GEM-based gaseous Photomultipliers for UV and visible photon imaging. Dirk Mörmann Amos Breskin Rachel Chechik Marcin Balcerzyk Bhartendu Singh

Size: px
Start display at page:

Download "GEM-based gaseous Photomultipliers for UV and visible photon imaging. Dirk Mörmann Amos Breskin Rachel Chechik Marcin Balcerzyk Bhartendu Singh"

Transcription

1 GEM-based gaseous Photomultipliers for UV and visible photon imaging Dirk Mörmann Amos Breskin Rachel Chechik Marcin Balcerzyk Bhartendu Singh

2 Gaseous Photomultiplier State of the art: Advantages: large areas, flat geometry operation in magnetic fields sensitivity to single photons spectral range from UV to visible fast (ns range) high localization accuracy (sub-mm range) Applications: RICH *, Calorimetry, Astrophysics, Medical applications,... * F. Piuz et al. NIM A 433 (1999) 178

3 Photoelectron backscattering Reason: elastic collisions with gas molecules Depends on ration σ(elastic)/σ(ineleastic); field dependent Choice of gas mixture with low σ(elastic) Solution: increase field on photocathode surface

4 Photon feedback Prevents operation in some gases (e.g. noble gases) Prevents operation with some pc s (sensitive to the emission w.l. of the gas) Limits maximum gain imaging distortions 2V/div 50ns/div t corresponds to electron drift time

5 Ion feedback limits operation with some pc s imaging distortions Limits maximum gain may damage photocathode 100mV/div 400µs/div t corresponds to ion drift time

6 Most gas PMTs are wire chambers coupled to a photocathode operating in an open geometry High feedback (ions & photons) gain & localization limits Solution: CLOSED GEOMETRY

7 Gas Electron Multiplier (GEM) F. Sauli NIM A 433 (1997) e - in Photo of a GEM Electron Microscope view of a GEM Electric field in the holes Typical parameters: 50µm Kapton metal coated Ø60-100µm holes µm pitch 80% opacity 10 3 e - out

8 Multi-Gem photomultiplier drastically reduces ion feedback photon feedback This leads to higher gain operation in pure noble gases longer lifetime of pc A. Buzulutskov et al. NIM A 443 (2000)164

9 Some results with the GEM-PM Gain with 3 GEMs time resolution e - σ=2.1ns Ar/N 2 (98/2) 10 1, CsI High gain Limit for Wire chambers 10e - σ=0.92ns 150e - σ=0.33ns Excellent time resolution

10 GEM-PMT with reflective photocathode Reflective photocathode: Higher QE Easier to produce Detector: Photon feedback eliminated Higher gain D. Mörmann et al. NIM A 478 (2002) 230

11 High Quantum Efficiency QE in vacuum: 2500Å CsI on Au-coated GEM 23 % is not sensitive due to holes But: Still higher QE than semi-transp.

12 Photon feedback suppression a) GEM + CsI a) CH 4 1atm Single e - spectra Gain 10 6 b) b) Excess of high pulses due to photon feedback No photon feedback visible

13 Efficient electron transfer Optimization of parameters: Fields Gas mixture geometry D. Mörmann et al. NIM A 478 (2002) 230

14 Some results with reflective PC High gain Excellent time resolution

15 The multi-gem-pmt is a mature technique for gas-flow operation with UV-photocathodes Real challenge: gaseous PMTs for the visible range! Photocathodes (e.g. bi-alkali) are very chemically reactive. Solutions: 1. Coating => low QE 2. bare photocathodes => sealed mode

16 Preparation of a sealed detector for the visible range -tin 28x28mm Au-coated GEM Assembled detector ready for sealing Empty package

17 Multi-chamber UHV setup sealing to package under gas p.c. deposition evaluation QE measurement in vacuum Load-lock substrate baking Bi-alkali pc production (QE nm in vacuum for Semi-transparent pc) Hot Indium sealing to => critical for pc

18 Sealed detector in package Sealing of 3 Kapton-GEMs + K-Cs-Sb photocathode Accepted leak rate: <10-12 mbar liter /sec

19 QE stability in Ar Good 150 C Stable operation of bi-alkali photodiode for more than half a year in gas BUT: non-optimized sealing temp. for high QE High backscattering in Ar (ε~40%) => Low QE

20 Sealed GEM-PMT detector in Argon QE 4% 3% 2% 1% PC died after ~35days PC death probably due to a micro-leak Slow photocathode decay: Day 24 Day 35 0% time, days nm 435nm 405nm 365nm 312nm

21 Sealed detector operated in Argon Ion feedback: Dependence on photocathode: 100mV/div 400µs/div 300V Gain ~30 K-Cs-Sb: Current deviates from exponential => feedback!

