Modeling the Adsorption of Carbon Monoxide on Zeolites. Eric Feise

Size: px
Start display at page:

Download "Modeling the Adsorption of Carbon Monoxide on Zeolites. Eric Feise"

Transcription

1 Modeling the Adsorption of Carbon Monoxide on Zeolites Eric Feise

2 Background The research on this topic involves two fundamental pieces: 1)The chemistry part: the physical realities that we are trying to analyze. Included in this are concepts of zeolites as filters, and the process of gas adsorption. 2)The simulation part: modeling the physical processes with computers. This involves not only programming, but figuring out how to accurately represent the chemistry that we are modeling.

3 The Simulation Part: The Basic Project Using our knowledge of zeolites and of gas adsorption we model the chemistry using computer simulation. There are a number of reasons to do this. The most important reason is that it is difficult to collect the data that we want to collect in the laboratory. Also, since zeolites are filters with very specific structures, doing our work in a lab would require synthesis of our zeolite. We would also have to clean our zeolite filter after every data set, another difficult task.

4 The Chemistry Part: Zeolites Zeolites are porous crystal structures with channels. They are made up of silicon and oxygen but often have aluminum atoms as well. Straight Channel Ringed by 10 Al or Si atoms Sinusoidal Channel Ringed by 10 Al or Si atoms The straight and sinusoidal channels inside a zeolite tend to be at right angles with one another, but many zeolite structures are possible.

5 Zeolites can have a variety of crystal structures given a single chemical formula: ITQ-3 Si 96 O 192 ITQ-7 Si 96 O 192 Silicalite Si 96 O 192 By inserting various amounts of aluminum, one can produce many more zeolite crystals! NaY Na 56 [Al 56 Si 136 O 384 ] NaA Na 12 [Al 12 Si 12 O 48 ]

6 The Chemistry Part: Adsorption Adsorption is the attachment of particles to a surface. -An example of adsorption that you might be familiar with is the Removal of dissolved gases from tap water using charcoal. Zeolites also can function as filters. Our research focuses on gas adsorption within zeolites. Most gas molecules will adsorb within the large void spaces of the channels within a zeolite.

7 We want to find zeolites that are able to adsorb a lot of the gas that we are trying to collect, but we want it to do so selectively. That is, we want to be able to actually filter a gas mixture using our zeolite, so we need our zeolite to adsorb the gas of interest (adsorbate) strongly relative to other gases. C This project uses carbon monoxide as the adsorbate molecule. So far, all of the research on this project has been done using silicalite as the zeolite filter. O d + d - Silicalite

8 The Research Project Our Project: The Past Daniela Kohen s work prior to the research from the summer includes studies of the adsorption of CO 2 and N 2 as pure gases and as mixtures in the purely siliceous zeolites Silicalite, ITQ-3, and ITQ-7. Her research demonstrates the types of results we get from simulation. The most relevant of these to the current work with CO is the single-component isotherm, a chart that displays adsorption in (mol of a single adsorbate molecule) per (Kg of zeolite) at a variety of external pressures. Her previous work is very important to the present work with CO since the data we want for CO is analogous to the data collected previously for CO 2 and N 2.

9 amount adsorbed (mol/kg) CO 2 Simulation CO 2 Experiment CH 4 Simulation CH 4 Experiment N 2 Simulation N 2 Experiment P (bar) Experimental data from M. S. Sun et al, J. Phys. Chem. B 102 (1998) 1466 [CO2]; E. Buss et al., J. Chem. Soc. Faraday Trans. 93 (1997) , [CH4] ; K. Watanabe et al., Mol. Sim. 15 (1995) 197 [N2]. CH4 simulation data from A. I. Skoulidas et al, J. Phys. Chem. B, 105 (2001) 3151 The other piece of Daniela's work that is particularly important to the current research with CO is the validation of her simulation (above). The CO simulation data will need to be validated in the same fashion.

10 Single-component isotherms for N 2 and CO 2 amount adsorbed (mol/kg) 6 5 pure CO 2 on ITQ-3 pure CO 2 on ITQ pure CO 2 on silicalite pure N 2 on ITQ-3 pure N 2 on ITQ-7 pure N 2 on silicalite P (bar) Note that the above data come from six different simulations. Each represents the adsorption of a pure gas within one of the zeolites.

11 Our Project: The Past Before any data could be obtained for CO, the code that was used to simulate CO 2 had to be modified appropriately. Single component isotherms for CO were then obtained, and compared to the gases studied previously. Simulation data was then compared with experimental data in an attempt to validate our model for CO.

