Time of Flight measurements with MCP-PMT

Size: px
Start display at page:

Download "Time of Flight measurements with MCP-PMT"

Transcription

1 International Symposium on the Development of Detectors, 2006/4 at SLAC Time of Flight measurements with MCP-PMT - Very high resolution TOF counter - Lifetime of MCP-PMTs T.Ohshima, K.Inami, N.Kishimoto, M.Nagamine (Nagoya university, Japan)

2 Introduction Photon device for TOP counter Cherenkov ring imaging counter with precise time measurement (NIM A 440 (2000) 124) For super B-factory Linear-array type photon detector Single photon sensitivity X Good transit time resolution (<50ps) Operational under 1.5T B-field Position sensitive (~5mm) High detection efficiency z y x Quartz radiator L ~400mm 20mm MCP-PMT is a good solution. In the course of R&D, Idea of a few psec resolution TOF MCP-PMT for TOP counter 2006/4/3-6 SNIC at SLAC 2

3 High resolution TOF Structure Small-size quartz (cm~mm length) Cherenkov light (Decay time ~ 0) extremely reduce time dispersion compared to scintillation (τ ~ ns) MCP-PMT (multi-alkali photo-cathode) TTS < 50ps even for single photon gives enough time resolution for smaller number of detectable photons Test counter Arbitrary scale Arbitrary scale Simulation Cherenkov light Nγ~240 Scintillation (BC408) Nγ~ /4/3-6 SNIC at SLAC Emission and propagation time (ns)

4 MCP-PMT Micro-Channel-Plate Tiny electron multipliers Diameter ~10µm, length ~400µm High gain ~10 6 for two-stage type Fast time response Pulse raise time ~500ps, TTS < 50ps can operate under high magnetic field (~1T) Channel φ~10µm Input electron Photo-cathode MCP plates Photon Anode Single photon ~400µm MCP channel HV 2006/4/3-6 SNIC at SLAC 4

5 MCP-PMT (2) Hamamatsu R3809U-50 (multi-alkali photo-cathode) R3809U-50-25X Number of Events single photon peak Number of Events σ=46ps for single photon Window size : 25mm φ MCP hole 10µm φ ADC (count/0.25pc) TDC (count/25psec) R3809U-50-11X Window : 11mm φ event Gain ~ 10 6 event psec MCP hole 6µm φ ADC (1bin/0.25pC) TDC(25ps/count) 2006/4/3-6 SNIC at SLAC 5

6 Beam test 1 3GeV/c π beam at KEK-PS π2 line PMT: R3809U-50-25X Quartz radiator 16x16x40mm with Al evaporation 40mm Test counter TOF between two counters evaluate the time resolution TOF counter with and without quartz radiator To confirm MCP-PMT s behavior for passage of charged particles Beam Tile TOF counter Quartz Trigger counter MCP PMT Trigger counter 2006/4/3-6 SNIC at SLAC 6 x z x y z x y z 16 x16 x40 mm 5 x5 x10 mm Scinti. BC408 60cm HPK R3809U-50-25X Photo-Cathode φ25mm single-photon TTS 50psec

7 Beam test 1 result With quartz radiator Number of photons ~ 250 agree with expectation of simulation ~240 Time resolution ~ 10.6ps with radiator Without radiator Number of photons ~ 50 Cherenkov light from PMT window Time resolution ~ 13.6ps tof (ps) without radiator Resolution is limited by readout electronics. (σ elec ~8.8ps) Expected intrinsic resolution ~5.9ps tof (ps) 2006/4/3-6 SNIC at SLAC 7

8 Beam test 2 Confirmation of intrinsic time resolution Improvements Readout electronics σ elec. : 8.8ps 4ps Time-correlated Single Photon Counting Modules (SPC-134, Becker & Hickl GMbH s) CFD, TAC and ADC Channel width = 813fs Electrical time resolution = 4ps RMS MCP-PMT TTS: ~46ps ~30ps 10µm hole 6µm hole R3809U-50-25X -11X 2006/4/3-6 SNIC at SLAC 8

9 Beam test 2 setup 3GeV/c π beam at KEK-PS π2 line PMT: R3809U-50-11X Quartz radiator 10 φ x40 z mm with Al evaporation Trig.1 TOF1 30cm TOF2 Trig.2 Beam Trig.1 Divider Discri. Coinc. Discri. TOF1 TOF2 Trig.2 Divider Start SPC-134 Discri. Stop Power Spliter π, - 3GeV/c Events Elec. resolution 4.1ps TDC (ch/0.814ps) 2006/4/3-6 SNIC at SLAC 9

10 Beam test 2 setup photo Trigger TOF2 TOF1 Trigger 2006/4/3-6 SNIC at SLAC 10

11 Beam test 2 result With 10mm quartz radiator +3mm quartz window Number of photons ~ 180 Time resolution = 6.2ps Intrinsic resolution ~ 4.7ps Without quartz radiator 3mm quartz window Number of photons ~ 80 Expectation ~ 20 photo-electrons Time resolution = 7.7ps Events Events ps TDC (ch/0.814ps) 7.7ps TDC (ch/0.814ps) 2006/4/3-6 SNIC at SLAC 11