22 Ion feedback: dependence on gas Ion feedback depends on gas mixture! Not due solely to kinetic energy Not due solely due ion species Further investigations are on the way

23 Solution: Ion gating Open gate Voltage pulse on parallel wires Block ions before they reach the pc Established technology in TPCs Ion drift lines May reduce rate capability Closed gate

24 Summary: Photo feedback suppression High QE with reflective PC directly on GEM Successful sealing of a photodiode in Argon Promising sealing of a 3-GEM PMT Problematic: Ion feedback Current steps: Ion gating measurements Improvement of sealing technology Investigations of mixtures to reduce ion feedback clean GEMs from glass, ceramic etc. Single-photon imaging

GEM-based gaseous photomultipliers for UV and visible photon imaging

GEM-based gaseous photomultipliers for UV and visible photon imaging GEM-based gaseous photomultipliers for UV and visible photon imaging D. Mörmann, M. Balcerzyk 1, A. Breskin, R. Chechik, B.K. Singh 2 A. Buzulutskov 3 Department of Particle Physics, The Weizmann Institute

More information

Recent advances in gaseous imaging photomultipliers

Recent advances in gaseous imaging photomultipliers Elsevier Science 1 Journal logo Recent advances in gaseous imaging photomultipliers A.Breskin a, M. Balcerzyk 1, R. Chechik, G. P. Guedes 2, J. Maia 3 and D. Mörmann Department of Particle Physics The

More information

Recent advances in gaseous imaging photomultipliers

Recent advances in gaseous imaging photomultipliers Nuclear Instruments and Methods in Physics Research A 513 (2003) 250 255 Recent advances in gaseous imaging photomultipliers A. Breskin*, M. Balcerzyk 1, R. Chechik, G.P. Guedes 2, J. Maia 3,D.M.ormann

More information

Evaluation and reduction of ion back-flow in multi-gem detectors

Evaluation and reduction of ion back-flow in multi-gem detectors Evaluation and reduction of ion back-flow in multi-gem detectors D. Mörmann, A. Breskin, R. Chechik and D. Bloch 1 Department of Particle Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel

More information

Development of gaseous PMT with micropattern gas detector

Development of gaseous PMT with micropattern gas detector Development of gaseous PMT with micropattern gas detector Fuyuki Tokanai Department of Physics, Yamagata University, Yamagata, Japan Takayuki Sumiyoshi [Tokyo Metropolitan University, Tokyo 192-0397, Japan

More information

GEM-based photon detector for RICH applications

GEM-based photon detector for RICH applications Nuclear Instruments and Methods in Physics Research A 535 (2004) 324 329 www.elsevier.com/locate/nima GEM-based photon detector for RICH applications Thomas Meinschad, Leszek Ropelewski, Fabio Sauli CERN,

More information

Advances in the Micro-Hole & Strip Plate gaseous detector

Advances in the Micro-Hole & Strip Plate gaseous detector Nuclear Instruments and Methods in Physics Research A 504 (2003) 364 368 Advances in the Micro-Hole & Strip Plate gaseous detector J.M. Maia a,b,c, *, J.F.C.A. Veloso a, J.M.F. dos Santos a, A. Breskin

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles, except electrons, loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can

More information

R&D on Astroparticles Detectors. (Activity on CSN )

R&D on Astroparticles Detectors. (Activity on CSN ) R&D on Astroparticles Detectors (Activity on CSN5 2000-2003) Introduction Results obtained with the R&D activity (2000-2003) with some drift chambers prototypes are reported. With different photocathode

More information

arxiv:physics/ v1 [physics.ins-det] 3 Jul 2006

arxiv:physics/ v1 [physics.ins-det] 3 Jul 2006 Preprint typeset in JINST style - HYPER VERSION arxiv:physics/0607015v1 [physics.ins-det] 3 Jul 2006 Advances in ion back-flow reduction in cascaded gaseous electron multipliers incorporating R-MHSP elements.

More information

GEM: A new concept for electron amplification in gas detectors

GEM: A new concept for electron amplification in gas detectors GEM: A new concept for electron amplification in gas detectors F. Sauli, Nucl. Instr. & Methods in Physics Research A 386 (1997) 531-534 Contents 1. Introduction 2. Two-step amplification: MWPC combined

More information

Study of novel gaseous photomultipliers for UV and visible light

Study of novel gaseous photomultipliers for UV and visible light Study of novel gaseous photomultipliers for UV and visible light Thesis for the degree of Ph. D. in physics presented to the Scientific Council of the Weizmann Institute of Science, Rehovot, Israel by

More information

Comments on CF 4 -based operations, and GEM-based photodetectors.

