (ESI) Exceptionally High H 2 Storage by a Metal Organic Polyhedral Framework Yong Yan, Xiang Lin, Sihai Yang, Alexander J. Blake, Anne Dailly, Neil R. Champness, Peter

More information

A Room Temperature Reversible Hydrogen Storage Material Studied by SANS

A Room Temperature Reversible Hydrogen Storage Material Studied by SANS A Room Temperature Reversible Hydrogen Storage Material Studied by SANS Sow-Hsin hen Department of Nuclear Science and Engineering Massachusetts Institute of Technology This research is a done in collaboration

More information

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption EVE 402 Air Pollution Generation and Control Chapter #6 Lectures Adsorption Recap: Solubility: the extent of absorption into the bulk liquid after the gas has diffused through the interface An internal

More information

IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials

IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials Michael Hirscher Max Planck Institute for Intelligent Systems Stuttgart, Germany MH2018 November 1, 2018 Outline IEA Hydrogen

More information

Powder Surface Area and Porosity

Powder Surface Area and Porosity Powder Surface Area and Porosity Powder Technology Series Edited by B. Scarlett Department of Chemical Engineering University of Technology Loughborough Powder Surface Area and Porosity S. Lowell PhD Quantachrome

More information

Control of Physical Aging in Super Glassy Polymer Membranes Without Permeability Loss MOF Mixed Matrix Membranes

Control of Physical Aging in Super Glassy Polymer Membranes Without Permeability Loss MOF Mixed Matrix Membranes Discover Develop Deploy Virtual screening Chemistry Tuning porosity Material scale-up Commercial design Control of Physical Aging in Super Glassy Polymer Membranes Without Permeability Loss MOF Mixed Matrix

More information

Imperfect Gases. NC State University

Imperfect Gases. NC State University Chemistry 431 Lecture 3 Imperfect Gases NC State University The Compression Factor One way to represent the relationship between ideal and real gases is to plot the deviation from ideality as the gas is

More information

Gas content evaluation in unconventional reservoir

Gas content evaluation in unconventional reservoir Gas content evaluation in unconventional reservoir Priyank Srivastava Unconventional reservoirs 1 Average monthly prod. (mscf) The Problem Gas in-place calculation Prediction of production decline Total

More information

Adsorption Equilibrium and Kinetics of H 2 O on Zeolite 13X

Adsorption Equilibrium and Kinetics of H 2 O on Zeolite 13X Korean J. Chem. Eng., 8(4), 55-530 (00) Adsorption Equilibrium and Kinetics of H O on Zeolite 3X Young Ki Ryu*, Seung Ju Lee, Jong Wha Kim and Chang-Ha Lee *External Relations Department, Procter & Gamble

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Unusual pore structure and sorption behaviour in a hexanodal zinc-organic framework material Jinjie Qian a,b Feilong Jiang, a Linjie Zhang, a,b Kongzhao Su, a,b Jie Pan, a,b Qipeng

More information

Synthesis and hydrogen-storage behavior of metal organic framework MOF-5

Synthesis and hydrogen-storage behavior of metal organic framework MOF-5 international journal of hydrogen energy 34 (2009) 1377 1382 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/he Synthesis and hydrogen-storage behavior of metal organic framework

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

Electronic Supplementary Information. Selective Sorption of Light Hydrocarbons on a Family of

Electronic Supplementary Information. Selective Sorption of Light Hydrocarbons on a Family of Electronic Supplementary Information Selective Sorption of Light Hydrocarbons on a Family of Metal-Organic Frameworks with different Imidazolate Pillars Hong-Ru Fu and Jian Zhang* State Key Laboratory

More information

The Impact of Sodium Cations on the Adsorption of Carbon Dioxide in Zeolites

The Impact of Sodium Cations on the Adsorption of Carbon Dioxide in Zeolites The Impact of Sodium Cations on the Adsorption of Carbon Dioxide in Zeolites Meghan Thurlow and Daniela Kohen Carleton College, Northfield, MN Introduction Separation of CO 2 from multi-species gas emissions

More information

Supplementary information

Supplementary information Supplementary information Supplementary Information for Exceptional Ammonia Uptake by a Covalent Organic Framework Christian J. Doonan, David J. Tranchemontagne,T. Grant Glover, Joseph R. Hunt, Omar M.