12 How is CO different from CO 2? Predominant Resonance Structure Other Possible Resonance Structures Because CO has a triple bond, the C O bond length is only 1.128Å. CO has a permanent dipole, but it is very small. The predominant form of CO has a positive charge on oxygen, the more electronegative atom. The other resonance structures do not provide carbon with a complete octet. One can also see this problem by looking at the molecular orbitals. As a result, the partial charges we use to model CO are very small (-.0975e for carbon and e for oxygen).

13 Preliminary Single-Component Isotherms (from Simulations) on Silicalite 4 Amount adsorbed (mol/kg) Pressure (bar) 308K 308K 308K

14 Comparing with Experimental Isotherms (Silicalite) 2.5 Amount adsorbed (mol/kg) Pressure (bar) CO 308K N2 308K CO experiment (305K) N2 experiment #1 (305K) N2 experiment #2 (298K) Data for Experiment #1: Golden, T. C.; S. Sircar (1994). J. Colloid Interface Sci. 1994, 162, 182. Data for Experiment #2: Watanabe, K.; Austin, N.; Stapleton, M. R. Mol. Sim. 1995, 15, 197.

15 Problems There is a substantial discrepancy between the two experimental isotherms for N 2. -Note that experiment #2 is the same one that was used to validate the CO 2 simulations. This cannot be accounted for by temperature difference alone. C O d - d + We have only one experimental data set for CO, and it does not correlate well with our simulation. However, the experimental data used for comparison (#1) may not be reliable. Since both experiments (#1 and #2) provide N 2 isotherms, and they do not agree with one another, it is not clear that we can rely on the data from experiment #1 at all, particularly the CO data that we want to use to validate our simulations.

16 Conclusions from the Past CO seems to adsorb almost as N 2 does, evident from the single-component isotherms. This makes sense because CO has almost no dipole, has the same mass, and almost the same size as N Å O C N N 1.5Å One (or both) of the experimental data sets is inaccurate. The agreement of one of the data sets with our simulation does not mean that it is more accurate than the other. Our simulation model has still not been validated.

17 Our Project: Recent Conclusions We searched for experimental results and potential parameters for CO in the literature. However, we have so far been unable to find additional data. We have been unable to compare the present results with additional experimental data. Because of the discrepancy between the two experimental isotherms, we could not evaluate the accuracy of the CO simulation data. It is not clear whether or not the present code acceptably simulates CO because we have been unable to compare our results to additional experimental data.

18 However, we tried to reproduce the results for CO 2 and using the code that was changed to accommodate CO. The isotherms we obtained for CO 2 using the CO code produced isotherms identical to those from earlier versions of the code. Although this does not assure that we are describing the CO interactions with the zeolite accurately, it does verify that the code itself is not faulty. Because it is clear that CO does not adsorb strongly (at least on silicalite) and because it is so similar to the previously studied N 2, we have decided to change the focus of our research for the future.

19 Our Project: The Future We recently have been gathering information so that we can simulate and study the adsorption of N 2 O. We currently have experimental isotherms at a variety of temperatures, and have recently obtained Lennard- Jones potential parameters for N and O of N 2 O, allowing us to begin our simulations. Although we must first compare of simulation data with the experimental isotherms, we will hopefully be able to analyze the adsorption of N 2 O on silicalite, using our simulations, in the near future. Unlike with CO, N 2 O has a significant dipole and very strong quadrupole. Therefore, we hope to see much more significant adsorption within our simulated zeolites.

20 Acknowledgements I would like to thank Meghan Thurlow and Greg Haman for their helpful discussions and insight into this project. I would also like to thank Daniela Kohen for her constant assistance with this project, and Chuck Carlin who was a great source of inspiration throughout the summer. I thank the Carleton College Chemistry department for supporting this project.

The Impact of Sodium Cations on the Adsorption of Carbon Dioxide in Zeolites

The Impact of Sodium Cations on the Adsorption of Carbon Dioxide in Zeolites The Impact of Sodium Cations on the Adsorption of Carbon Dioxide in Zeolites Meghan Thurlow and Daniela Kohen Carleton College, Northfield, MN Introduction Separation of CO 2 from multi-species gas emissions

More information

Chemical Bonding Petrucci, Harwood and Herring: Chapters 10 and 11

Chemical Bonding Petrucci, Harwood and Herring: Chapters 10 and 11 Chemical Bonding Petrucci, Harwood and Herring: Chapters 10 and 11 Aims: To look at bonding and possible shapes of molecules We will mainly do this through Lewis structures To look at ionic and covalent

More information

Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications

Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications (Supporting Information: 33 pages) Hiroyasu Furukawa and Omar M. Yaghi Center

More information

Bonding Notes Types of bonds we will see:

Bonding Notes Types of bonds we will see: Bonding Notes Types of bonds we will see: 1. Ionic 2. Covalent 3. Metallic 4. Intermolecular 5. The outermost electrons are the electrons 6. The outermost electron orbital is the. 7. Bonds always form