Comments on CF 4 -based operations, and GEM-based photodetectors. BNL Workshop Comments on CF 4 -based operations, and GEM-based photodetectors. J. Va'vra, SLAC 1 In this talk I will comment on:. CF 4 purity problems. Aging in CF 4 -based gases: a) aging in CF 4 only

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

arxiv:physics/ v2 27 Mar 2001

arxiv:physics/ v2 27 Mar 2001 High pressure operation of the triple-gem detector in pure Ne, Ar and Xe A. Bondar, A. Buzulutskov, L. Shekhtman arxiv:physics/0103082 v2 27 Mar 2001 Budker Institute of Nuclear Physics, 630090 Novosibirsk,

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

PHYS 3446 Lecture #12

PHYS 3446 Lecture #12 PHYS 3446 Lecture #12 Wednesday, Oct. 18, 2006 Dr. 1. Particle Detection Ionization Detectors MWPC Scintillation Counters Time of Flight 1 Announcements Next LPCC Workshop Preparation work Each group to

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

PHOTOELECTRON COLLECTION EFFICIENCY AT HIGH PRESSURE FOR A GAMMA DETECTOR ENVISAGING MEDICAL IMAGING

PHOTOELECTRON COLLECTION EFFICIENCY AT HIGH PRESSURE FOR A GAMMA DETECTOR ENVISAGING MEDICAL IMAGING 822 PHOTOELECTRON COLLECTION EFFICIENCY AT HIGH PRESSURE FOR A GAMMA DETECTOR ENVISAGING MEDICAL IMAGING C.D.R. Azevedo 1, C.A.B. Oliveira 1, J.M.F. dos Santos 2, J.F.C.A. Veloso 1 1.University of Aveiro,

More information

Electron emission properties of two-phase argon and argon-nitrogen avalanche detectors

Electron emission properties of two-phase argon and argon-nitrogen avalanche detectors Electron emission properties of two-phase argon and argon-nitrogen avalanche detectors A. Bondar, A. Buzulutskov *, A. Grebenuk, D. Pavlyuchenko, Y. Tikhonov Budker Institute of Nuclear Physics, Lavrentiev

More information

THE gas electron multiplier (GEM) [1] presents attractive

THE gas electron multiplier (GEM) [1] presents attractive IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 5, OCTOBER 2004 2097 Recent Investigations of Cascaded GEM and MHSP Detectors R. Chechik, A. Breskin, G. P. Guedes, D. Mörmann, J. M. Maia, V. Dangendorf,

More information

Lecture 18. New gas detectors Solid state trackers

Lecture 18. New gas detectors Solid state trackers Lecture 18 New gas detectors Solid state trackers Time projection Chamber Full 3-D track reconstruction x-y from wires and segmented cathode of MWPC z from drift time de/dx information (extra) Drift over

More information

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7 Particle Identification Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7.0 Content 7.1 Methods for Particle Identification 7.2 Mass of Charged Particles

More information

Ion feedback suppression using inclined MCP holes in a Single-MCP+Micromegas+Pads Detector *

Ion feedback suppression using inclined MCP holes in a Single-MCP+Micromegas+Pads Detector * Ion feedback suppression using inclined MCP holes in a Single-MCP+Micromegas+Pads Detector * J.Va vra, SLAC, Stanford, CA 94305, USA ** T. Sumiyoshi, Tokyo Metropolitan University, Tokyo, Japan *** Abstract

More information

Study of GEM-like detectors with resistive electrodes for RICH applications

Study of GEM-like detectors with resistive electrodes for RICH applications Study of GEM-like detectors with resistive electrodes for RICH applications A.G. Agócs, 1,2 A. Di Mauro, 3 A. Ben David, 4 B. Clark, 5 P. Martinengo, 3 E. Nappi, 6 3, 7 V. Peskov 1 Eotvos University, Budapest,

More information

Recent progress in gaseous PMT

Recent progress in gaseous PMT Recent progress in gaseous PMT T. Sumiyoshi, T. Ito (TMU) F. Tokanai, T. Moriya, M. Takeyama, H. Sakurai, S. Gunji (Yamagata U.) S. Kishimoto (KEK) H. Sugiyama, T. Okada, N. Ohishi (HPK) Contents Merits

More information

Single Photon detectors

Single Photon detectors Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor

More information

GEM at CERN. Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM

GEM at CERN. Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM GEM at CERN Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM MicroStrip Gas Chamber Semiconductor industry technology: Photolithography Etching Coating Doping A. Oed Nucl. Instr. and Meth. A263 (1988) 351.

More information

Progress in the Development of Photosensitive GEMs with Resistive Electrodes Manufactured by a Screen Printing Technology

Progress in the Development of Photosensitive GEMs with Resistive Electrodes Manufactured by a Screen Printing Technology Progress in the Development of Photosensitive GEMs with Resistive Electrodes Manufactured by a Screen Printing Technology P. Martinengo 1, E. Nappi 2, R. Oliveira 1, G. Paic 3, V. Peskov 1,4, F. Pietropaolo

More information

The ArDM project: A Liquid Argon TPC for Dark Matter Detection

The ArDM project: A Liquid Argon TPC for Dark Matter Detection The ArDM project: A Liquid Argon TPC for Dark Matter Detection V. Boccone 1, on behalf of the ArDM collaboration 1 Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

More information

PANDA-?? A New Detector for Dark Matter Search

PANDA-?? A New Detector for Dark Matter Search PANDA-?? A New Detector for Dark Matter Search Karl Giboni, Xiangdong Ji, Andy Tan, Li Zhao Shanghai Jiao Tong University Seminar at KEK, Tsukuba Japan 24 November, 2011 PANDA-X Dark Matter Search Jin