12 Beam test 2 result (cont d) Nγ, σ TOF v.s. radiator thickness 14 Np.e Counter-1 Counter-2 Simulation σ TOF (ps) Beam-test Simulation Quartz thickness (mm) Extra photo-electrons Quartz thickness (mm) N p.e. from short distance is larger than that of expected. Time-resolution behavior Resolution is gradually worse. Extra p.e. would affect the resolution dependence. 2006/4/3-6 SNIC at SLAC 12

13 Lifetime How long can we use MCP-PMT under high hit rate? HPK (x2) Russian (x5) Al protection O X O X Correction eff. 37% 65% 40-60% 55-60% Effective area 11mm φ 18mm φ Gain 1.9x x x10 6 TTS 34ps 29ps 30-40ps Photo-cathode Multi-alkali (NaKSbCs) Quantum eff. at 400nm 21% 19% 16-20% Bias angle 13deg 5deg Light load by LED pulse (1~5kHz) 20~100 p.e. /pulse (monitored by normal PMT) 2006/4/3-6 SNIC at SLAC 13

14 Relative gain Gain & TTS for single photon Gain TTS Russian w/ Al(#32) before after σ=31ps σ=36ps Russian w/o Al (#6) σ=43ps σ=32ps 0.6 HPK w/ Al HPK w/o Al Output charge (mc/cm 2 ) ~10 12 p.e./cm 2 with 10 6 gain HPK w/ Al HPK w/o Al Russian w/ Al (#32) Russian w/ Al (#35) Russian w/ Al (#38) Russian w/o Al (#6) Russian w/o Al (#11) σ=29ps σ=33ps TTS is stable within the gain drops. σ=34ps σ=34ps 2006/4/3-6 SNIC at SLAC 14

15 Relative Q.E. Quantum efficiency Q.E. Before/After λ=400nm Q.E. ratio HPK w/ Al HPK w/o Al 10-2 Russian w/ Al (#32) Russian w/ Al (#35) Russian 10-3 w/ Al (#38) Russian w/o Al (#6) Russian w/o Al (#11) Output charge (mc/cm 2 ) ~10 12 p.e./cm 2 with 10 6 gain λ(nm) Small Q.E. drop for HPK with protection Fast degradation for longer wavelength 2006/4/3-6 SNIC at SLAC 15

16 Summary High resolution TOF counter Small quartz as Cherenkov radiator MCP-PMT (TTS ~30ps for single photon) Readout system (time resolution ~4ps) Time resolution of 6.2ps have been measured. 4.7ps intrinsic resolution Lifetime test of MCP-PMTs Al protection layer works well to stop feedback ions. MCP-PMT by HPK with Al layer is best solution. For more detail, please refer NIM A 528, 763 (2004) and new paper to be published in NIM A. 2006/4/3-6 SNIC at SLAC 16

17 Separation power Separation 10 L=1.0m σ=5psec σ=10psec σ=20psec σ=50psec σ=100psec Momentum (GeV) 2006/4/3-6 SNIC at SLAC 17

18 Fluctuation of Readout elec. 8 TDC channels with logic pulse Clock Generator Discri. 2 T1 = t stop1 t start T 2 = tstop2 tstart 2 2 σ T1 T 2 = σ stop1 + σ σ T8 = tstop8 t ( T1 T 2)/ 2 start σ stop 2 T 1+ T 2) ( T3+ T 4) ( tstop + tstop2) ( tstop3 + t = 2 2 ( T1+ T 2 T 3 T 4)/ 2 σ stop σ 4 ( 1 stop4 σ module T 1 T 2 = t stop 1 tstop2 = 8.8psec Number of used channel 2006/4/3-6 SNIC at SLAC 18 stop2 ) RMS(psec) psec ADC TDC Gate CAMAC Diveder # ch Discri. 1

19 Lifetime test (setup) 2006/4/3-6 SNIC at SLAC 19

20 Quantum efficiency Q.E.(%) HPK w/ Al HPK w/o Al Russian w/ Al (#32) Russian w/ Al (#35) Russian w/ Al (#38) Russian w/o Al (#6) Russian w/o Al (#11) λ(nm) 2006/4/3-6 SNIC at SLAC 20

PoS(PD07)020. Timing Properties of MCP-PMT. Kenji Inami. Nagoya university, Nagoya, Japan

PoS(PD07)020. Timing Properties of MCP-PMT. Kenji Inami. Nagoya university, Nagoya, Japan Nagoya university, Nagoya, Japan E-mail: kenji@hepl.phys.nagoya-u.ac.jp We have studied timing properties of 4 different types of micro-channel-plate photo-multiplier tubes (MCP-PMT) by irradiating with

More information

Performance of the MCP-PMT for the Belle II TOP counter

Performance of the MCP-PMT for the Belle II TOP counter Performance of the MCP-PMT for the Belle II TOP counter a, S. Hirose b, T. Iijima ab, K. Inami b, Y. Kato a, Y. Maeda a, R. Mizuno b, Y. Sato a and K. Suzuki b a Kobayashi-Maskawa Institute, Nagoya University

More information

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons Peter Križan University of Ljubljana and J. Stefan Institute Contents Motivation and requirements BURLE MCP-PMT Beam test results

More information

PoS(TIPP2014)093. Performance study of the TOP counter with the 2 GeV/c positron beam at LEPS. K. Matsuoka, For the Belle II PID group