More information

Atomistic Simulations of CO and N Diffusion in Silica Zeolites: The Impact of Pore Size and Shape

Atomistic Simulations of CO and N Diffusion in Silica Zeolites: The Impact of Pore Size and Shape Article Subscriber access provided by CARLETO COLL 2 2 Atomistic Simulations of CO and Diffusion in Silica Zeolites: The Impact of Pore Size and Shape David Selassie, Disan Davis, Jayme Dahlin, Eric Feise,

More information

Chapter 9 Bonding - 1. Dr. Sapna Gupta

Chapter 9 Bonding - 1. Dr. Sapna Gupta Chapter 9 Bonding - 1 Dr. Sapna Gupta Lewis Dot Symbol Lewis dot symbols is a notation where valence electrons are shown as dots. Draw the electrons symmetrically around the sides (top, bottom, left and

More information

A. Lewis Dots and Valence electrons: Uses to represent

A. Lewis Dots and Valence electrons: Uses to represent Unit 5: Chemical bonding, names and formulas Ch. 7 & 8 7.1 Ions and Ionic Compounds I. Define Ion NAME Period: A. Lewis Dots and Valence electrons: Uses to represent B. Rule: Every atom wants a valence

More information

ZEOLITES AS ALCOHOL ADSORBENTS FROM AQUEOUS SOLUTIONS

ZEOLITES AS ALCOHOL ADSORBENTS FROM AQUEOUS SOLUTIONS UDC 661.183.6:66.021.3.081.3:547.260.2 APTEFF, 37, 1-192 (2006) BIBLID: 1450 7188 (2006) 37, 83-87 Original scientific paper ZEOLITES AS ALCOHOL ADSORBENTS FROM AQUEOUS SOLUTIONS Blagica Cekova, Dragi

More information

Agency, Honcho, Kawaguchi, Saitama (Japan), University, Tsushima, Kita-ku, Okayama (Japan),

Agency, Honcho, Kawaguchi, Saitama (Japan), University, Tsushima, Kita-ku, Okayama (Japan), Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Why do zeolites induce unprecedented electronic state on exchanged metal ions?

More information

1 Points to Remember Subject: Chemistry Class: XI Chapter: States of matter Top concepts 1. Intermolecular forces are the forces of attraction and repulsion between interacting particles (atoms and molecules).

More information

Chapter 9 Bonding. Dr. Sapna Gupta

Chapter 9 Bonding. Dr. Sapna Gupta Chapter 9 Bonding Dr. Sapna Gupta Lewis Dot Symbol Lewis dot symbols is a notation where valence electrons are shown as dots. Draw the electrons symmetrically around the sides (top, bottom, left and right)

More information

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon Supporting Information Part 2: Statistical Mechanical Model Nicholas P. Stadie*, Maxwell Murialdo, Channing C. Ahn, and Brent Fultz W. M.

More information

ExamLearn.ie. Chemical Bonding

ExamLearn.ie. Chemical Bonding ExamLearn.ie Chemical Bonding Chemical Bonding A molecule is a group of atoms joined together. It is the smallest particle of an element or compound that can exist independently. Eg: Molecule of water

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

CHM Simple Lewis Structures (r14) Charles Taylor 1/5

CHM Simple Lewis Structures (r14) Charles Taylor 1/5 CHM 110 - Simple Lewis Structures (r14) - 2014 Charles Taylor 1/5 Introduction In the previous note pack, you learned some about Lewis dot structures, which represent chemical compounds by showing how

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Big Ideas in Unit 6 How do atoms form chemical bonds? How does the type of a chemical bond influence a compounds physical and

More information

Chemical bonding is the combining of elements to form new substances.

Chemical bonding is the combining of elements to form new substances. Name Covalent Bonding and Nomenclature: Unit Objective Study Guide Class Period Date Due 1. Define chemical bonding. What is chemical bonding? Chemical bonding is the combining of elements to form new

More information

Scientists learned that elements in same group on PT react in a similar way. Why?

Scientists learned that elements in same group on PT react in a similar way. Why? Unit 5: Bonding Scientists learned that elements in same group on PT react in a similar way Why? They all have the same number of valence electrons.which are electrons in the highest occupied energy level

More information

Covalent & Metallic Bonding

Covalent & Metallic Bonding Covalent & Metallic Bonding Metallic Bonding Metals are made of closely packed cations. These cations have a number of valence electrons floating around them as what we call a sea of electrons. Metallic

More information

Thomas Roussel, Roland J.-M. Pellenq, Christophe Bichara. CRMC-N CNRS, Campus de Luminy, Marseille, cedex 09, France. Abstract.

