Introduction. Formulating LP Problems LEARNING OBJECTIVES. Requirements of a Linear Programming Problem. LP Properties and Assumptions

Size: px
Start display at page:

Download "Introduction. Formulating LP Problems LEARNING OBJECTIVES. Requirements of a Linear Programming Problem. LP Properties and Assumptions"

Transcription

1 Valua%on and pricing (November 5, 2013) LEARNING OBJETIVES Lecture 10 Linear Programming (part 1) Olivier J. de Jong, LL.M., MM., MBA, FD, FFA, AA 1. Understand the basic assumptions and properties of linear programming (LP). 2. Graphically solve any LP problem that has only two variables by both the corner point and isoprofit line methods. 3. Understand special issues in LP such as infeasibility, unboundedness, redundancy, and alternative optimal solutions. 4. Understand the role of sensitivity analysis. 5. Use Excel spreadsheets to solve LP problems. opyright 2015 Pearson Education, Inc. 7 2 Introduction Many management decisions involve making the most effective use of limited resources Linear programming (LP) Widely used mathematical modeling technique Planning and decision making relative to resource allocation Broader field of mathematical programming Here programming refers to modeling and solving a problem mathematically Requirements of a Linear Programming Problem Four properties in common Seek to maximize or minimize some quantity (the objective function) Restrictions or s are present Alternative courses of action are available Linear equations or inequalities opyright 2015 Pearson Education, Inc. 7 3 opyright 2015 Pearson Education, Inc. 7 4 LP Properties and Assumptions TABLE 7.1 PROPERTIES OF LINEAR PROGRAMS 1. One objective function 2. One or more s 3. Alternative courses of action 4. Objective function and s are linear proportionality and divisibility 5. ertainty 6. Divisibility 7. Nonnegative variables Formulating LP Problems Developing a mathematical model to represent the managerial problem Steps in formulating a LP problem 1. ompletely understand the managerial problem being faced 2. Identify the objective and the s 3. Define the decision variables 4. Use the decision variables to write mathematical expressions for the objective function and the s opyright 2015 Pearson Education, Inc. 7 5 opyright 2015 Pearson Education, Inc. 7 6

2 Formulating LP Problems ommon LP application product mix problem Two or more products are produced using limited resources Maximize profit based on the profit contribution per unit of each product Determine how many units of each product to produce Flair Furniture ompany Flair Furniture produces inexpensive tables and chairs Processes are similar, both require carpentry work and painting and varnishing Each table takes 4 hours of carpentry and 2 hours of painting and varnishing Each chair requires 3 of carpentry and 1 hour of painting and varnishing There are 240 hours of carpentry time available and 100 hours of painting and varnishing Each table yields a profit of $70 and each chair a profit of $50 opyright 2015 Pearson Education, Inc. 7 7 opyright 2015 Pearson Education, Inc. 7 8 Flair Furniture ompany The company wants to determine the best combination of tables and chairs to produce to reach the maximum profit TABLE 7.2 DEPARTMENT HOURS REQUIRED TO PRODUE 1 UNIT (T) TABLES () HAIRS AVAILABLE HOURS THIS WEEK arpentry Painting and varnishing Profit per unit $70 $50 Flair Furniture ompany The objective is Maximize profit The s are The hours of carpentry time used cannot exceed 240 hours per week The hours of painting and varnishing time used cannot exceed 100 hours per week The decision variables are T = number of tables to be produced per week = number of chairs to be produced per week opyright 2015 Pearson Education, Inc. 7 9 opyright 2015 Pearson Education, Inc Flair Furniture ompany reate objective function in terms of T and Maximize profit = $70T + $50 Develop mathematical relationships for the two s For carpentry, total time used is (4 hours per table)(number of tables produced) + (3 hours per chair)(number of chairs produced) First is arpentry time used arpentry time available 4T (hours of carpentry time) Flair Furniture ompany Similarly Painting and varnishing time used Painting and varnishing time available 2 T (hours of painting and varnishing time) This means that each table produced requires two hours of painting and varnishing time Both of these s restrict production capacity and affect total profit opyright 2015 Pearson Education, Inc opyright 2015 Pearson Education, Inc. 7 12

3 Flair Furniture ompany The values for T and must be nonnegative T 0 (number of tables produced is greater than or equal to 0) 0 (number of chairs produced is greater than or equal to 0) The complete problem stated mathematically subject to Maximize profit = $70T + $50 4T (carpentry ) 2T (painting and varnishing ) T, 0 (nonnegativity ) opyright 2015 Pearson Education, Inc Graphical Solution to an LP Problem Easiest way to solve a small LP problems is graphically Only works when there are just two decision variables Not possible to plot a solution for more than two variables Provides valuable insight into how other approaches work Nonnegativity s mean that we are always working in the first (or northeast) quadrant of a graph opyright 2015 Pearson Education, Inc FIGURE 7.1 Quadrant ontaining All Positive Values This Axis Represents the onstraint T 0 This Axis Represents the onstraint 0 opyright 2015 Pearson Education, Inc The first step is to identify a set or region of feasible solutions Plot each equation on a graph Graph the equality portion of the equations 4T + 3 = 240 Solve for the axis intercepts and draw the line opyright 2015 Pearson Education, Inc When Flair produces no tables, the carpentry is: 4(0) + 3 = = 240 = 80 Similarly for no chairs: 4T + 3(0) = 240 4T = 240 T = 60 This line is shown on the following graph opyright 2015 Pearson Education, Inc FIGURE 7.2 Graph of arpentry onstraint Equation (T = 0, = 80) (T = 60, = 0) opyright 2015 Pearson Education, Inc. 7 18