PoS(TIPP2014)093. Performance study of the TOP counter with the 2 GeV/c positron beam at LEPS. K. Matsuoka, For the Belle II PID group Performance study of the TOP counter with the 2 GeV/c positron beam at LEPS, For the Belle II PID group KMI, Nagoya University E-mail: matsuoka@hepl.phys.nagoya-u.ac.jp The TOP (Time-Of-Propagation) counter

More information

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2 Photons Produced in PbF 2 R. Dolenec a, S. Korpar b,a, P. Križan c,a, R. Pestotnik a, A. Stanovnik d,a a, Ljubljana, Slovenia b Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

More information

Development of Ring-Imaging Cherenkov Counter for Heavy Ions

Development of Ring-Imaging Cherenkov Counter for Heavy Ions Development of Ring-Imaging Cherenkov Counter for Heavy Ions Masahiro Machida Tokyo University of Science New Facilities and Instrumentation INPC 2016 Collaborators 2 Tokyo University of Science M. Machida,

More information

Timing and cross-talk properties of BURLE multi-channel MCP-PMTs

Timing and cross-talk properties of BURLE multi-channel MCP-PMTs Timing and cross-talk properties of BURLE multi-channel MCP-PMTs, Peter Križan, Rok Pestotnik University of Maribor, University of Ljubljana and Jožef Stefan Institute Outline of the talk: Motivation:

More information

A RICH Photon Detector Module with G-APDs

A RICH Photon Detector Module with G-APDs A RICH Photon Detector Module with G-APDs S. Korpar a,b, H. Chagani b, R. Dolenec b, P. Križan b,c, R. Pestotnik b, A. Stanovnik b,c a University of Maribor, b J. Stefan Institute, c University of Ljubljana

More information

Particle Identification at a super B Factory. FRASCATI WORKSHOP DISCUSSION ON PID

Particle Identification at a super B Factory. FRASCATI WORKSHOP DISCUSSION ON PID Particle Identification at a super B Factory. FRASCATI WORKSHOP DISCUSSION ON PID Do no harm! ( The Hippocratic oath of detector designers, especially for those outside you ). Keep a minimum thickness

More information

ARTICLE IN PRESS. Lifetime of MCP PMT. N. Kishimoto, M. Nagamine, K. Inami, Y. Enari, T. Ohshima

ARTICLE IN PRESS. Lifetime of MCP PMT. N. Kishimoto, M. Nagamine, K. Inami, Y. Enari, T. Ohshima Nuclear Instruments and Methods in Physics Research A 564 (26) 24 2 www.elsevier.com/locate/nima Lifetime of MCP PMT N. Kishimoto, M. Nagamine, K. Inami, Y. Enari, T. Ohshima Department of Physics, Nagoya

More information

Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons

Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons R. Pestotnik a, H. Chagani a, R. Dolenec a, S. Korpar a,b, P. Križan a,c, A. Stanovnik a,c a J. Stefan Institute, b University

More information

arxiv: v1 [physics.ins-det] 3 Dec 2018 Fast Interaction Trigger for the upgrade of the ALICE experiment at CERN: design and performance

arxiv: v1 [physics.ins-det] 3 Dec 2018 Fast Interaction Trigger for the upgrade of the ALICE experiment at CERN: design and performance arxiv:1812.00594v1 [physics.ins-det] 3 Dec 2018 Fast Interaction Trigger for the upgrade of the ALICE experiment at CERN: design and performance Alla Maevskaya for the ALICE collaboration 1, 1 Institute

More information

Tests of the Burle anode MCP PMT as a detector of Cherenkov photons

Tests of the Burle anode MCP PMT as a detector of Cherenkov photons uclear Instruments and Methods in Physics Research A 567 (26) 124 128 www.elsevier.com/locate/nima Tests of the Burle 8511 64-anode MCP PMT as a detector of Cherenkov photons P. Krizˇan a,b,, I. Adachi

More information

A gas-filled calorimeter for high intensity beam environments

A gas-filled calorimeter for high intensity beam environments Available online at www.sciencedirect.com Physics Procedia 37 (212 ) 364 371 TIPP 211 - Technology and Instrumentation in Particle Physics 211 A gas-filled calorimeter for high intensity beam environments

More information

Timing and Energy Response of Six Prototype Scintillators

Timing and Energy Response of Six Prototype Scintillators Timing and Energy Response of Six Prototype Scintillators CCM Kyba 1, J Glodo 2, EVD van Loef 2, JS Karp 1, KS Shah 2 1 University of Pennsylvania 2 Radiation Monitoring Devices SCINT 2007 June 7, 2007

More information

Lecture 16 Light transmission and optical detectors

Lecture 16 Light transmission and optical detectors Lecture 6 Light transmission and optical detectors Charged particle traversing through a material can generate signal in form of light via electromagnetic interactions with orbital electrons of the atoms

More information

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons Jožef Stefan Institute, Ljubljana, Slovenia; currently CERN, Geneva, Switzerland November 30 December 5, 2004 for BELLE Aerogel

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2009 Detecto Summer Lecture Series Experiment basics

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2006 Detector/Computer Summer Lecture Series Experiment

More information

Status of the LHCb RICH and hadron particle identification

Status of the LHCb RICH and hadron particle identification Status of the LHCb RICH and hadron particle identification M. Adinolfi University of Oxford On behalf of the LHCb collaboration (with many thanks to all the people whose presentations have been n hacked)