More information

An integrated Micromegas UV-photon detector

An integrated Micromegas UV-photon detector An integrated Micromegas UV-photon detector Joost Melai a*, Alexey Lyashenko b, Amos Breskin b, Harry van der Graaf c, Jan Timmermans c, Jan Visschers c, Cora Salm a, Jurriaan Schmitz a Abstract a University

More information

High quantum efficiency S-20 photocathodes for photon counting applications

High quantum efficiency S-20 photocathodes for photon counting applications High quantum efficiency S-20 photocathodes for photon counting applications D. A. Orlov a,*, J. DeFazio b, S. Duarte Pinto a, R. Glazenborg a and E. Kernen a a PHOTONIS Netherlands BV, Dwazziewegen 2,

More information

Two-phase argon and xenon avalanche detectors based on Gas Electron Multipliers

Two-phase argon and xenon avalanche detectors based on Gas Electron Multipliers E-print at www.arxiv.org physics/0510266 Accepted for publication in Nuclear Instruments and Methods A Two-phase argon and xenon avalanche detectors based on Gas Electron Multipliers A. Bondar, A. Buzulutskov,

More information

3 Gaseous Detectors. Detectors for Particle Physics Manfred Krammer Institute for High Energy Physics, Vienna, Austria

3 Gaseous Detectors. Detectors for Particle Physics Manfred Krammer Institute for High Energy Physics, Vienna, Austria 3 Gaseous Detectors Detectors for Particle Physics Manfred Krammer Institute for High Energy Physics, Vienna, Austria 3 Gaseous Detectors Content 3.1 Basic Principles 3.2 Diffusion and Drift 3.3 Amplification

More information

SCINTILLATION DETECTORS AND PM TUBES

SCINTILLATION DETECTORS AND PM TUBES SCINTILLATION DETECTORS AND PM TUBES General Characteristics Introduction Luminescence Light emission without heat generation Scintillation Luminescence by radiation Scintillation detector Radiation detector

More information

A proposal to study gas gain fluctuations in Micromegas detectors

A proposal to study gas gain fluctuations in Micromegas detectors A proposal to study gas gain fluctuations in Micromegas detectors M. Chefdeville 15/05/2009 We present two methods to measure gas gain fluctuations in Micromegas detectors and the experimental setup that

More information

PHOTODETECTORS AND SILICON PHOTO MULTIPLIER

PHOTODETECTORS AND SILICON PHOTO MULTIPLIER ESE seminar Photodetectors - Sipm, P. Jarron - F. Powolny 1 PHOTODETECTORS AND SILICON PHOTO MULTIPLIER ESE seminar Pierre Jarron, Francois Powolny OUTLINE 2 Brief history and overview of photodetectors

More information

Two-phase and gaseous cryogenic avalanche detectors based on GEMs

Two-phase and gaseous cryogenic avalanche detectors based on GEMs Two-phase and gaseous cryogenic avalanche detectors based on GEMs Budker Institute of Nuclear Physics, Novosibirsk A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov Outline

More information

The Photon-Assisted Cascaded Electron Multiplier: a Concept for Potential Avalanche-Ion Blocking

The Photon-Assisted Cascaded Electron Multiplier: a Concept for Potential Avalanche-Ion Blocking The Photon-Assisted Cascaded Electron Multiplier: a Concept for Potential Avalanche-Ion Blocking J.F.C.A. Veloso a, F.D. Amaro b, J.M.F. dos Santos b, A. Breskin c, A. Lyashenko c and R. Chechik c a Physics

More information

A New GEM-like Imaging Detector with Electrodes Coated with Resistive Layers

A New GEM-like Imaging Detector with Electrodes Coated with Resistive Layers A New GEM-like Imaging Detector with Electrodes Coated with Resistive Layers A. Di Mauro, B. Lund-Jensen, P. Martinengo, E. Nappi, V. Peskov, L. Periale,P.Picchi, F. Pietropaolo, I.Rodionov Abstract--We

More information

Queen s University PHYS 352

Queen s University PHYS 352 Page 1 of 5 Queen s University Faculty of Applied Science; Faculty of Arts and Science Department of Physics, Engineering Physics and Astronomy PHYS 352 Measurement, Instrumentation and Experiment Design

More information

Lecture # 3. Muhammad Irfan Asghar National Centre for Physics. First School on LHC physics

Lecture # 3. Muhammad Irfan Asghar National Centre for Physics. First School on LHC physics Lecture # 3 Muhammad Irfan Asghar National Centre for Physics Introduction Gaseous detectors Greater mobility of electrons Obvious medium Charged particles detection Particle information easily transformed

More information

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2 Photons Produced in PbF 2 R. Dolenec a, S. Korpar b,a, P. Križan c,a, R. Pestotnik a, A. Stanovnik d,a a, Ljubljana, Slovenia b Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