4 FIGURE 7.3 Region that Satisfies the arpentry onstraint (30, 40) Any point on or below the plot will not violate the restriction Any point above the plot will violate the restriction (70, 40) 20 (30, 20) opyright 2015 Pearson Education, Inc The point (30, 40) lies on the line and exactly satisfies the 4(30) + 3(40) = 240 The point (30, 20) lies below the line and satisfies the 4(30) + 3(20) = 180 The point (70, 40) lies above the line and does not satisfy the 4(70) + 3(40) = 400 opyright 2015 Pearson Education, Inc FIGURE 7.4 Region that Satisfies the Painting and Varnishing onstraint (T = 0, = 100) (T = 50, = 0) opyright 2015 Pearson Education, Inc To produce tables and chairs, both departments must be used Find a solution that satisfies both s simultaneously A new graph shows both plots The feasible region is where all s are satisfied Any point inside this region is a feasible solution Any point outside the region is an infeasible solution opyright 2015 Pearson Education, Inc FIGURE 7.5 Feasible Solution Region Painting/Varnishing onstraint 20 Feasible arpentry onstraint Region opyright 2015 Pearson Education, Inc For the point (30, 20) arpentry Painting For the point (70, 40) arpentry Painting 4T hours available (4)(30) + (3)(20) = 180 hours used 2T hours available (2)(30) + (1)(20) = 80 hours used 4T hours available (4)(70) + (3)(40) = 400 hours used 2T hours available (2)(70) + (1)(40) = 180 hours used opyright 2015 Pearson Education, Inc ü ü û û

5 For the point (50, 5) arpentry Painting 4T hours available (4)(50) + (3)(5) = 215 hours used 2T hours available (2)(50) + (1)(5) = 105 hours used ü û Find the optimal solution from the many possible solutions Speediest method is to use the isoprofit line Starting with a small possible profit value, graph the objective function Move the objective function line in the direction of increasing profit while maintaining the slope The last point it touches in the feasible region is the optimal solution opyright 2015 Pearson Education, Inc opyright 2015 Pearson Education, Inc hoose a profit of $2,100 The objective function is $2,100 = 70T + 50 Solving for the axis intercepts, draw the graph Obviously not the best possible solution Further graphs can be created using larger profits The further we move from the origin, the larger the profit The highest profit ($4,100) will be generated when the isoprofit line passes through the point (30, 40) opyright 2015 Pearson Education, Inc FIGURE 7.6 Profit line of $2, $2,100 = $70T + $50 (30, 0) opyright 2015 Pearson Education, Inc FIGURE 7.7 Four Isoprofit Lines $3,500 = $70T + $50 $2,800 = $70T + $50 $2,100 = $70T + $50 $4,200 = $70T + $50 opyright 2015 Pearson Education, Inc FIGURE 7.8 Optimal Solution Maximum Profit Line Optimal Solution Point (T = 30, = 40) $4,100 = $70T + $50 opyright 2015 Pearson Education, Inc. 7 30

6 orner Point Solution Method The corner point method for solving LP problems Look at the profit at every corner point of the feasible region Mathematical theory is that an optimal solution must lie at one of the corner points or extreme points orner Point Solution Method FIGURE 7.9 Four orner Points of the Feasible Region 100 (0, 80) (?) (50, 0) (0, 0) opyright 2015 Pearson Education, Inc opyright 2015 Pearson Education, Inc orner Point Solution Method Solve for the intersection of the two lines Using the elimination method to solve simultaneous equations method, select a variable to be eliminated Eliminate T by multiplying the second equation by 2 and add it to the first equation 2(2T + 1 = 100) = 4T 2 = 200 4T + 3 = 240 (carpentry) 4T 2 = 200 (painting) = 40 opyright 2015 Pearson Education, Inc orner Point Solution Method Substitute = 40 into either equation to solve for T 4T + 3(40) = 240 4T = 240 4T = 120 T = 30 TABLE 7.3 Feasible orner Points and Profits Thus the corner point is (30, 40) NUMBER OF TABLES (T) NUMBER OF HAIRS () PROFIT = $70T + $ $ $3, $4, $4,100 Highest profit Optimal Solution opyright 2015 Pearson Education, Inc Slack and Surplus Slack is the amount of a resource that is not used For a less-than-or-equal Slack = (Amount of resource available) (Amount of resource used) Flair decides to produce 20 tables and 25 chairs 4(20) + 3(25) = 155 (carpentry time used) 240 = (carpentry time available) = 85 (Slack time in carpentry) Slack and Surplus At the optimal solution, slack is 0 as all 240 Slack is the amount of a resource hours are used that is not used For a less-than-or-equal Slack = (Amount of resource available) (Amount of resource used) Flair decides to produce 20 tables and 25 chairs 4(20) + 3(25) = 155 (carpentry time used) 240 = (carpentry time available) = 85 (Slack time in carpentry) opyright 2015 Pearson Education, Inc opyright 2015 Pearson Education, Inc. 7 36