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supporting Information Fluorescent Microporous Polyimides based on Perylene and Triazine for Highly CO 2 -Selective Carbon Materials Yaozu Liao, a Jens Weber b and Charl F.J. Faul a* a School

More information

Electronic Supplementary Information. Materials

Electronic Supplementary Information. Materials Electronic Supplementary Information S1 Enhancement of H 2 Adsorption in Li + -Exchanged Co-ordination Framework Materials Sihai Yang, 1 Xiang Lin, 1 Alexander J. Blake, 1 K. Mark Thomas, 2 Peter Hubberstey,

More information

A Generalized Law of Corresponding States for the Physisorption of. Classical Gases with Cooperative Adsorbate Adsorbate Interactions

A Generalized Law of Corresponding States for the Physisorption of. Classical Gases with Cooperative Adsorbate Adsorbate Interactions S1 A Generalized Law of Corresponding States for the Physisorption of Classical Gases with Cooperative Adsorbate Adsorbate Interactions Maxwell Murialdo, Nicholas P. Stadie*, Channing C. Ahn, and Brent

More information

Center for Inovative Materials and Architectures (INOMAR) Ph.D. Graduate Researcher 12/ /2015 Center for Molecular and NanoArchitecture (MANAR)

Center for Inovative Materials and Architectures (INOMAR) Ph.D. Graduate Researcher 12/ /2015 Center for Molecular and NanoArchitecture (MANAR) Ha Lac Nguyen Faculty of Chemical Engineering, University of Technology, Vietnam National University Ho Chi Minh City (VNU HCM) Center for Innovative Materials and Architectures (INOMAR), VNU HCM Email:

More information

Building multiple adsorption sites in porous polymer networks for carbon capture applications

Building multiple adsorption sites in porous polymer networks for carbon capture applications Electronic Supplementary Information Building multiple adsorption sites in porous polymer networks for carbon capture applications Weigang Lu, a Wolfgang M. Verdegaal, a Jiamei Yu, b Perla B. Balbuena,

More information

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 CHAPTER 3: MATTER Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 3.1 MATTER Matter: Anything that has mass and occupies volume We study

More information

Department of Chemistry, University of California, Berkeley, California, , USA. b

Department of Chemistry, University of California, Berkeley, California, , USA. b Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information for: Structural characterization of framework gas

More information

New Materials and Process Development for Energy-Efficient Carbon Capture in the Presence of Water Vapor

New Materials and Process Development for Energy-Efficient Carbon Capture in the Presence of Water Vapor New Materials and Process Development for Energy-Efficient Carbon Capture in the Presence of Water Vapor Randy Snurr, 1 Joe Hupp, 2 Omar Farha, 2 Fengqi You 1 1 Department of Chemical & Biological Engineering

More information

as a Tool for the Design of Metal-Organic Framework Materials Supporting Information

as a Tool for the Design of Metal-Organic Framework Materials Supporting Information Evaluation of Ideal Adsorbed Solution Theory as a Tool for the Design of Metal-Organic Framework Materials Supporting Information Naomi F. Cessford, Tina Düren,, and Nigel A. Seaton Institute for Materials

More information

Sorption, Transport and Gas Separation Properties of Zn-Based Metal. Organic Frameworks (MOFs) and their Application in CO 2 Capture.

Sorption, Transport and Gas Separation Properties of Zn-Based Metal. Organic Frameworks (MOFs) and their Application in CO 2 Capture. Sorption, Transport and Gas Separation Properties of Zn-Based Metal Organic Frameworks (MOFs) and their Application in CO 2 Capture. Carlos José Landaverde Alvarado Dissertation submitted to the faculty

More information

S BET vs. S DFT. Supporting Information

S BET vs. S DFT. Supporting Information Supporting Information Naturally Nitrogen and Calcium-doped Nanoporous Carbon Derived from Pine Cone with Superior CO 2 Capture Capacities Bingjun Zhu, Congxiao Shang and Zhengxiao Guo S BET vs. S DFT

More information

Modelling hydrogen adsorption within spherical, cylindrical and slit-shaped cavities

Modelling hydrogen adsorption within spherical, cylindrical and slit-shaped cavities University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2009 Modelling hydrogen adsorption within spherical, cylindrical and slit-shaped

More information

Keywords: Adsorption; Carbon nanotubes; Desorption; Dynamics of adsorption and desorption; Hydrogen

Keywords: Adsorption; Carbon nanotubes; Desorption; Dynamics of adsorption and desorption; Hydrogen International Journal of Technology (2015) 7: 1128-1136 ISSN 2086-9614 IJTech 2015 ADSORPTION CAPACITY AND ITS DYNAMIC BEHAVIOR OF THE HYDROGEN STORAGE ON CARBON NANOTUBES Mahmud Sudibandriyo 1*, Praswasti