More information

Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures

Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures Prepared for submission to JINST Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures arxiv:1605.06256v3 [physics.ins-det] 24 May 2016 C.D.R. Azevedo, a,1 P.M. Correia,

More information

Electron transparency, ion transparency and ion feedback of a 3M GEM

Electron transparency, ion transparency and ion feedback of a 3M GEM Nuclear Instruments and Methods in Physics Research A 525 (2004) 33 37 Electron transparency, ion transparency and ion feedback of a 3M GEM P.S. Barbeau a, J. Collar a, J. Miyamoto b, *, I. Shipsey b a

More information

Scintillators General Characteristics

Scintillators General Characteristics Scintillators General Characteristics Principle: de/dx converted into visible light Detection via photosensor [e.g. photomultiplier, human eye ] Main Features: Sensitivity to energy Fast time response

More information

Gas Electron Multiplier detectors with high reliability and stability. Abstract. Introduction

Gas Electron Multiplier detectors with high reliability and stability. Abstract. Introduction Gas Electron Multiplier detectors with high reliability and stability B.M.Ovchinnikov 1, V.V.Parusov 1 and Yu.B.Ovchinnikov 2 1 Institute for Nuclear Research of Russian Academy of Sciences, Moscow, Russia

More information

Direct WIMP Detection in Double-Phase Xenon TPCs

Direct WIMP Detection in Double-Phase Xenon TPCs Outline PMTs in the XENON dark matter experiment XENON100 and the weekly gain calibration XENON1T and candidates for the light sensors Tests of Hamamatsu R11410 2 Direct WIMP Detection in Double-Phase

More information

R&D of a novel gas electron multiplier the THGEM

R&D of a novel gas electron multiplier the THGEM Thesis for a degree Master of Science חיבור לשם קבלת תואר מוסמך מדעים By Chen Ken Shalem מאת חן שלם R&D of a novel gas electron multiplier the THGEM חקר ופיתוח של מכפל אלקטרונים גזי חדיש Advised by Prof.

More information

Development of HPDs. for applications. in physics and medical imaging

Development of HPDs. for applications. in physics and medical imaging Development of HPDs for applications in physics and medical imaging A. Braem, E. Chesi, Christian Joram, J. Séguinot, P. Weilhammer CERN / PH representing the CIMA collaboration and the C2GT team Beaune

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

UV Radiation Resistance and Solar Blindness of CsI and KBr Photocathodes

UV Radiation Resistance and Solar Blindness of CsI and KBr Photocathodes IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 48, NO. 3, JUNE 2001 421 UV Radiation Resistance and Solar Blindness of CsI and KBr Photocathodes A. S. Tremsin and O. H. W. Siegmund Abstract A detailed study

More information

Study of infrared scintillations in gaseous and liquid argon Part I: methodology and time measurements

Study of infrared scintillations in gaseous and liquid argon Part I: methodology and time measurements Study of infrared scintillations in gaseous and liquid argon Part I: methodology and time measurements A. Bondar, a,b A. Buzulutskov, a,b,* A. Dolgov, b A. Grebenuk, a E. Shemyakina a,b and A. Sokolov

More information

Present status of 200keV polarized electron gun at Nagoya University

Present status of 200keV polarized electron gun at Nagoya University Present status of 200keV polarized electron gun at Nagoya University Nagoya University Masahiro Yamamoto, N. Yamamoto, T. Nakanishi, S. Okumi, F. Furuta, M. Miyamoto, M. Kuwahara, K. Naniwa, K. Yasui KEK

More information

Radionuclide Imaging MII Detection of Nuclear Emission

Radionuclide Imaging MII Detection of Nuclear Emission Radionuclide Imaging MII 3073 Detection of Nuclear Emission Nuclear radiation detectors Detectors that are commonly used in nuclear medicine: 1. Gas-filled detectors 2. Scintillation detectors 3. Semiconductor

More information

Recent Advances in Bubble-Assisted Liquid Hole-Multipliers in Liquid Xenon

Recent Advances in Bubble-Assisted Liquid Hole-Multipliers in Liquid Xenon Recent Advances in Bubble-Assisted Liquid Hole-Multipliers in Liquid Xenon E. Erdal, a L. Arazi, b,* A. Roy, a S. Shchemelinin, a D. Vartsky, a and A. Breskin a a Department of Particle Physics and Astrophysics,

More information

Understanding the response of LXe to electronic and nuclear recoils at low energies

Understanding the response of LXe to electronic and nuclear recoils at low energies Understanding the response of LXe to electronic and nuclear recoils at low energies Christopher W. Geis Johannes-Gutenberg Universität Mainz 2015/01/09 geisch@uni-mainz.de http://xenon.uni-mainz.de 1 /

More information

NEW DEVELOPMENTS IN GASEOUS DETECTORS. Fabio Sauli. CERN, Geneva, Switzerland

NEW DEVELOPMENTS IN GASEOUS DETECTORS. Fabio Sauli. CERN, Geneva, Switzerland EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-EP/2000-108 July 20, 2000 NEW DEVELOPMENTS IN GASEOUS DETECTORS Fabio Sauli CERN, Geneva, Switzerland Invited lecture at the XXVIII International Meeting