7 Slack and Surplus Surplus is used with a greater-than-or-equalto to indicate the amount by which the right-hand side of the is exceeded Surplus = (Actual amount) (Minimum amount) New T + 42 If T = 20 and = 25, then = 45 Surplus = = 3 Summaries of Graphical Solution Methods TABLE 7.4 ISOPROFIT METHOD 1. Graph all s and find the feasible region. 2. Select a specific profit (or cost) line and graph it to find the slope. 3. Move the objective function line in the direction of increasing profit (or decreasing cost) while maintaining the slope. The last point it touches in the feasible region is the optimal solution. 4. Find the values of the decision variables at this last point and compute the profit (or cost). ORNER POINT METHOD 1. Graph all s and find the feasible region. 2. Find the corner points of the feasible reason. 3. ompute the profit (or cost) at each of the feasible corner points. 4. Select the corner point with the best value of the objective function found in Step 3. This is the optimal solution. opyright 2015 Pearson Education, Inc opyright 2015 Pearson Education, Inc Remember hapter 3: Where Prices ome From: The Interaction of Demand and Supply Read Quantitative Methods-module guide. Any questions please olivier.edu@gmail.com and make notes as you do so, in whatever way works best for you in terms of remembering information (your performance on this course is only assessed by exam). opyright 2010 Pearson Education, Inc. Economics R. Glenn Hubbard, Anthony Patrick O Brien, 3e. 39 of 46

Graphical and Computer Methods

Graphical and Computer Methods Chapter 7 Linear Programming Models: Graphical and Computer Methods Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna 2008 Prentice-Hall, Inc. Introduction Many management

More information

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved.

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved. 3 LINEAR PROGRAMMING: A GEOMETRIC APPROACH Copyright Cengage Learning. All rights reserved. 3.4 Sensitivity Analysis Copyright Cengage Learning. All rights reserved. Sensitivity Analysis In this section,

More information

Linear programming Dr. Arturo S. Leon, BSU (Spring 2010)

Linear programming Dr. Arturo S. Leon, BSU (Spring 2010) Linear programming (Adapted from Chapter 13 Supplement, Operations and Management, 5 th edition by Roberta Russell & Bernard W. Taylor, III., Copyright 2006 John Wiley & Sons, Inc. This presentation also

More information

Answer the following questions: Q1: Choose the correct answer ( 20 Points ):

Answer the following questions: Q1: Choose the correct answer ( 20 Points ): Benha University Final Exam. (ختلفات) Class: 2 rd Year Students Subject: Operations Research Faculty of Computers & Informatics Date: - / 5 / 2017 Time: 3 hours Examiner: Dr. El-Sayed Badr Answer the following

More information

LP Definition and Introduction to Graphical Solution Active Learning Module 2

LP Definition and Introduction to Graphical Solution Active Learning Module 2 LP Definition and Introduction to Graphical Solution Active Learning Module 2 J. René Villalobos and Gary L. Hogg Arizona State University Paul M. Griffin Georgia Institute of Technology Background Material

More information

Bayesian Analysis LEARNING OBJECTIVES. Calculating Revised Probabilities. Calculating Revised Probabilities. Calculating Revised Probabilities

Bayesian Analysis LEARNING OBJECTIVES. Calculating Revised Probabilities. Calculating Revised Probabilities. Calculating Revised Probabilities Valua%on and pricing (November 5, 2013) LEARNING OBJECTIVES Lecture 7 Decision making (part 3) Regression theory Olivier J. de Jong, LL.M., MM., MBA, CFD, CFFA, AA www.olivierdejong.com 1. List the steps

More information

Chapter 3 Introduction to Linear Programming PART 1. Assoc. Prof. Dr. Arslan M. Örnek

Chapter 3 Introduction to Linear Programming PART 1. Assoc. Prof. Dr. Arslan M. Örnek Chapter 3 Introduction to Linear Programming PART 1 Assoc. Prof. Dr. Arslan M. Örnek http://homes.ieu.edu.tr/~aornek/ise203%20optimization%20i.htm 1 3.1 What Is a Linear Programming Problem? Linear Programming