More information

PHYSICAL CHEMISTRY CHEM330

PHYSICAL CHEMISTRY CHEM330 PHYSICAL CHEMISTRY CHEM330 Duration: 3 hours Total Marks: 100 Internal Examiner: External Examiner: Professor B S Martincigh Professor J C Swarts University of the Free State INSTRUCTIONS: 1. Answer five

More information

High capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework

High capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework High capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework Bo Xiao, 1 Paul S. Wheatley, 1 Xuebo Zhao, Ashleigh J. Fletcher, Sarah Fox Adriano G Rossi, Ian L. Megson, 3

More information

Co-Ni/Al 2 O 3 catalysts for CO 2 methanation at atmospheric pressure

Co-Ni/Al 2 O 3 catalysts for CO 2 methanation at atmospheric pressure Co-Ni/Al 2 O 3 catalysts for CO 2 methanation at atmospheric pressure K. Nifantiev, O. Byeda, B. Mischanchuk, E. Ischenko a Taras Shevchenko National university of Kyiv, Kyiv, Ukraine knifantiev@gmail.com

More information

Supporting information

Supporting information Supporting information Metal dependent structural flexibility and intrinsic dynamics in the M 2 (2,6-ndc) 2 (dabco) (M = Ni, Cu, Co, Zn) metal-organic frameworks Nicole Klein, a Herbert C. Hoffmann, a,

More information

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes J. At. Mol. Sci. doi: 10.4208/jams.121011.011412a Vol. 3, No. 4, pp. 367-374 November 2012 Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes Xiu-Ying Liu a,, Li-Ying Zhang

More information

Improved H 2 Storage in Zeolitic Imidazolate Frameworks Using Li þ, Na þ, and K þ Dopants, with an Emphasis on Delivery H 2 Uptake

Improved H 2 Storage in Zeolitic Imidazolate Frameworks Using Li þ, Na þ, and K þ Dopants, with an Emphasis on Delivery H 2 Uptake pubs.acs.org/jpcc Improved H 2 Storage in Zeolitic Imidazolate Frameworks Using Li þ, Na þ, and K þ Dopants, with an Emphasis on Delivery H 2 Uptake Sang Soo Han,*, Seung-Hoon Choi, and William A. Goddard,

More information

MOLECULAR MODELING OF EQUILIBRIUM OF SIMPLE FLUIDS IN CARBONS: THE SLIT PORE MODEL REVISITED

MOLECULAR MODELING OF EQUILIBRIUM OF SIMPLE FLUIDS IN CARBONS: THE SLIT PORE MODEL REVISITED MOLECULAR MODELING OF EQUILIBRIUM OF SIMPLE FLUIDS IN CARBONS: THE SLIT PORE MODEL REVISITED Suresh K. Bhatia* and Thanh X. Nguyen Division of Chemical Engineering The University of Queensland Brisbane,

More information

Thomas Roussel, Roland J.-M. Pellenq, Christophe Bichara. CRMC-N CNRS, Campus de Luminy, Marseille, cedex 09, France. Abstract.

Thomas Roussel, Roland J.-M. Pellenq, Christophe Bichara. CRMC-N CNRS, Campus de Luminy, Marseille, cedex 09, France. Abstract. A GRAND CANONICAL MONTE-CARLO STUDY OF H ADSORPTION IN PRISTINE AND Li-DOPED CARBON REPLICAS OF FAUJASITE ZEOLITE Thomas Roussel, Roland J.-M. Pellenq, Christophe Bichara CRMC-N CNRS, Campus de Luminy,

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) A photoluminescent covalent

More information

Covalent Organic Frameworks in 2013

Covalent Organic Frameworks in 2013 2014 Super Literature Club@JIANG Lab, IMS Covalent Organic Frameworks in 2013 Presented by Dr. Shangbin Jin Feb. 7, 2014 1 Covalent Organic Frameworks Covalent-bond linked (B-O, C=N,...) Light-weight element

More information

China; University of Science and Technology, Nanjing , P R China.