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

Simulating the Charge Dispersion Phenomena in Micro Pattern Gas Detectors with a Resistive Anode

Simulating the Charge Dispersion Phenomena in Micro Pattern Gas Detectors with a Resistive Anode Simulating the Charge Dispersion Phenomena in Micro Pattern Gas Detectors with a Resistive Anode M. S. Dixit a b and A. Rankin a a Department of Physics Carleton University 1125 Colonel By Drive Ottawa

More information

Detector Design Studies For High Precision Particle Physics Experiment

Detector Design Studies For High Precision Particle Physics Experiment Detector Design Studies For High Precision Particle Physics Experiment UTA-HEP-IF0001 May 11, 2013 Timothy Blake Watson High Energy Physics Group Department of Physics The University of Texas at Arlington

More information

Studies of THGEM-based detector at low-pressure Hydrogen/Deuterium, for AT-TPC applications

Studies of THGEM-based detector at low-pressure Hydrogen/Deuterium, for AT-TPC applications Studies of THGEM-based detector at low-pressure Hydrogen/Deuterium, for AT-TPC applications Marco Cortesi, * John Yurkon, Wolfgang Mittig, Daniel Bazin, Saul Beceiro-Novo and Andreas Stolz National Superconducting

More information

Measurements of CsI(Tl) Crystals with PMT and APD. ipno.in2p3.fr Jean Peyré Milano - October 2006

Measurements of CsI(Tl) Crystals with PMT and APD. ipno.in2p3.fr Jean Peyré Milano - October 2006 Measurements of I(Tl) Crystals with PMT and APD Jean Peyré Milano - Oct 2006 IPNO-RDD-Jean Peyré 1 1.Characteristics of I(Tl), PMT and APD 2.Measurements on I(Tl) a) I(Tl) /Teflon + XP5300B b) I(Tl) /VM2000

More information

Optical readout of secondary scintillation from liquid argon generated by a thick gas electron multiplier

Optical readout of secondary scintillation from liquid argon generated by a thick gas electron multiplier Optical readout of secondary scintillation from liquid argon generated by a thick gas electron multiplier P.K.Lightfoot a*, G.J. Barker b, K. Mavrokoridis a, Y.A. Ramachers b, N.J.C. Spooner a a Department

More information

The GEM scintillation in He-CF 4, Ar-CF 4, Ar-TEA and Xe-TEA mixtures

The GEM scintillation in He-CF 4, Ar-CF 4, Ar-TEA and Xe-TEA mixtures The GEM scintillation in He-CF 4, Ar-CF 4, Ar-TEA and Xe-TEA mixtures M. M. Fraga, F. A. F. Fraga, S. T. G. Fetal, L. M. S. Margato, R. Ferreira Marques and A. J. P. L. Policarpo LIP- Coimbra, Dep. Física,

More information

Recent Advances in Bubble-Assisted Liquid Hole-Multipliers in Liquid Xenon

Recent Advances in Bubble-Assisted Liquid Hole-Multipliers in Liquid Xenon Recent Advances in Bubble-Assisted Liquid Hole-Multipliers in Liquid Xenon E. Erdal, a L. Arazi, b,* A. Tesi a, A. Roy, a S. Shchemelinin, a D. Vartsky, a and A. Breskin a a Department of Particle Physics

More information

Siberian Branch of Russian Academy of Science. A. Buzulutskov, A. Bondar, L. Shekhtman, R. Snopkov, Yu. Tikhonov

Siberian Branch of Russian Academy of Science. A. Buzulutskov, A. Bondar, L. Shekhtman, R. Snopkov, Yu. Tikhonov Siberian Branch of Russian Academy of Science BUDKER INSTITUTE OF NUCLEAR PHYSICS A. Buzulutskov, A. Bondar, L. Shekhtman, R. Snopkov, Yu. Tikhonov FIRST RESULTS FROM CRYOGENIC AVALANCHE DETECTOR BASED

More information

A RICH Photon Detector Module with G-APDs

A RICH Photon Detector Module with G-APDs A RICH Photon Detector Module with G-APDs S. Korpar a,b, H. Chagani b, R. Dolenec b, P. Križan b,c, R. Pestotnik b, A. Stanovnik b,c a University of Maribor, b J. Stefan Institute, c University of Ljubljana

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

Dec 21, 2005 Advances in Thick GEM-like gaseous electron multipliers. Part I: atmospheric pressure operation

Dec 21, 2005 Advances in Thick GEM-like gaseous electron multipliers. Part I: atmospheric pressure operation Dec 21, 2005 Advances in Thick GEM-like gaseous electron multipliers. Part I: atmospheric pressure operation C. Shalem, R. Chechik, A. Breskin and K. Michaeli Dept. of Particle Physics The Weizmann Institute