More information

Linear programming I João Carlos Lourenço

Linear programming I João Carlos Lourenço Decision Support Models Linear programming I João Carlos Lourenço joao.lourenco@ist.utl.pt Academic year 2012/2013 Readings: Hillier, F.S., Lieberman, G.J., 2010. Introduction to Operations Research, 9th

More information

Optimization. Broadly two types: Unconstrained and Constrained optimizations We deal with constrained optimization. General form:

Optimization. Broadly two types: Unconstrained and Constrained optimizations We deal with constrained optimization. General form: Optimization Broadly two types: Unconstrained and Constrained optimizations We deal with constrained optimization General form: Min or Max f(x) (1) Subject to g(x) ~ b (2) lo < x < up (3) Some important

More information

Study Unit 3 : Linear algebra

Study Unit 3 : Linear algebra 1 Study Unit 3 : Linear algebra Chapter 3 : Sections 3.1, 3.2.1, 3.2.5, 3.3 Study guide C.2, C.3 and C.4 Chapter 9 : Section 9.1 1. Two equations in two unknowns Algebraically Method 1: Elimination Step

More information

Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions

Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions 11. Consider the following linear program. Maximize z = 6x 1 + 3x 2 subject to x 1 + 2x 2 2x 1 + x 2 20 x 1 x 2 x

More information

MS-E2140. Lecture 1. (course book chapters )

MS-E2140. Lecture 1. (course book chapters ) Linear Programming MS-E2140 Motivations and background Lecture 1 (course book chapters 1.1-1.4) Linear programming problems and examples Problem manipulations and standard form problems Graphical representation

More information

The Simplex Method of Linear Programming

The Simplex Method of Linear Programming The Simplex Method of Linear Programming Online Tutorial 3 Tutorial Outline CONVERTING THE CONSTRAINTS TO EQUATIONS SETTING UP THE FIRST SIMPLEX TABLEAU SIMPLEX SOLUTION PROCEDURES SUMMARY OF SIMPLEX STEPS

More information

ISE 330 Introduction to Operations Research: Deterministic Models. What is Linear Programming? www-scf.usc.edu/~ise330/2007. August 29, 2007 Lecture 2

ISE 330 Introduction to Operations Research: Deterministic Models. What is Linear Programming? www-scf.usc.edu/~ise330/2007. August 29, 2007 Lecture 2 ISE 330 Introduction to Operations Research: Deterministic Models www-scf.usc.edu/~ise330/007 August 9, 007 Lecture What is Linear Programming? Linear Programming provides methods for allocating limited

More information

Graphing Systems of Linear Equations

Graphing Systems of Linear Equations Graphing Systems of Linear Equations Groups of equations, called systems, serve as a model for a wide variety of applications in science and business. In these notes, we will be concerned only with groups

More information

Section 4.1 Polynomial Functions and Models. Copyright 2013 Pearson Education, Inc. All rights reserved

Section 4.1 Polynomial Functions and Models. Copyright 2013 Pearson Education, Inc. All rights reserved Section 4.1 Polynomial Functions and Models Copyright 2013 Pearson Education, Inc. All rights reserved 3 8 ( ) = + (a) f x 3x 4x x (b) ( ) g x 2 x + 3 = x 1 (a) f is a polynomial of degree 8. (b) g is

More information

2. Linear Programming Problem

2. Linear Programming Problem . Linear Programming Problem. Introduction to Linear Programming Problem (LPP). When to apply LPP or Requirement for a LPP.3 General form of LPP. Assumptions in LPP. Applications of Linear Programming.6

More information

MS-E2140. Lecture 1. (course book chapters )

MS-E2140. Lecture 1. (course book chapters ) Linear Programming MS-E2140 Motivations and background Lecture 1 (course book chapters 1.1-1.4) Linear programming problems and examples Problem manipulations and standard form Graphical representation

More information

IE 400 Principles of Engineering Management. Graphical Solution of 2-variable LP Problems

IE 400 Principles of Engineering Management. Graphical Solution of 2-variable LP Problems IE 400 Principles of Engineering Management Graphical Solution of 2-variable LP Problems Graphical Solution of 2-variable LP Problems Ex 1.a) max x 1 + 3 x 2 s.t. x 1 + x 2 6 - x 1 + 2x 2 8 x 1, x 2 0,

More information

END3033 Operations Research I Sensitivity Analysis & Duality. to accompany Operations Research: Applications and Algorithms Fatih Cavdur

END3033 Operations Research I Sensitivity Analysis & Duality. to accompany Operations Research: Applications and Algorithms Fatih Cavdur END3033 Operations Research I Sensitivity Analysis & Duality to accompany Operations Research: Applications and Algorithms Fatih Cavdur Introduction Consider the following problem where x 1 and x 2 corresponds

More information

Section 4.1 Solving Systems of Linear Inequalities

Section 4.1 Solving Systems of Linear Inequalities Section 4.1 Solving Systems of Linear Inequalities Question 1 How do you graph a linear inequality? Question 2 How do you graph a system of linear inequalities? Question 1 How do you graph a linear inequality?