Thomas Roussel, Roland J.-M. Pellenq, Christophe Bichara. CRMC-N CNRS, Campus de Luminy, Marseille, cedex 09, France. Abstract. A GRAND CANONICAL MONTE-CARLO STUDY OF H ADSORPTION IN PRISTINE AND Li-DOPED CARBON REPLICAS OF FAUJASITE ZEOLITE Thomas Roussel, Roland J.-M. Pellenq, Christophe Bichara CRMC-N CNRS, Campus de Luminy,

More information

Chapter 8. Chemical Bonding I: Basic Concepts

Chapter 8. Chemical Bonding I: Basic Concepts Chapter 8 Chemical Bonding I: Basic Concepts Topics Lewis Dot Symbols Ionic Bonding Covalent Bonding Electronegativity and Polarity Drawing Lewis Structures Lewis Structures and Formal Charge Resonance

More information

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules 1. Ionic bonds 2. Covalent bonds (also co-ordinate covalent bonds) 3. Metallic bonds 4. Van der Waals forces

More information

AP Chemistry Chapter 7: Bonding

AP Chemistry Chapter 7: Bonding AP Chemistry Chapter 7: Bonding Types of Bonding I. holds everything together! I All bonding occurs because of! Electronegativity difference and bond character A. A difference in electronegativity between

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes

Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes Name: Period: Due Date: 1-18-2019 / 100 Formative pts. Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes Topic-1: Review: 1. Valence electrons: The electrons in the outermost of an atom Valence

More information

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry 11.1 Periodic Trends in Atomic Properties Discuss the atomic trends Metals are located on the left side of the periodic

More information

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light?

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light? Bonding in Solids: Metals, Insulators, & CHEM 107 T. Hughbanks Delocalized bonding in Solids Think of a pure solid as a single, very large molecule. Use our bonding pictures to try to understand properties.

More information

Chapter #3 Chemical Bonding

Chapter #3 Chemical Bonding Chapter #3 Chemical Bonding Valence Electrons electrons in the last energy level of an atom. Lewis dot symbols Consists of the symbol of an element and one dot for each valence electron in the atom of

More information

CHAPTER 8 BONDING: GENERAL CONCEPTS Ionic solids are held together by strong electrostatic forces that are omnidirectional.

CHAPTER 8 BONDING: GENERAL CONCEPTS Ionic solids are held together by strong electrostatic forces that are omnidirectional. CAPTER 8 BDIG: GEERAL CCEPTS 1 CAPTER 8 BDIG: GEERAL CCEPTS Questions 15. a. This diagram represents a polar covalent bond as in. In a polar covalent bond, there is an electron rich region (indicated by

More information

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds Chapter 8: Covalent Bonding Section 1: Molecular Compounds Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: Ionic bonds transfer of electrons (gained or

More information

Lecture Notes Chapter 6

Lecture Notes Chapter 6 Lecture Notes Chapter 6 1. Introduction a. The above equation describes the synthesis of water from hydrogen and oxygen. b. It is not balanced, however. à c. Notice how the number of oxygen atoms on left

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds Three basic types of bonds Ionic Electrostatic attraction between ions Covalent Sharing of

More information

Lewis Dot Structures and Molecular Geometry

Lewis Dot Structures and Molecular Geometry Experiment 11 Lewis Dot Structures and Molecular Geometry Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose

More information

Shapes of Molecules VSEPR

Shapes of Molecules VSEPR Shapes of Molecules In this section we will use Lewis structures as an introduction to the shapes of molecules. The key concepts are: Electron pairs repel each other. Electron pairs assume orientations

More information

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence.

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Unit 5: Bonding Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Intramolecular Forces: 1. I can define intramolecular forces and intermolecular

More information

Chapter 8 The Concept of the Chemical Bond

Chapter 8 The Concept of the Chemical Bond Chapter 8 The Concept of the Chemical Bond Three basic types of bonds: Ionic - Electrostatic attraction between ions (NaCl) Metallic - Metal atoms bonded to each other Covalent - Sharing of electrons Ionic

More information

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Fructose Water Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Carbon Dioxide Ammonia Title and Highlight TN Ch 10.1 Topic: EQ: Right Side NOTES

More information

Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds. David A. Katz Pima Community College Tucson, AZ

Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds. David A. Katz Pima Community College Tucson, AZ Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds David A. Katz Pima Community College Tucson, AZ Chemical Bonds Three basic types of bonds: Ionic Electrostatic attraction

More information

Cynthia J. Jameson University of Illinois at Chicago

Cynthia J. Jameson University of Illinois at Chicago 19 F NMR The temperature dependence of chemical shifts: mechanisms and contributions Cynthia J. Jameson University of Illinois at Chicago T 1 outline the intramolecular shielding surface temperature dependence

More information

Bonding. Honors Chemistry Unit 6

Bonding. Honors Chemistry Unit 6 Bonding Honors Chemistry Unit 6 Bond Types Ionic: transfer of electrons Covalent: sharing electron pair(s) Metallic: delocalized electrons Predicting Bonds Based on electronegativity difference (look at

More information

CHEM 1001 AT. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

CHEM 1001 AT. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock midterm UNDER EXAM CONDITIONS. This means: Complete the midterm in 1.5 hour(s). Work on your own. Keep your notes and textbook closed. Attempt every question.