More information

LAAPD Performance Measurements in Liquid Xenon

LAAPD Performance Measurements in Liquid Xenon LAAPD Performance Measurements in Liquid Xenon David Day Summer REU 2004 Nevis Laboratories, Columbia University Irvington, NY August 3, 2004 Abstract Performance measurements of a 16mm diameter large

More information

GEM operation in helium and neon at low temperatures

GEM operation in helium and neon at low temperatures E-print physics/0504184 Accepted for publishing in Nuclear Instruments and Methods A GEM operation in helium and neon at low temperatures A. Buzulutskov a, J. Dodd b, R. Galea b, Y. Ju b, M. Leltchouk

More information

Gamma-Ray Polarimetry in the Pair Production Regime

Gamma-Ray Polarimetry in the Pair Production Regime Gamma-Ray Polarimetry in the Pair Production Regime Peter F. Bloser (NASA/GSFC) S. D. Hunter (NASA/GSFC) G. O. Depaola (National University of Córdoba) F. Longo (INFN) Gamma-Ray Polarimetry Polarimetry

More information

Time of Flight measurements with MCP-PMT

Time of Flight measurements with MCP-PMT International Symposium on the Development of Detectors, 2006/4 at SLAC Time of Flight measurements with MCP-PMT - Very high resolution TOF counter - Lifetime of MCP-PMTs T.Ohshima, K.Inami, N.Kishimoto,

More information

Performance of the MCP-PMT for the Belle II TOP counter

Performance of the MCP-PMT for the Belle II TOP counter Performance of the MCP-PMT for the Belle II TOP counter a, S. Hirose b, T. Iijima ab, K. Inami b, Y. Kato a, Y. Maeda a, R. Mizuno b, Y. Sato a and K. Suzuki b a Kobayashi-Maskawa Institute, Nagoya University

More information

A METHOD TO ENHANCE THE SENSITIVITY OF PHOTOMULTIPLIERS FOR AIR CHERENKOV TELESCOPES

A METHOD TO ENHANCE THE SENSITIVITY OF PHOTOMULTIPLIERS FOR AIR CHERENKOV TELESCOPES A METHOD TO ENHANCE THE SENSITIVITY OF PHOTOMULTIPLIERS FOR AIR CHERENKOV TELESCOPES D.Paneque, H.G. Gebauer, M. Martinez, K.Mase R. Mirzoyan, A. Ostankov, T.Schweizer David Paneque M.P.I. Munich (Germany)

More information

Thick GEM: a fast growing MPGD technology

Thick GEM: a fast growing MPGD technology IFAE 2017 Thick GEM: a fast growing MPGD technology Fulvio Tessarotto (INFN Trieste) 1 THGEMs Gaseous detectors and MPGDs GEMs THGEMs THGEM characterization Different materials, architectures and applications

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2006 Detector/Computer Summer Lecture Series Experiment

More information

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration INFN Bari, Ohio State University, CERN, University of Michigan, University of Oslo, INFN Roma,

More information

GEM upgrade of the ALICE TPC. Markus Ball Physics Department E18 Technische Universität München On Behalf of the ALICE TPC upgrade

GEM upgrade of the ALICE TPC. Markus Ball Physics Department E18 Technische Universität München On Behalf of the ALICE TPC upgrade GEM upgrade of the ALICE TPC Markus Ball Physics Department E18 Technische Universität München On Behalf of the ALICE TPC upgrade 1 Outline Motivation for the GEM upgrade Ion Backflow Suppression with

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2009 Detecto Summer Lecture Series Experiment basics

More information

Generic Detector. Layers of Detector Systems around Collision Point

Generic Detector. Layers of Detector Systems around Collision Point Generic Detector Layers of Detector Systems around Collision Point Tracking Detectors Observe particle trajectories in space with as little disturbance as possible 2 use a thin ( gm. cm ) detector Scintillators

More information

Lecture 16 Light transmission and optical detectors

Lecture 16 Light transmission and optical detectors Lecture 6 Light transmission and optical detectors Charged particle traversing through a material can generate signal in form of light via electromagnetic interactions with orbital electrons of the atoms

More information

Performance study of the ceramic THGEM *

Performance study of the ceramic THGEM * Performance study of the ceramic THGEM * YAN Jia-Qing 1,2;1) XIE Yu-Guang 2,3;2) HU Tao 2,3 LU Jun-Guang 2,3 ZHOU Li 2,3 QU Guo-Pu 1 CAI Xiao 2,3 NIU Shun-Li 2,3 CHEN Hai-Tao 2 1 University of South China,

More information

Jlab FEL Photoemission DC Guns

Jlab FEL Photoemission DC Guns Jlab FEL Photoemission DC Guns Fay Hannon On behalf of the FEL team FLS 2010, 2 nd March 2 Operational Guns 1. FEL Gun 60m Gun Test Stand (GTS) 2. Backup gun, test stand with beam characterization beamline