More information

Linear Programming: Model Formulation and Graphical Solution

Linear Programming: Model Formulation and Graphical Solution Linear Programming: Model Formulation and Graphical Solution 1 Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions of Linear Programming Models A Minimization Model Example

More information

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize Metode Kuantitatif Bisnis Week 4 Linear Programming Simplex Method - Minimize Outlines Solve Linear Programming Model Using Graphic Solution Solve Linear Programming Model Using Simplex Method (Maximize)

More information

c) Place the Coefficients from all Equations into a Simplex Tableau, labeled above with variables indicating their respective columns

c) Place the Coefficients from all Equations into a Simplex Tableau, labeled above with variables indicating their respective columns BUILDING A SIMPLEX TABLEAU AND PROPER PIVOT SELECTION Maximize : 15x + 25y + 18 z s. t. 2x+ 3y+ 4z 60 4x+ 4y+ 2z 100 8x+ 5y 80 x 0, y 0, z 0 a) Build Equations out of each of the constraints above by introducing

More information

2.4 Graphing Inequalities

2.4 Graphing Inequalities .4 Graphing Inequalities Why We Need This Our applications will have associated limiting values - and either we will have to be at least as big as the value or no larger than the value. Why We Need This

More information

Chapter 2. Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall 2-1

Chapter 2. Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall 2-1 Linear Programming: Model Formulation and Graphical Solution Chapter 2 2-1 Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions of Linear Programming Models A Minimization

More information

The Simplex Algorithm and Goal Programming

The Simplex Algorithm and Goal Programming The Simplex Algorithm and Goal Programming In Chapter 3, we saw how to solve two-variable linear programming problems graphically. Unfortunately, most real-life LPs have many variables, so a method is

More information

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Module - 03 Simplex Algorithm Lecture 15 Infeasibility In this class, we

More information

Formulating and Solving a Linear Programming Model for Product- Mix Linear Problems with n Products

Formulating and Solving a Linear Programming Model for Product- Mix Linear Problems with n Products Formulating and Solving a Linear Programming Model for Product- Mix Linear Problems with n Products Berhe Zewde Aregawi Head, Quality Assurance of College of Natural and Computational Sciences Department

More information

Overview of course. Introduction to Optimization, DIKU Monday 12 November David Pisinger

Overview of course. Introduction to Optimization, DIKU Monday 12 November David Pisinger Introduction to Optimization, DIKU 007-08 Monday November David Pisinger Lecture What is OR, linear models, standard form, slack form, simplex repetition, graphical interpretation, extreme points, basic

More information

Solution Cases: 1. Unique Optimal Solution Reddy Mikks Example Diet Problem

Solution Cases: 1. Unique Optimal Solution Reddy Mikks Example Diet Problem Solution Cases: 1. Unique Optimal Solution 2. Alternative Optimal Solutions 3. Infeasible solution Case 4. Unbounded Solution Case 5. Degenerate Optimal Solution Case 1. Unique Optimal Solution Reddy Mikks

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 2 First Group of Students) Students with first letter of surnames A H Due: February 21, 2013 Problem Set Rules: 1. Each student

More information

Infinite solutions; these are equivalent equations.

Infinite solutions; these are equivalent equations. hapter 6 Test for Part Name: ate: 1 Solve the system by graphing. Where necessary, indicate when the system has no solution or infinitely many solutions. y = 2x 4 2y = 4x + 8 (0, 4); (0, 4); (6, 1); Infinite

More information

Chapter 02 Test. 1 Solve the equation for x. A 10 B 2.5 C 22 D Solve the equation for x. A 5 B 7 C 8 D 22

Chapter 02 Test. 1 Solve the equation for x. A 10 B 2.5 C 22 D Solve the equation for x. A 5 B 7 C 8 D 22 hapter 02 Test Name: ate: 1 Solve the equation for x. 10 2.5 22 5.5 2 Solve the equation for x. 5 7 8 22 3 Find the equation that represents the situation. Then solve. Two planes left St. Louis for Los

More information

The Graphical Method & Algebraic Technique for Solving LP s. Métodos Cuantitativos M. En C. Eduardo Bustos Farías 1

The Graphical Method & Algebraic Technique for Solving LP s. Métodos Cuantitativos M. En C. Eduardo Bustos Farías 1 The Graphical Method & Algebraic Technique for Solving LP s Métodos Cuantitativos M. En C. Eduardo Bustos Farías The Graphical Method for Solving LP s If LP models have only two variables, they can be

More information

Introduction. Very efficient solution procedure: simplex method.