More information

Unit 6 Bonding and Intermolecular Attractions. SHS Chem

Unit 6 Bonding and Intermolecular Attractions. SHS Chem Unit 6 Bonding and Intermolecular Attractions SHS Chem Outcomes (KUD) Know! Definitions for all the vocab words found on the learning map. Correct usage of measuring devices All conversion factors related

More information

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds?

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds? I: Covalent Bonding How are atoms held together in compounds? IONIC or COVALENT bonds or forces For most atoms, a filled outer shell contains 8 electrons ----- an octet Atoms want to form octets when they

More information

Unit 1, Lesson 07: Introduction to Covalent Bonding and the Octet Rule

Unit 1, Lesson 07: Introduction to Covalent Bonding and the Octet Rule Unit 1, Lesson 07: Introduction to Covalent Bonding and the Octet Rule non-metals (except Noble gases) have high electronegativity and high ionization energy. They have a strong pull on new electrons if

More information

Molecular Dynamics Investigation of Triethylene Glycol in Hydrated LTA Zeolite

Molecular Dynamics Investigation of Triethylene Glycol in Hydrated LTA Zeolite U N I V E R S I T E T E T I B E R G E N Institute of Physics and Technology Molecular Dynamics Investigation of Triethylene Glycol in Hydrated LTA Zeolite Emphasis on Evaluation of Potential Models Bjørnar

More information

CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM)

CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM) CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM) Associate Degree in Engineering Prepared by M. J. McNeil, MPhil. Department of Pure and Applied Sciences Portmore Community College

More information

Bonding. Honors Chemistry 412 Chapter 6

Bonding. Honors Chemistry 412 Chapter 6 Bonding Honors Chemistry 412 Chapter 6 Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Types of Bonds Ionic Bonds Force of attraction

More information

C N O F. Carbon dioxide Triphosphorus pentoxide C 6 H 6 BF 3 I 5 H 10. Tetracarbon nonahydride. Dihydrogen monoxide

C N O F. Carbon dioxide Triphosphorus pentoxide C 6 H 6 BF 3 I 5 H 10. Tetracarbon nonahydride. Dihydrogen monoxide NAMING COVALENT COMPOUNDS TYPES OF BONDS FORMED ELECTRONS & BONDS BOND FORMATION COVALENT BONDING A covalent bond forms between 2 elements because they one share or more pairs of valence electrons between

More information

FORMAL CHARGE AND OXIDATION NUMBER

FORMAL CHARGE AND OXIDATION NUMBER FORMAL CHARGE AND OXIDATION NUMBER Although the total number of valence electrons in a molecule is easily calculated, there is not aways a simple and unambiguous way of determining how many reside in a

More information

Chemical Bonding and Molecular Models

Chemical Bonding and Molecular Models 25 Chemical Bonding and Molecular Models A chemical bond is a force that holds groups of two or more atoms together and makes them function as a unit. Bonding involves only the valence (outer shell) electrons

More information

Molecular Geometry and Polarity 1

Molecular Geometry and Polarity 1 Experiment Molecular Geometry and Polarity 1 Objectives At the end of this activity you should be able to: o Write Lewis structures for molecules. o Classify bonds as nonpolar covalent, polar covalent,

More information

Modelling of Adsorption and Diffusion in Dual-Porosity Materials: Applications to Shale Gas

Modelling of Adsorption and Diffusion in Dual-Porosity Materials: Applications to Shale Gas Modelling of Adsorption and Diffusion in Dual-Porosity Materials: Applications to Shale Gas Martin Lísal Institute of Chemical Process Fundamentals, CAS, Prague, Czech Republic Faculty of Science, J. E.

More information

Ch 12.1 What are compounds? Two or more elements chemically combined to form a new substance.