More information

arxiv:astro-ph/ v1 15 Feb 2005

arxiv:astro-ph/ v1 15 Feb 2005 The XENON Dark Matter Experiment Elena Aprile (on behalf of the XENON collaboration) Physics Department and Columbia Astrophysics Laboratory, Columbia University, New York, New York 10027 age@astro.columbia.edu

More information

The Development of Gaseous Detectors with Solid Photocathodes for Low Temperature Applications

The Development of Gaseous Detectors with Solid Photocathodes for Low Temperature Applications The Development of Gaseous Detectors with Solid Photocathodes for Low Temperature Applications L. Pereiale 1,2, V. Peskov 3, C. Iacobaeus 4, T. Francke 5, B. Lund-Jensen 3, N. Pavlopoulos 1,6, P. Picchi

More information

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014 Detectors in Nuclear and High Energy Physics RHIG summer student meeting June 2014 Physics or Knowledge of Nature Experimental Data Analysis Theory ( application) Experimental Data Initial Conditions /

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

The Dual-Phase Liquid Xenon Time Projection Chamber (TPC) of Münster

The Dual-Phase Liquid Xenon Time Projection Chamber (TPC) of Münster The Dual-Phase Liquid Xenon Time Projection Chamber (TPC) of Münster Calibration and Safety Aspects Schule für Astroteilchenphysik 2017 10.10.2017 Properties of Xenon as Detector Material Noble gas characterized

More information

Simulation of GEM-TPC Prototype for the Super-FRS Beam Diagnostics System at FAIR

Simulation of GEM-TPC Prototype for the Super-FRS Beam Diagnostics System at FAIR Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.401-405 (2011) ARTICLE Simulation of GEM-TPC Prototype for the Super-FRS Beam Diagnostics System at FAIR Matti KALLIOKOSKI * Helsinki Institute of

More information

Particle Detectors Tools of High Energy and Nuclear Physics Detection of Individual Elementary Particles

Particle Detectors Tools of High Energy and Nuclear Physics Detection of Individual Elementary Particles Particle Detectors Tools of High Energy and Nuclear Physics Detection of Individual Elementary Particles Howard Fenker Jefferson Lab May 31, 2006 Outline of Talk Interactions of Particles with Matter Atomic

More information

CCD readout of GEM-based neutron detectors

CCD readout of GEM-based neutron detectors Nuclear Instruments and Methods in Physics Research A 478 (2002) 357 361 CCD readout of GEM-based neutron detectors F.A.F. Fraga a, *, L.M.S. Margato a, S.T.G. Fetal a, M.M.F.R. Fraga a, R. Ferreira Marques

More information

High Yield Structured X-ray Photo-Cathode Development and Fabrication

High Yield Structured X-ray Photo-Cathode Development and Fabrication High Yield Structured X-ray Photo-Cathode Development and Fabrication K. Opachich, P. Ross, J. Koch (NSTec, LLC) A. MacPhee, O. Landen, D. Bradley, P. Bell, S. Nagel (LLNL) T. Hilsabeck (GA) N. Chen, S.

More information

SOLID AND VAPOUR PHASE UV PHOTOCATHODES FOR GASEOUS DETECTORS. G. Vasileiadis, G. Malamud,Ph.Miné and D. Vartsky

SOLID AND VAPOUR PHASE UV PHOTOCATHODES FOR GASEOUS DETECTORS. G. Vasileiadis, G. Malamud,Ph.Miné and D. Vartsky SOLID AND VAPOUR PHASE UV PHOTOCATHODES FOR GASEOUS DETECTORS G. Vasileiadis, G. Malamud,Ph.Miné and D. Vartsky LPNHE, Ecole Polytechnique, IN2P3-CNRS, 91128 Palaiseau, France ABSTRACT We measured the

More information

Week 6: Ch. 8 Scintillation Counters

Week 6: Ch. 8 Scintillation Counters Week 6: Ch. 8 cintillation Counters Proportional Counters Principles of cintillation Counters -- organic materials --- light production -- inorganic materials --- light production -- light output, collection

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Neutron Structure Functions and a Radial Time Projection Chamber

Neutron Structure Functions and a Radial Time Projection Chamber Neutron Structure Functions and a Radial Time Projection Chamber Stephen Bültmann Old Dominion University for the BoNuS Collaboration The Structure of the Neutron The BoNuS Experiment at CLAS A New Proton

More information

DETECTORS: PERFORMANCES AND APPLICATIONS Fabio SAULI MPGD WORKSHOP CERN, January 20, 2006

DETECTORS: PERFORMANCES AND APPLICATIONS Fabio SAULI MPGD WORKSHOP CERN, January 20, 2006 GAS ELECTRON MULTIPLIER GEM 1 GAS ELECTRON MULTIPLIER DETECTORS: PERFORMANCES AND APPLICATIONS Fabio SAULI MPGD WORKSHOP CERN, January 20, 2006 http://gdd.web.cern.ch/gdd/ GEM FOILS GEM 2 THIN METAL-COATED

More information