More information

An Overview of RICH Detectors From PID to Velocity Spectrometers

An Overview of RICH Detectors From PID to Velocity Spectrometers An RICH Detectors From PID to Velocity Spectrometers, January 29, 2008 Goal - a broad overview for this afternoon s session I. Introduction II. Recent RICH history. A review of some experiments and their

More information

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09 Experimental production of many- positron systems: L2, techniques David B. Cassidy Department of Physics and Astronomy, University of California, Riverside, USA cassidy@physics.ucr.edu Varenna, July 09

More information

A method to measure transit time spread of photomultiplier tubes with Cherenkov light

A method to measure transit time spread of photomultiplier tubes with Cherenkov light Nuclear Science and Techniques 20 (2009) 344 348 A method to measure transit time spread of photomultiplier tubes with Cherenkov light WU Chong 1 DONG Huasong 2,* SUN Zhijia 3 1 Department of Mathematics

More information

Novel sensors for Cherenkov counters

Novel sensors for Cherenkov counters Novel sensors for Cherenkov counters Peter Križan University of Ljubljana and J. Stefan Institute Advanced Instrumentation Seminar, SLAC, June 10, 2009 Contents Why particle identification? Ring Imaging

More information

A Start-Timing Detector for the Collider Experiment PHENIX at RHIC-BNL

A Start-Timing Detector for the Collider Experiment PHENIX at RHIC-BNL A Start-Timing Detector for the Collider Experiment PHENIX at RHIC-BNL K. Ikematsu, Y. Iwata, K. Kaimi, M. Kaneta, T. Kohama, N. Maeda a, K. Matsukado, H. Ohnishi, K. Ono, A. Sakaguchi b, T. Sugitate,

More information

A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B

A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B Journal of the Korean Physical Society, Vol. 32, No. 4, April 1998, pp. 462 467 A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B J. H. Kim, H. Bhang, J. H. Ha, J. C. Kim, M. J. Kim, Y. D. Kim

More information

Picosecond Time-of-Flight Measurement for Colliders Using Cherenkov Light

Picosecond Time-of-Flight Measurement for Colliders Using Cherenkov Light Picosecond Time-of-Flight Measurement for Colliders Using Cherenkov Light Timothy Credo, Henry Frisch, Harold Sanders, Robert Schroll, and Fukun Tang Abstract--We propose to measure the velocity of particles

More information

Construction of the Belle II TOP counter

Construction of the Belle II TOP counter , For the Belle II TOP group KMI, Nagoya University E-mail: matsuoka@hepl.phys.nagoya-u.ac.jp The Belle II experiment operating at SuperKEKB of the luminosity frontier accelerator will perform high precision

More information

New Results from the DREAM project

New Results from the DREAM project New Results from the DREAM project Evelin Meoni IFAE Barcelona (UAB) On behalf of the DREAM Collaboration 12th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD10) 7-10 June 2010 Siena,

More information

Response curve measurement of the SiPM

Response curve measurement of the SiPM Response curve measurement of the SiPM The theoritical formula : N Fired = N pix. (1 (1 1/N pix ) Npe ) does not hold because: 1) crosstalk and afterpulses increases N Fired (by a factor 1 / (1 ε) for

More information

arxiv:hep-ex/ v1 22 Apr 2002

arxiv:hep-ex/ v1 22 Apr 2002 Belle Preprint 22-9 KEK Preprint 22-12 A Detailed Monte-Carlo Simulation for the Belle TOF System arxiv:hep-ex/243v1 22 Apr 22 J. W. Nam, Y. I. Choi, D. W. Kim and J. H. Kim Sungkyunkwan University, Suwon

More information

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7 Particle Identification Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7.0 Content 7.1 Methods for Particle Identification 7.2 Mass of Charged Particles

More information

Super- Kamiokande. Super- Kamiokande (1996- ) h=41.4m. Hyper- K (201X? - ) Kamiokande ( ) M. Yokoyama Friday 14:30

Super- Kamiokande. Super- Kamiokande (1996- ) h=41.4m. Hyper- K (201X? - ) Kamiokande ( ) M. Yokoyama Friday 14:30 Super- Kamiokande h=41.4m Super- Kamiokande (1996- ) 50,000 tons of Pure Water 20inch PMT (inner detector) #PMT, coverage SK- I(1996-2001): 11146, 40% SK- II(2001-2005): 5182, 20% SK- III(2006-2008): 11129,

More information

High quantum efficiency S-20 photocathodes for photon counting applications

High quantum efficiency S-20 photocathodes for photon counting applications High quantum efficiency S-20 photocathodes for photon counting applications D. A. Orlov a,*, J. DeFazio b, S. Duarte Pinto a, R. Glazenborg a and E. Kernen a a PHOTONIS Netherlands BV, Dwazziewegen 2,

More information

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015 Kaon Identification at NA62 Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015 Francis Newson April 2015 Kaon Identification at NA62 K πνν NA48 and NA62 K + π + νν

More information

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors Kate Scholberg, Duke University Chicago, April 2011 OUTLINE - Overview/physics motivation - Event reconstruction

More information

The Alice Experiment Felix Freiherr von Lüdinghausen

The Alice Experiment Felix Freiherr von Lüdinghausen The Alice Experiment Felix Freiherr von Lüdinghausen Alice, who is Alice? Alice is A Large Ion Collider Experiment. Worldwide hit in 1977 for the band Smokie Alice is the dedicated heavy ion experiment