Ch 12.1 What are compounds? Two or more elements chemically combined to form a new substance. Ch 12.1 What are compounds? Two or more elements chemically combined to form a new substance. Structure of Compounds Network Structures = strong solids Molecules= weak solids, liquids, or gases Bonding

More information

Adsorption of gases on solids (focus on physisorption)

Adsorption of gases on solids (focus on physisorption) Adsorption of gases on solids (focus on physisorption) Adsorption Solid surfaces show strong affinity towards gas molecules that it comes in contact with and some amt of them are trapped on the surface

More information

Chem 150, Spring Unit 1 - Molecular Structures. 3.1 Covalent Bonds and the Octet Rule

Chem 150, Spring Unit 1 - Molecular Structures. 3.1 Covalent Bonds and the Octet Rule 1 Chem 150, Spring 2015 Unit 1 - Molecular Structures 3.1 Covalent Bonds and the Octet Rule 2 Group 8A elements are called Noble Gases and do not normally form chemical compounds. All of these elements

More information

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent bonds there is a of electrons to get an

More information

Inorganic Material chemistry

Inorganic Material chemistry Inorganic Material chemistry Silicone -Inorganic Polymer Polymer poly + mer many units Basic unit is called repeat unit (monomer) A polymer is a large molecule (macro molecule) composed of repeating structural

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

Chapter 8 Concepts of Chemical. Bonding. Ionic vs Covalent Simulation 3/13/2013. Why do TiCl 4 & TiCl 3 have different colors?

Chapter 8 Concepts of Chemical. Bonding. Ionic vs Covalent Simulation 3/13/2013. Why do TiCl 4 & TiCl 3 have different colors? Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 8 Concepts of John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice

More information

Topic 5: Structure and Shape

Topic 5: Structure and Shape Topic 5: Structure and Shape Lewis structures Lewis structures are a means of determining stable electron arrangements in molecules. It considers the valence electrons of an atom only. A stable arrangement

More information

Name CHM 1051 Spring 2018 February 4 EXAMINATION ONE TENTATIVE SOLUTIONS I II III IV V

Name CHM 1051 Spring 2018 February 4 EXAMINATION ONE TENTATIVE SOLUTIONS I II III IV V Name CHM 1051 Spring 2018 February 4 EXAMINATION ONE TENTATIVE SOLUTIONS I II III IV V Total Glance over the entire exam, and then attempt the problems in the order of your choice. Rough point values are

More information

Helpful Hints Lewis Structures Octet Rule For Lewis structures of covalent compounds least electronegative

Helpful Hints Lewis Structures Octet Rule For Lewis structures of covalent compounds least electronegative Helpful Hints Lewis Structures Octet Rule Lewis structures are a basic representation of how atoms are arranged in compounds based on bond formation by the valence electrons. A Lewis dot symbol of an atom

More information

Structure and Bonding of Organic Molecules

Structure and Bonding of Organic Molecules Chem 220 Notes Page 1 Structure and Bonding of Organic Molecules I. Types of Chemical Bonds A. Why do atoms forms bonds? Atoms want to have the same number of electrons as the nearest noble gas atom (noble

More information

Molecular Models: The shape of simple molecules and ions

Molecular Models: The shape of simple molecules and ions Molecular Models: The shape of simple molecules and ions Background The shape of a molecule is very important when investigating its properties and reactivity. For example, compare CO 2 and SO 2. Carbon

More information

CP Covalent Bonds Ch. 8 &

CP Covalent Bonds Ch. 8 & CP Covalent Bonds Ch. 8 & 9 2015-2016 Why do atoms bond? Atoms want stability- to achieve a noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent

More information

Chemical bonding & structure

Chemical bonding & structure Chemical bonding & structure Ionic bonding and structure Covalent bonding Covalent structures Intermolecular forces Metallic bonding Ms. Thompson - SL Chemistry Wooster High School Topic 4.3 Covalent structures

More information

Chemistry FINAL: CONTENT Review Packet

Chemistry FINAL: CONTENT Review Packet Chemistry FINAL: CONTENT Review Packet Name: Period: Date: Classification of Matter & Chemical/ Physical Changes 1. are substances that are made up of two or more elements which are chemically combined

More information

For this you need to know covalent bonds, Lewis dots, electronegativity, geometric shapes, duet & octet, single/double/triple bonds, etc...

For this you need to know covalent bonds, Lewis dots, electronegativity, geometric shapes, duet & octet, single/double/triple bonds, etc... Lewis Structure Lab For this you need to know covalent bonds, Lewis dots, electronegativity, geometric shapes, duet & octet, single/double/triple bonds, etc... I can t assume you have had all these, so

More information

Module 5: "Adsoption" Lecture 25: The Lecture Contains: Definition. Applications. How does Adsorption occur? Physisorption Chemisorption.