China;   University of Science and Technology, Nanjing , P R China. Electronic Supplementary Information Lithium-doped MOF impregnated with lithium-coated fullerenes: A hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures Dewei Rao,

More information

Supplementary Information

Supplementary Information Supplementary Information Co-doping of MOF-5 framework and its effect on gas adsorption behaviour J.A. Botas a,*, G. Calleja a, M. Sánchez-Sánchez,b, M.G. Orcajo a a Department of Chemical and Energy Technology,

More information

Supporting Information

Supporting Information Supporting Information Unprecedented activation and CO 2 capture properties of an elastic single-molecule trap Mario Wriedt, a Julian P. Sculley, b Wolfgang M. Verdegaal, b Andrey A. Yakovenko b and Hong-Cai

More information

Possibilities and Limits for the Determination of. Adsorption Data Pure Gases and Gas Mixtures

Possibilities and Limits for the Determination of. Adsorption Data Pure Gases and Gas Mixtures MOF-Workshop, Leipzig, March 2010 Possibilities and Limits for the Determination of Adsorption Data Pure Gases and Gas Mixtures Reiner Staudt Instutut für Nichtklassische Chemie e.v. Permoserstraße 15,

More information

On the application of consistency criteria to. calculate BET areas of micro- and mesoporous. metal-organic frameworks

On the application of consistency criteria to. calculate BET areas of micro- and mesoporous. metal-organic frameworks Supporting Information On the application of consistency criteria to calculate BET areas of micro- and mesoporous metal-organic frameworks Diego A. Gómez-Gualdrón a, Peyman Z. Moghadam a, Joseph T. Hupp

More information

Zeolitic Imidazolate Frameworks as H 2 Adsorbents: Ab Initio Based Grand Canonical Monte Carlo Simulation

Zeolitic Imidazolate Frameworks as H 2 Adsorbents: Ab Initio Based Grand Canonical Monte Carlo Simulation J. Phys. Chem. C 2010, 114, 12039 12047 12039 Zeolitic Imidazolate Frameworks as H 2 Adsorbents: Ab Initio Based Grand Canonical Monte Carlo Simulation Sang Soo Han,*, Seung-Hoon Choi, and William A. Goddard

More information

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 1: The Effects of Omitting Considerations a c

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 1: The Effects of Omitting Considerations a c Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon Supporting Information Part 1: The Effects of Omitting Considerations a c Nicholas P. Stadie*, Maxwell Murialdo, Channing C. Ahn, and Brent

More information

Electronic Supplementary Information for. Non-interpenetrated IRMOF-8: synthesis, activation, and gas sorption

Electronic Supplementary Information for. Non-interpenetrated IRMOF-8: synthesis, activation, and gas sorption S1 Electronic Supplementary Information for Non-interpenetrated IRMOF-8: synthesis, activation, and gas sorption Jeremy I. Feldblyum, a,b Antek G. Wong-Foy, b and Adam J. Matzger a,b a Macromolecular Science

More information

Adsorption Isotherm Measurements of Gas Shales for Subsurface Temperature and Pressure Conditions

Adsorption Isotherm Measurements of Gas Shales for Subsurface Temperature and Pressure Conditions Adsorption Isotherm Measurements of Gas Shales for Subsurface Temperature and Pressure Conditions Beibei Wang, Reza Haghapanah, Jennifer Wilcox Department of Energy Resources Engineering, Stanford University

More information

ELEMENTS, COMPOUNDS AND MIXTURES AND HOW THEY ARE REPRESENTED

ELEMENTS, COMPOUNDS AND MIXTURES AND HOW THEY ARE REPRESENTED ELEMENTS, COMPOUNDS AND MIXTURES AND HOW THEY ARE REPRESENTED 8.5D recognize that chemical formulas are used to identify substances and determine the number of atoms of each element in chemical formulas

More information

COMPUTATIONAL STUDIES OF METHANE ADSORPTION IN NANOPOROUS CARBON

COMPUTATIONAL STUDIES OF METHANE ADSORPTION IN NANOPOROUS CARBON COMPUTATIONAL STUDIES OF METHANE ADSORPTION IN NANOPOROUS CARBON A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia In Partial Fulfillment of the Requirements

More information

Properties and Structure of Matter

Properties and Structure of Matter Properties and Structure of Matter Chapter 10 You can use a spider map to organize the main ideas and supporting details of a topic such as properties of matter. Look at the example shown below. The central

More information

Electronic supplementary information (ESI) Temperature dependent selective gas sorption of unprecedented

Electronic supplementary information (ESI) Temperature dependent selective gas sorption of unprecedented Electronic supplementary information (ESI) Temperature dependent selective gas sorption of unprecedented stable microporous metal-imidazolate framework Shui-Sheng Chen, a,c Min Chen, a Satoshi Takamizawa,

More information

New isoreticular metal-organic framework materials for high hydrogen storage capacity

New isoreticular metal-organic framework materials for high hydrogen storage capacity THE JOURNAL OF CHEMICAL PHYSICS 123, 214707 2005 New isoreticular metal-organic framework materials for high hydrogen storage capacity Tatsuhiko Sagara, Julia Ortony, and Eric Ganz a Department of Physics,

More information