More information

Hands on Project: Large Photocathode PMT Characterization

Hands on Project: Large Photocathode PMT Characterization Hands on Project: Large Photocathode PMT Characterization Rickard Stroem Dept. of Physics and Astronomy, Uppsala University E-mail: rickard.strom@physics.uu.se Institute of Cosmic Ray Research, University

More information

RICH detectors for LHCb

RICH detectors for LHCb RICH detectors for LHCb Tito Bellunato INFN Milano-Bicocca On behalf of the LHCb RICH collaboration 10th International Conference on Instrumentation for Colliding Beam Physics 10th International Conference

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

Lucite Hodoscope for SANE

Lucite Hodoscope for SANE Lucite Hodoscope for SANE A. Ahmidouch, S. Danagoulian NC A&T State University Outline Cosmic Ray test of a lucite prototype bar The old result from Monte Carlo Geometry consideration Trigger Electronics

More information

Cherenkov Detectors in Particle Physics. Brad Wogsland University of Tennessee

Cherenkov Detectors in Particle Physics. Brad Wogsland University of Tennessee Cherenkov Detectors in Particle Physics Brad Wogsland University of Tennessee Outline Cherenkov light RICH detectors CRID detectors The DIRC Design & performance Potential for use in Future experiments

More information

Development of a High Precision Axial 3-D PET for Brain Imaging

Development of a High Precision Axial 3-D PET for Brain Imaging Development of a High Precision Axial 3-D PET for Brain Imaging On behalf of the AX-PET Collaboration SIENA - IPRD08 October 1st 4th, 2008 1 Outline Basics of Positron Emission Tomography (PET); Principle

More information

Kagamiyama, Higashi-Hiroshima , Japan. Abstract

Kagamiyama, Higashi-Hiroshima , Japan. Abstract Published in NIM A411(1998)238{248 A Start-Timing Detector for the Collider Experiment PHENIX at RHIC-BNL K. Ikematsu, Y. Iwata, K. Kaimi z, M. Kaneta, T. Kohama, N. Maeda a, K. Matsukado, H. Ohnishi,

More information

Calibration and Monitoring for Crystal Calorimetry

Calibration and Monitoring for Crystal Calorimetry Calibration and Monitoring for Crystal Calorimetry CsI(Tl) Ren-yuan Zhu CALTECH BGO PWO SCINT03 Valencia, Spain Properties of Crystal Scintillators Crystal NaI(Tl) CsI(Tl) CsI BaF 2 BGO PbWO 4 LSO(Ce)

More information

PoS(PD07)031. General performance of the IceCube detector and the calibration results

PoS(PD07)031. General performance of the IceCube detector and the calibration results General performance of the IceCube detector and the calibration results Department of Physics, Faculty of Science, Chiba university E-mail: mina@hepburn.s.chiba-u.ac.jp IceCube is a huge neutrino telescope

More information

PHOTODETECTORS AND SILICON PHOTO MULTIPLIER

PHOTODETECTORS AND SILICON PHOTO MULTIPLIER ESE seminar Photodetectors - Sipm, P. Jarron - F. Powolny 1 PHOTODETECTORS AND SILICON PHOTO MULTIPLIER ESE seminar Pierre Jarron, Francois Powolny OUTLINE 2 Brief history and overview of photodetectors

More information

7. Particle identification

7. Particle identification 7. Particle identification in general, momentum of a particle measured in a spectrometer and another observable is used to identity the species velocity time-of-flight Cherenkov threshold transition radiation

More information

Particle Detectors A brief introduction with emphasis on high energy physics applications

Particle Detectors A brief introduction with emphasis on high energy physics applications Particle Detectors A brief introduction with emphasis on high energy physics applications TRIUMF Summer Institute 2006 July 10-21 2006 Lecture I measurement of ionization and position Lecture II scintillation

More information

GRAPE A Balloon-Borne Gamma-Ray Polarimeter

GRAPE A Balloon-Borne Gamma-Ray Polarimeter GRAPE A Balloon-Borne Gamma-Ray Polarimeter (5-3 kev) Mark L. McConnell, James R. Ledoux, John R. Macri, Matt Orr, and James M. Ryan Space Science Center University of New Hampshire Durham, NH X-Ray Polarimetry

More information

The Aerogel Forward RICH detector for PANDA

The Aerogel Forward RICH detector for PANDA The Aerogel Forward RICH detector for PANDA Presented by Sergey Kononov A.Yu.Barnyakov abe, M.Yu.Barnyakov abc, K.I.Beloborodov abe, V.S.Bobrovnikov ab, A.F.Danilyuk bd, A.A.Katcin ac, S.A.Kononov abe,

More information

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo ICEPP, the University of Tokyo E-mail: sawada@icepp.s.u-tokyo.ac.jp The MEG experiment yielded the most stringent upper limit on the branching ratio of the flavorviolating muon decay µ + e + γ. A major

More information

Time of Flight Technique

Time of Flight Technique Time of Flight Technique R. Stroynowski California Institute of Technology, Pasadena, CA 91125 Abstract At first glance, the traditional Time of Flight (TOF) technique for identification of pions, kaons