Module 5: Adsoption Lecture 25: The Lecture Contains: Definition. Applications. How does Adsorption occur? Physisorption Chemisorption. The Lecture Contains: Definition Applications How does Adsorption occur? Physisorption Chemisorption Energetics Adsorption Isotherms Different Adsorption Isotherms Langmuir Adsorption Isotherm file:///e

More information

CO T PRACTICE WITH NAMING PRACTICE WITH FORMULAS ENL VA 1. CO2

CO T PRACTICE WITH NAMING PRACTICE WITH FORMULAS ENL VA 1. CO2 NAMING COVALENT COMPOUNDS TYPES OF BONDS FORMED ELECTRONS & BONDS BOND FORMATION COVALENT BONDING A covalent bond forms between 2 elements because they one or more pairs of valence electrons between the

More information

Bonding. Each type of bonding gives rise to distinctive physical properties for the substances formed.

Bonding. Each type of bonding gives rise to distinctive physical properties for the substances formed. Bonding History: In 55 BC, the Roman poet and philosopher Lucretius stated that a force of some kind holds atoms together. He wrote that certain atoms when they collide, do not recoil far, being driven

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NMAT4941 One-pot synthesis of silanol-free nanosized MFI zeolite Julien Grand, 1, Siddulu Naidu Talapaneni, 1, Aurélie Vicente, 1 Christian

More information

Name: Class: Date: 3. How many lone pairs of electrons are assigned to the carbon atom in carbon monoxide? a. 0 b. 1 c. 2 d. 3

Name: Class: Date: 3. How many lone pairs of electrons are assigned to the carbon atom in carbon monoxide? a. 0 b. 1 c. 2 d. 3 Class: Date: Midterm 3, Fall 2009 Record your name on the top of this exam and on the scantron form. Record the test ID letter in the top right box of the scantron form. Record all of your answers on the

More information

The Periodic Table and Chemical Reactivity

The Periodic Table and Chemical Reactivity The and Chemical Reactivity Noble gases Less electronegative elements More electronegative elements Then what is electronegativity? The tendency of an atom to attract an electron (or electron density)

More information

10 February 2009 Aim: How can I tell the difference between substances, compounds, and mixtures? Engagement: write three to four sentences describing

10 February 2009 Aim: How can I tell the difference between substances, compounds, and mixtures? Engagement: write three to four sentences describing 10 February 2009 Aim: How can I tell the difference between substances, compounds, and mixtures? Engagement: write three to four sentences describing what you know about atoms. HW: Make note cards for

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Honors Chemistry / / Lewis Structures & Resonance Structures Last chapter we studied ionic compounds. In ionic compounds electrons are gained or lost. In this chapter we are going to study covalent

More information

Chapter 8 Concepts of Chemical. Bonding

Chapter 8 Concepts of Chemical. Bonding Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 8 Concepts of John D. Bookstaver St. Charles Community College Cottleville, MO Bonds Three

More information

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15 Unit 7: Basic Concepts of Chemical Bonding Topics Covered Chemical bonds Ionic bonds Covalent bonds Bond polarity and electronegativity Lewis structures Exceptions to the octet rule Strength of covalent

More information

Ionic Compounds. Chapter 5.6

Ionic Compounds. Chapter 5.6 Ionic Compounds Chapter 5.6 Ionic Compounds Ionic compounds are made up by the chemical combination of metallic and non-metallic elements. Ionic Compounds Ionic compounds are made up by the chemical combination

More information

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 8 of Chemical John D. Bookstaver St. Charles Community College Cottleville, MO Chemical Bonds Chemical bonds are the forces that hold the atoms together in substances. Three

More information

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is

More information

Nuclear Magnetic Resonance Studies of Hydroxyl Groups in Decationated Zeolites Y

Nuclear Magnetic Resonance Studies of Hydroxyl Groups in Decationated Zeolites Y Nuclear Magnetic Resonance Studies of Hydroxyl Groups in Decationated Zeolites Y D. FREUDE, D. MULLER, A~D H. SCHMIEDEL Sektion Physik der Karl-Marx-Universitgt, ~01 Leipzig, Linn$stra~e 5, DDR Received

More information

Permeation of Hexane Isomers across ZSM-5 Zeolite Membranes

Permeation of Hexane Isomers across ZSM-5 Zeolite Membranes 2618 Ind. Eng. Chem. Res. 2000, 39, 2618-2622 Permeation of Hexane Isomers across ZSM-5 Zeolite Membranes Rajamani Krishna* and Dietmar Paschek Department of Chemical Engineering, University of Amsterdam,

More information

NATIONAL SENIOR CERTIFICATE EXAMINATION

NATIONAL SENIOR CERTIFICATE EXAMINATION NATIONAL SENIOR CERTIFICATE EXAMINATION PHYSICAL SCIENCES: CHEMISTRY (P2) JUNE 2015 QUESTION PAPER GRADE 11 MARKS: 150 TIME: 3 HOURS This paper consists of 10 pages, 2 data sheets and 1 graph paper. INSTRUCTIONS

More information

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons? REVIEW: VALENCE ELECTRONS 13 CHEMICAL BONDING What are valence electrons? Which groups on the periodic table readily give up electrons? What group readily accepts electrons? CHEMICAL BONDS: What are chemical

More information

1. What is the formula for the compound formed by calcium and nitrogen?

1. What is the formula for the compound formed by calcium and nitrogen? IB Chem 1 Name Topic 4 Bonding - Sample Test Problems 1. What is the formula for the compound formed by calcium and nitrogen? A. CaN B. Ca 2 N C. Ca 2 N 3 D. Ca 3 N 2 2. Element X is in group 2, and element

More information

4. Based on the following thermochemical equation below, which statement is false? 2 NH 3 (g) N 2 (g) + 3 H 2 (g) H = kj

4. Based on the following thermochemical equation below, which statement is false? 2 NH 3 (g) N 2 (g) + 3 H 2 (g) H = kj CHEM 101 WINTER 09-10 EXAM 3 On the answer sheet (Scantron) write you name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it on your

More information

Organic Chemistry - Introduction

Organic Chemistry - Introduction It s All About Carbon! Unit 15: Organic Chemistry Lesson 15.1: Hydrocarbons Organic Chemistry - Introduction Organic chemistry is the study of compounds containing carbon. Animals, plants, and other forms

More information

as a Tool for the Design of Metal-Organic Framework Materials Supporting Information

as a Tool for the Design of Metal-Organic Framework Materials Supporting Information Evaluation of Ideal Adsorbed Solution Theory as a Tool for the Design of Metal-Organic Framework Materials Supporting Information Naomi F. Cessford, Tina Düren,, and Nigel A. Seaton Institute for Materials

More information

Learning Objectives: Visualize in three dimensions the structure of covalently-bonded compounds

Learning Objectives: Visualize in three dimensions the structure of covalently-bonded compounds Covalent Bonds With all humility and mildness, with patience, support one another in charity. Careful to keep the unity of the Spirit in the bond of peace Ephesians 4:2-3 Introduction A covalent bond is

More information

Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture

Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture Supporting Information Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture Christopher E. Wilmer, 1 Omar K. Farha, 2 Youn-Sang Bae, 3,a Joseph T. Hupp, 2 and

More information

Molar Calculations - Lecture Notes for Chapter 6. Lecture Notes Chapter Introduction

Molar Calculations - Lecture Notes for Chapter 6. Lecture Notes Chapter Introduction Page 1 of 9 Page 2 of 9 Lecture Notes Chapter 6 1. Introduction a. The above equation describes the synthesis of water from hydrogen and oxygen. b. It is not balanced, however. c. Notice how the number

More information

Ch 6.1 Chemical Bonding

Ch 6.1 Chemical Bonding Ch 6.1 Chemical Bonding Chemical Bonds the attractive forces that hold different atoms or ions together (Intramolecular or electrostatic Forces Why Bond? Atoms bond to achieve a full outer energy level

More information

Chapter 8 & 9 Concepts of Chemical. Bonding

Chapter 8 & 9 Concepts of Chemical. Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 8 & 9 Concepts of John D. Bookstaver St. Charles Community College St. Peters, MO 2006,

More information

Synthesis of Zeolite Composite Membranes for CO2 Separation

Synthesis of Zeolite Composite Membranes for CO2 Separation Synthesis of Zeolite Composite Membranes for CO2 Separation April. 10. 2003 Sang Hoon Hyun, Dong Wook Shin, Young Eun Lee, Moon Hee Han*, and Churl Hee Cho* School of Materials Science & Engineering Yonsei

More information

Section 12: Lewis Structures

Section 12: Lewis Structures Section 12: Lewis Structures The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 12.01 Electronegativity Chemistry (5)(C) 12.02 Electron

More information

Compounds, Mixtures, and Elements Topic 3 Oh My!!!

Compounds, Mixtures, and Elements Topic 3 Oh My!!! 1 2 3 Compounds, Mixtures, and Elements Topic 3 Oh My!!! http://dsc.discovery.com/videos/assignment-discovery-shortselements-compounds-and-mixtures.html 1. Three types of matter A. Mixture made of two

More information

Can Silicon Based Life Exist? Nicholas Linn

Can Silicon Based Life Exist? Nicholas Linn Can Silicon Based Life Exist? Nicholas Linn Molecular Visualization using Methods of Computational Chemistry Mr. Lewis Acampora Summer Ventures in Science and Mathematics, 2001 UNC at Charlotte Abstract:

More information

What are the two main steps used to treat water from reservoirs? (4)

What are the two main steps used to treat water from reservoirs? (4) C3b QUESTIONS 1. Water in Britain is taken from reservoirs to use as drinking water. KatieJonesPhotography/iStock/Thinkstock (a) What are the two main steps used to treat water from reservoirs? Give one

More information