More information

a) National Laboratory for High Energy Physics (KEK), b) Saga University, c) National Kaohsiung Normal University, d) National Taiwan University,

a) National Laboratory for High Energy Physics (KEK), b) Saga University, c) National Kaohsiung Normal University, d) National Taiwan University, KEK Preprint 96-21 BELLE Preprint 96-3 BELLE Aerogel Cerenkov Counter for the BELLE Experiment T.Iijima a, I.Adachi a, M.Amami b, R.Enomoto a, R.S.Guo c, K.Hayashi a, H.C.Huang d, R.Itoh a, S.Kobayashi

More information

Cherenkov light imaging in particle and nuclear physics experiments

Cherenkov light imaging in particle and nuclear physics experiments Cherenkov light imaging in particle and nuclear physics experiments K. Inami (Nagoya univ.) 2016/9/5, RICH2016 Topics in the session 2 Performance of the LHCb RICH detectors during the LHC Run II ALICE-HMPID

More information

arxiv: v1 [physics.ins-det] 6 Oct 2010

arxiv: v1 [physics.ins-det] 6 Oct 2010 Lifetime-Extended MCP-PMT T. Jinno a, T. Mori a, T. Ohshima a, Y. Arita a, K. Inami a, T. Ihara b, H. Nishizawa b, and T. Sasaki b arxiv:1010.1057v1 [physics.ins-det] 6 Oct 2010 a Department of Physics,

More information

LXe (part B) Giovanni Signorelli. Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica and Scuola Normale Superiore, Pisa (Italy)

LXe (part B) Giovanni Signorelli. Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica and Scuola Normale Superiore, Pisa (Italy) LXe (part B) Giovanni Signorelli Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica and Scuola Normale Superiore, Pisa (Italy) PSI, February 2003 1 MEG internal meeting 2 MC: Outline shape-qe

More information

Development of Secondary Electron Time Detector for Ion Beams

Development of Secondary Electron Time Detector for Ion Beams Development of Secondary Electron Time Detector for Ion Beams, A. Ozawa, T. Moriguchi, Y. Ichikawa, M. Amano, D. Kamioka, Y. Tajiri, K. Hiraishi, T. Matsumoto Institute of Physics, University of Tsukuba,

More information

Test setup, APDs,, preamps Calibration procedure Gain monitoring with LED Beam test results Future R&D options

Test setup, APDs,, preamps Calibration procedure Gain monitoring with LED Beam test results Future R&D options Test setup, APDs,, preamps Calibration procedure Gain monitoring with LED Beam test results Future R&D options Introduction The analog HCAL group of the Calice collaboration built a small scintillator

More information

BaBar DIRC in SoLID. P. Nadel-Turonski, Z. Zhao, C. Hyde... SoLID bi-weekly meeting, January 15, 2013

BaBar DIRC in SoLID. P. Nadel-Turonski, Z. Zhao, C. Hyde... SoLID bi-weekly meeting, January 15, 2013 BaBar DIRC in SoLID P. Nadel-Turonski, Z. Zhao, C. Hyde... SoLID bi-weekly meeting, January 15, 2013 1 Emerging opportunity 1. BaBar DIRC suddenly becomes available in December 2012 SuperB (next generation

More information

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl Introduction - Purpose of CPV: veto Kl decay modes with a real or apparent π and a pair of charged particles - Examples of background modes: (i) K l π π + π (ii) K l π π ± eν there are always (iii) K l

More information

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration INFN Bari, Ohio State University, CERN, University of Michigan, University of Oslo, INFN Roma,

More information

Performance test of triple GEM detector at CERN n_tof facility

Performance test of triple GEM detector at CERN n_tof facility Performance test of triple GEM detector at CERN n_tof facility S.Puddu 2,4, G.Claps 1, G. Croci 3, F. Murtas 1,2, A.Pietropaolo 3, C. Severino 2,4, M. Silari 2 1) LNF-INFN 2) CERN 3)IFP-CNR 4)LHEP-Bern

More information

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity s and Laser Phase Phase Density ECE 185 Lasers and Modulators Lab - Spring 2018 1 Detectors Continuous Output Internal Photoelectron Flux Thermal Filtered External Current w(t) Sensor i(t) External System

More information

First Beam Profile Measurements Based on Light Radiation of Atoms Excited by the Particle Beam

First Beam Profile Measurements Based on Light Radiation of Atoms Excited by the Particle Beam First Beam Profile Measurements Based on Light Radiation of Atoms Excited by the Particle Beam Jürgen Dietrich Forschungszentrum Jülich GmbH Bensheim, October 19, 2004 COSY Overview COSY accelerates (polarised)

More information

The TORCH project. a proposed detector for precision time-of-flight over large areas. Roger Forty (CERN)

The TORCH project. a proposed detector for precision time-of-flight over large areas. Roger Forty (CERN) The TORCH project a proposed detector for precision time-of-flight over large areas Roger Forty (CERN) DIRC 2013, Giessen, 4 6 September 2013 Introduction TORCH (Time Of internally Reflected CHerenkov

More information

Detector R&D in KAPAC

Detector R&D in KAPAC Detector R&D in KAPAC Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology Outline Compton Camera SOI detector Scintillator Polarimeter Cherenkov Camera

More information

pp physics, RWTH, WS 2003/04, T.Hebbeker

pp physics, RWTH, WS 2003/04, T.Hebbeker 3. PP TH 03/04 Accelerators and Detectors 1 pp physics, RWTH, WS 2003/04, T.Hebbeker 2003-12-16 1.2.4. (Inner) tracking and vertexing As we will see, mainly three types of tracking detectors are used:

More information

Detector R&D at KIPAC. Hiro Tajima Kavli InStitute of Particle Astrophysics and Cosmology

Detector R&D at KIPAC. Hiro Tajima Kavli InStitute of Particle Astrophysics and Cosmology Detector R&D at KIPAC Hiro Tajima Kavli InStitute of Particle Astrophysics and Cosmology Detector R&D Overview Si detector ASIC Integration GLAST GeV Gamma-ray Observatory ASIC DAQ Next generation X-ray

More information

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples) Detecting high energy photons Interactions of photons with matter Properties of detectors (with examples) Interactions of high energy photons with matter Cross section/attenution length/optical depth Photoelectric

More information

Equalisation of the PMT response to charge particles for the Lucid detector of the ATLAS experiment

Equalisation of the PMT response to charge particles for the Lucid detector of the ATLAS experiment Equalisation of the PMT response to charge particles for the Lucid detector of the ATLAS experiment Camilla Vittori Department of Physics, University of Bologna, Italy Summer Student Program 2014 Supervisor

More information

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future April 4, 2006 1 International Symposium on Detector Development, SLAC, USA Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future Ren-Yuan Zhu California Institute of Technology

More information

MTV - S1183 Beam Time Summary. Performance test of MTV new detector : CDC. Yumi Totsuka. Department of Physics, Rikkyo University, Tokyo, Japan

MTV - S1183 Beam Time Summary. Performance test of MTV new detector : CDC. Yumi Totsuka. Department of Physics, Rikkyo University, Tokyo, Japan MTV - S1183 Beam Time Summary Performance test of MTV new detector : CDC Yumi Totsuka Department of Physics, Rikkyo University, Tokyo, Japan TRIUMF-ISAC Science Forum (30. Nov. 2011) Schedule: Beam Time

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

The AMS-02 Anticoincidence Counter

The AMS-02 Anticoincidence Counter The AMS-02 Anticoincidence Counter, W. Karpinski, Th. Kirn, K. Lübelsmeyer, St. Schael, M. Wlochal on behalf of the AMS-02 Collaboration philip.doetinchem@rwth-aachen.de I. Phys. Inst. B, RWTH Aachen University

More information

Dual readout with tiles for calorimetry.

Dual readout with tiles for calorimetry. Dual readout with tiles for calorimetry. F.Lacava on behalf of the RD52 / DREAM Collaboration Cagliari Cosenza Iowa State Pavia Pisa Roma 1 Texas Tech. 13th Topical Seminar on Innovative Particle and Radiation

More information

Fast luminosity measurements by ZDLM of the counter type

Fast luminosity measurements by ZDLM of the counter type Fast luminosity measurements by ZDLM of the counter type S.Uehara(KEK) For meetings at IPHC, Strasbourg January, 2015 1 Luminosity measurement by ZDLM Zero Degree Luminosity Monitor detects the very-forward

More information

Development of a fast plastic scintillation detector with time resolution of less than 10 ps

Development of a fast plastic scintillation detector with time resolution of less than 10 ps Development of a fast plastic scintillation detector with time resolution of less than 10 ps J.W. Zhao a, B.H. Sun a,b, * 1, I. Tanihata a,b, *, S. Terashima a,b, L.H. Zhu a,b, A. Enomoto c, D. Nagae d,

More information

A measurement of the air fluorescence yield

A measurement of the air fluorescence yield Nuclear Instruments and Methods in Physics Research A 372 (1996) 527-533 A measurement of the air fluorescence yield F. Kakimoto a, E.C. Loh b, M. Nagano c.*, H. Okuno d, M. Teshima c, S. Ueno a a Department

More information

Kenji Ozone (ICEPP, Univ. of Tokyo, Japan) Outline. Introduction prototype R&D ー PMTs ー small & large type summary

Kenji Ozone (ICEPP, Univ. of Tokyo, Japan) Outline. Introduction prototype R&D ー PMTs ー small & large type summary Liquid Xe detector for m + e + g search Kenji Ozone (ICEPP, Univ. of Tokyo, Japan) Outline Introduction prototype R&D ー PMTs ー small & large type summary Three Talks XENON01 LXe detector for m eg search

More information

9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT

9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT 9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT Students: Riccardo Falcione, Elisa Paris Liceo Scientifico Statale Farnesina Tutor:

More information

Scintillating Fibre and Radiation Damage Studies for the LHCb Upgrade

Scintillating Fibre and Radiation Damage Studies for the LHCb Upgrade r Scintillating Fibre and Radiation Damage Studies for the LHCb Upgrade TIPP 2014 2-6 June, Amsterdam presented by Mirco Deckenhoff on behalf of the LHCb SciFi Tracker Group LHCb SciFi Tracker A fast,

More information

The Fast Interaction Trigger Upgrade for ALICE

The Fast Interaction Trigger Upgrade for ALICE Chicago State University, Chicago, USA E-mail: edmundo.garcia@csu.edu On Behalf of the ALICE Collaboration The ALICE Collaboration is preparing a major detector upgrade for the second LHC long shutdown

More information

Experimental Methods of Particle Physics

Experimental Methods of Particle Physics Experimental Methods of Particle Physics (PHY461) Fall 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Overview 1) Introduction / motivation measurement of particle momenta: magnetic field early

More information

Time of Flight Mass Spectroscopy and Velocity Map Imaging

Time of Flight Mass Spectroscopy and Velocity Map Imaging Time of Flight Mass Spectroscopy and Velocity Map Imaging Geet Ghanshyam January 26, 2013 Velocity map imaging (VMI) is used to study the dynamics of various dissociative electron attachment (DEA) processes

More information

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT Dr. Andrea Fabbri, University of Rome Roma Tre I.N.F.N. (National Institue of Nuclear Physics) γ-ray imaging with scintillator and PSPMT γ-ray

More information

The First Large Application of MPPC: T2K Neutrino Beam Monitor INGRID

The First Large Application of MPPC: T2K Neutrino Beam Monitor INGRID The First Large Application of MPPC: T2K Neutrino Beam Monitor INGRID Kyoto University, Japan E-mail: masashi.o@scphys.kyoto-u.ac.jp We report design and performance of T2K neutrino beam monitor INGRID.

More information

Factors Affecting Detector Performance Goals and Alternative Photo-detectors

Factors Affecting Detector Performance Goals and Alternative Photo-detectors XENON Experiment - SAGENAP Factors Affecting Detector Performance Goals and Alternative Photo-detectors Department of Physics Brown University Source at http://gaitskell.brown.edu Gaitskell Review WIMP

More information

GasToF: Picosecond Resolution Time of Flight Detector

GasToF: Picosecond Resolution Time of Flight Detector GasToF: Picosecond Resolution Time of Flight Detector L. Bonnet, J. Liao, T. Pierzchala, K. Piotrzkowski and N. Schul (UCLouvain) As introduction: Motivation for forward proton timing at LHC z = c (t 1

More information

The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511

The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP student from Georgia Institute of Technology, Atlanta,

More information

Photon Detector Performance and Radiator Scintillation in the HADES RICH

Photon Detector Performance and Radiator Scintillation in the HADES RICH Photon Detector Performance and Radiator Scintillation in the HADES RICH R. Gernhäuser,B.Bauer,J.Friese,J.Homolka,A.Kastenmüller, P. Kienle, H.-J. Körner, P. Maier-Komor, M. Münch, R. Schneider, K. Zeitelhack.

More information

GEM-based gaseous Photomultipliers for UV and visible photon imaging. Dirk Mörmann Amos Breskin Rachel Chechik Marcin Balcerzyk Bhartendu Singh

GEM-based gaseous Photomultipliers for UV and visible photon imaging. Dirk Mörmann Amos Breskin Rachel Chechik Marcin Balcerzyk Bhartendu Singh GEM-based gaseous Photomultipliers for UV and visible photon imaging Dirk Mörmann Amos Breskin Rachel Chechik Marcin Balcerzyk Bhartendu Singh Gaseous Photomultiplier State of the art: Advantages: large

More information

GEM: A new concept for electron amplification in gas detectors

GEM: A new concept for electron amplification in gas detectors GEM: A new concept for electron amplification in gas detectors F. Sauli, Nucl. Instr. & Methods in Physics Research A 386 (1997) 531-534 Contents 1. Introduction 2. Two-step amplification: MWPC combined

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

Simulation study of scintillatorbased

Simulation study of scintillatorbased Simulation study of scintillatorbased calorimeter Hiroyuki Matsunaga (Tsukuba) For GLD-CAL & ACFA-SIM-J groups Main contributors: M. C. Chang, K. Fujii, T. Takeshita, S. Yamauchi, A. Nagano, S. Kim Simulation

More information

Detectors in Nuclear and Particle Physics

Detectors in Nuclear and Particle Physics Detectors in Nuclear and Particle Physics Prof. Dr. Johanna Stachel Department of Physics und Astronomy University of Heidelberg July 1, 2014 J. Stachel (Physics University Heidelberg) Detectorphysics

More information

Development of gaseous PMT with micropattern gas detector

Development of gaseous PMT with micropattern gas detector Development of gaseous PMT with micropattern gas detector Fuyuki Tokanai Department of Physics, Yamagata University, Yamagata, Japan Takayuki Sumiyoshi [Tokyo Metropolitan University, Tokyo 192-0397, Japan

More information

The Time of Flight Detector for GlueX at Jefferson Lab. Hussein Al Ghoul University of Kansas

The Time of Flight Detector for GlueX at Jefferson Lab. Hussein Al Ghoul University of Kansas The Time of Flight Detector for GlueX at Jefferson Lab Hussein Al Ghoul University of Kansas Overview The GlueX Experiment The Time of Flight Detector Pre-Construction Testing TOF Construction at Florida

More information

7th International Conference on New Developments In Photodetection

7th International Conference on New Developments In Photodetection 7th International Conference on New Developments In Photodetection Development of a cylindrical tracking detector with multichannel scintillation fibers and PPD readout Yuya Akazawa Tohoku University for

More information

arxiv: v2 [physics.ins-det] 8 Feb 2013

arxiv: v2 [physics.ins-det] 8 Feb 2013 Preprint typeset in JINST style - HYPER VERSION arxiv:1302.0278v2 [physics.ins-det] 8 Feb 2013 Investigation of gamma ray detection performance of thin LFS scintillator with MAPD readout E.Guliyev a, F.Ahmadov

More information