Introduction. Very efficient solution procedure: simplex method. LINEAR PROGRAMMING Introduction Development of linear programming was among the most important scientific advances of mid 20th cent. Most common type of applications: allocate limited resources to competing

More information

UNIT-4 Chapter6 Linear Programming

UNIT-4 Chapter6 Linear Programming UNIT-4 Chapter6 Linear Programming Linear Programming 6.1 Introduction Operations Research is a scientific approach to problem solving for executive management. It came into existence in England during

More information

Chap6 Duality Theory and Sensitivity Analysis

Chap6 Duality Theory and Sensitivity Analysis Chap6 Duality Theory and Sensitivity Analysis The rationale of duality theory Max 4x 1 + x 2 + 5x 3 + 3x 4 S.T. x 1 x 2 x 3 + 3x 4 1 5x 1 + x 2 + 3x 3 + 8x 4 55 x 1 + 2x 2 + 3x 3 5x 4 3 x 1 ~x 4 0 If we

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

Dr. S. Bourazza Math-473 Jazan University Department of Mathematics

Dr. S. Bourazza Math-473 Jazan University Department of Mathematics Dr. Said Bourazza Department of Mathematics Jazan University 1 P a g e Contents: Chapter 0: Modelization 3 Chapter1: Graphical Methods 7 Chapter2: Simplex method 13 Chapter3: Duality 36 Chapter4: Transportation

More information

An Introduction to Linear Programming

An Introduction to Linear Programming An Introduction to Linear Programming Linear Programming Problem Problem Formulation A Maximization Problem Graphical Solution Procedure Extreme Points and the Optimal Solution Computer Solutions A Minimization

More information

Chapter 4 The Simplex Algorithm Part I

Chapter 4 The Simplex Algorithm Part I Chapter 4 The Simplex Algorithm Part I Based on Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan Lewis Ntaimo 1 Modeling

More information

Linear Programming. H. R. Alvarez A., Ph. D. 1

Linear Programming. H. R. Alvarez A., Ph. D. 1 Linear Programming H. R. Alvarez A., Ph. D. 1 Introduction It is a mathematical technique that allows the selection of the best course of action defining a program of feasible actions. The objective of

More information

Theory of Linear Programming

Theory of Linear Programming SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BF360 Operations Research Unit Two Theory of Linear Programming Moses Mwale e-mail: moses.mwale@ictar.ac.zm BF360 Operations Research Contents Unit 2: Theory

More information

Linear Programming Test Review. Day 6

Linear Programming Test Review. Day 6 Linear Programming Test Review Day 6 Warm-Up: Test Review Practice A machine can produce either nuts or bolts, but not both at the same time. The machine can be used at most 8 hours a day. Furthermore,

More information

Spring 2018 IE 102. Operations Research and Mathematical Programming Part 2

Spring 2018 IE 102. Operations Research and Mathematical Programming Part 2 Spring 2018 IE 102 Operations Research and Mathematical Programming Part 2 Graphical Solution of 2-variable LP Problems Consider an example max x 1 + 3 x 2 s.t. x 1 + x 2 6 (1) - x 1 + 2x 2 8 (2) x 1,

More information

Chapter 1 Linear Equations and Graphs

Chapter 1 Linear Equations and Graphs Chapter 1 Linear Equations and Graphs Section R Linear Equations and Inequalities Important Terms, Symbols, Concepts 1.1. Linear Equations and Inequalities A first degree, or linear, equation in one variable

More information

ENM 202 OPERATIONS RESEARCH (I) OR (I) 2 LECTURE NOTES. Solution Cases:

ENM 202 OPERATIONS RESEARCH (I) OR (I) 2 LECTURE NOTES. Solution Cases: ENM 202 OPERATIONS RESEARCH (I) OR (I) 2 LECTURE NOTES Solution Cases: 1. Unique Optimal Solution Case 2. Alternative Optimal Solution Case 3. Infeasible Solution Case 4. Unbounded Solution Case 5. Degenerate

More information

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker 56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker Answer all of Part One and two (of the four) problems of Part Two Problem: 1 2 3 4 5 6 7 8 TOTAL Possible: 16 12 20 10

More information

2001 Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa. Reducing dimensionality of DP page 1

2001 Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa. Reducing dimensionality of DP page 1 2001 Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa Reducing dimensionality of DP page 1 Consider a knapsack with a weight capacity of 15 and a volume capacity of 12. Item # Value

More information

Demo 1: Solving LP problem graphically and with Excel Solver

Demo 1: Solving LP problem graphically and with Excel Solver MS-C2105 Introduction to Optimization Solutions 2 Ehtamo Demo 1: Solving LP problem graphically and with Excel Solver Solve the linear optimization problem graphically and with Excel Solver. a) max 8 +

More information

36106 Managerial Decision Modeling Linear Decision Models: Part II

36106 Managerial Decision Modeling Linear Decision Models: Part II 1 36106 Managerial Decision Modeling Linear Decision Models: Part II Kipp Martin University of Chicago Booth School of Business January 20, 2014 Reading and Excel Files Reading (Powell and Baker): Sections

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG630, The simplex method; degeneracy; unbounded solutions; infeasibility; starting solutions; duality; interpretation Ann-Brith Strömberg 2012 03 16 Summary of the simplex method Optimality condition:

More information

Week 3: Simplex Method I

Week 3: Simplex Method I Week 3: Simplex Method I 1 1. Introduction The simplex method computations are particularly tedious and repetitive. It attempts to move from one corner point of the solution space to a better corner point

More information

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming Distributed Real-Time Control Systems Lecture 13-14 Distributed Control Linear Programming 1 Linear Programs Optimize a linear function subject to a set of linear (affine) constraints. Many problems can

More information

Introduction to the Simplex Algorithm Active Learning Module 3

Introduction to the Simplex Algorithm Active Learning Module 3 Introduction to the Simplex Algorithm Active Learning Module 3 J. René Villalobos and Gary L. Hogg Arizona State University Paul M. Griffin Georgia Institute of Technology Background Material Almost any

More information

6.6 General Form of the Equation for a Linear Relation

6.6 General Form of the Equation for a Linear Relation 6.6 General Form of the Equation for a Linear Relation FOCUS Relate the graph of a line to its equation in general form. We can write an equation in different forms. y 0 6 5 y 10 = 0 An equation for this

More information

Modern Logistics & Supply Chain Management

Modern Logistics & Supply Chain Management Modern Logistics & Supply Chain Management As gold which he cannot spend will make no man rich, so knowledge which he cannot apply will make no man wise. Samuel Johnson: The Idler No. 84 Production Mix

More information

Math 3 Variable Manipulation Part 7 Absolute Value & Inequalities

Math 3 Variable Manipulation Part 7 Absolute Value & Inequalities Math 3 Variable Manipulation Part 7 Absolute Value & Inequalities 1 MATH 1 REVIEW SOLVING AN ABSOLUTE VALUE EQUATION Absolute value is a measure of distance; how far a number is from zero. In practice,

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 7: Duality and applications Prof. John Gunnar Carlsson September 29, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, 2010 1

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION MATHEMATICAL ECONOMICS COMPLEMENTARY COURSE B.Sc. Mathematics II SEMESTER UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION Calicut University P. O. Malappuram, Kerala, India 67 65 40 UNIVERSITY OF CALICUT

More information

MULTIPLE CHOICE QUESTIONS DECISION SCIENCE

MULTIPLE CHOICE QUESTIONS DECISION SCIENCE MULTIPLE CHOICE QUESTIONS DECISION SCIENCE 1. Decision Science approach is a. Multi-disciplinary b. Scientific c. Intuitive 2. For analyzing a problem, decision-makers should study a. Its qualitative aspects

More information

Operations Research Graphical Solution. Dr. Özgür Kabak

Operations Research Graphical Solution. Dr. Özgür Kabak Operations Research Graphical Solution Dr. Özgür Kabak Solving LPs } The Graphical Solution } The Simplex Algorithm } Using Software 2 LP Solutions: Four Cases } The LP has a unique optimal solution. }

More information

...(iii), x 2 Example 7: Geetha Perfume Company produces both perfumes and body spray from two flower extracts F 1. The following data is provided:

...(iii), x 2 Example 7: Geetha Perfume Company produces both perfumes and body spray from two flower extracts F 1. The following data is provided: The LP formulation is Linear Programming: Graphical Method Maximize, Z = 2x + 7x 2 Subject to constraints, 2x + x 2 200...(i) x 75...(ii) x 2 00...(iii) where x, x 2 ³ 0 Example 7: Geetha Perfume Company

More information

56:270 Final Exam - May

56:270  Final Exam - May @ @ 56:270 Linear Programming @ @ Final Exam - May 4, 1989 @ @ @ @ @ @ @ @ @ @ @ @ @ @ Select any 7 of the 9 problems below: (1.) ANALYSIS OF MPSX OUTPUT: Please refer to the attached materials on the

More information

Linear Programming Test Review. Day 6

Linear Programming Test Review. Day 6 Linear Programming Test Review Day 6 Arrival Instructions Take out: Your homework, calculator, and the unit outline Pick up: 1. Warm-Up Test Review Day 2. Test Review HW Sheet A sponge Yes, it is different

More information

Graphical Solutions of Linear Systems

Graphical Solutions of Linear Systems Graphical Solutions of Linear Systems Consistent System (At least one solution) Inconsistent System (No Solution) Independent (One solution) Dependent (Infinite many solutions) Parallel Lines Equations

More information

OPERATIONS RESEARCH. Michał Kulej. Business Information Systems

OPERATIONS RESEARCH. Michał Kulej. Business Information Systems OPERATIONS RESEARCH Michał Kulej Business Information Systems The development of the potential and academic programmes of Wrocław University of Technology Project co-financed by European Union within European

More information

MAT016: Optimization

MAT016: Optimization MAT016: Optimization M.El Ghami e-mail: melghami@ii.uib.no URL: http://www.ii.uib.no/ melghami/ March 29, 2011 Outline for today The Simplex method in matrix notation Managing a production facility The

More information

Water Resources Systems: Modeling Techniques and Analysis

Water Resources Systems: Modeling Techniques and Analysis INDIAN INSTITUTE OF SCIENCE Water Resources Systems: Modeling Techniques and Analysis Lecture - 9 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture

More information

Linear Programming II NOT EXAMINED

Linear Programming II NOT EXAMINED Chapter 9 Linear Programming II NOT EXAMINED 9.1 Graphical solutions for two variable problems In last week s lecture we discussed how to formulate a linear programming problem; this week, we consider

More information

3 Write an equation in point-slope form of the line through the given point and with the given slope. (2, 5); m = 0

3 Write an equation in point-slope form of the line through the given point and with the given slope. (2, 5); m = 0 Name: ate: 1 Write an equation in slope-intercept form of the line. y = x 3 y = 3 y = 3x + 1 y = x + 3 2 Write an equation in slope-intercept form of the line. y = 7x y = 2x + 7 y = 2x 7 y = 7x + 2 3 Write

More information

Tutorial letter 201/2/2018

Tutorial letter 201/2/2018 DSC1520/201/2/2018 Tutorial letter 201/2/2018 Quantitative Modelling 1 DSC1520 Semester 2 Department of Decision Sciences Solutions to Assignment 1 Bar code Dear Student This tutorial letter contains the

More information

PROJECT MANAGEMENT CHAPTER 1

PROJECT MANAGEMENT CHAPTER 1 PROJECT MANAGEMENT CHAPTER 1 Project management is the process and activity of planning, organizing, motivating, and controlling resources, procedures and protocols to achieve specific goals in scientific

More information

Review Questions, Final Exam

Review Questions, Final Exam Review Questions, Final Exam A few general questions 1. What does the Representation Theorem say (in linear programming)? 2. What is the Fundamental Theorem of Linear Programming? 3. What is the main idea

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG631,Linear and integer optimization with applications The simplex method: degeneracy; unbounded solutions; starting solutions; infeasibility; alternative optimal solutions Ann-Brith Strömberg

More information

Graph the linear inequality. 1) x + 2y 6

Graph the linear inequality. 1) x + 2y 6 Assignment 7.1-7.3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Graph the linear inequality. 1) x + 2y 6 1) 1 2) x + y < -3 2) 2 Graph the

More information

Fundamentals of Operations Research. Prof. G. Srinivasan. Indian Institute of Technology Madras. Lecture No. # 15

Fundamentals of Operations Research. Prof. G. Srinivasan. Indian Institute of Technology Madras. Lecture No. # 15 Fundamentals of Operations Research Prof. G. Srinivasan Indian Institute of Technology Madras Lecture No. # 15 Transportation Problem - Other Issues Assignment Problem - Introduction In the last lecture

More information

IV. Violations of Linear Programming Assumptions

IV. Violations of Linear Programming Assumptions IV. Violations of Linear Programming Assumptions Some types of Mathematical Programming problems violate at least one condition of strict Linearity - Deterministic Nature - Additivity - Direct Proportionality

More information

Concept and Definition. Characteristics of OR (Features) Phases of OR

Concept and Definition. Characteristics of OR (Features) Phases of OR Concept and Definition Operations research signifies research on operations. It is the organized application of modern science, mathematics and computer techniques to complex military, government, business

More information

Ch.03 Solving LP Models. Management Science / Prof. Bonghyun Ahn

Ch.03 Solving LP Models. Management Science / Prof. Bonghyun Ahn Ch.03 Solving LP Models Management Science / Prof. Bonghyun Ahn Chapter Topics Computer Solution Sensitivity Analysis 2 Computer Solution Early linear programming used lengthy manual mathematical solution

More information

Sensitivity Analysis and Duality in LP

Sensitivity Analysis and Duality in LP Sensitivity Analysis and Duality in LP Xiaoxi Li EMS & IAS, Wuhan University Oct. 13th, 2016 (week vi) Operations Research (Li, X.) Sensitivity Analysis and Duality in LP Oct. 13th, 2016 (week vi) 1 /

More information

3. Duality: What is duality? Why does it matter? Sensitivity through duality.

3. Duality: What is duality? Why does it matter? Sensitivity through duality. 1 Overview of lecture (10/5/10) 1. Review Simplex Method 2. Sensitivity Analysis: How does solution change as parameters change? How much is the optimal solution effected by changing A, b, or c? How much

More information

CO 250 Final Exam Guide

CO 250 Final Exam Guide Spring 2017 CO 250 Final Exam Guide TABLE OF CONTENTS richardwu.ca CO 250 Final Exam Guide Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4,

More information

Operations Research: Introduction. Concept of a Model

Operations Research: Introduction. Concept of a Model Origin and Development Features Operations Research: Introduction Term or coined in 1940 by Meclosky & Trefthan in U.K. came into existence during World War II for military projects for solving strategic

More information

In Chapters 3 and 4 we introduced linear programming

In Chapters 3 and 4 we introduced linear programming SUPPLEMENT The Simplex Method CD3 In Chapters 3 and 4 we introduced linear programming and showed how models with two variables can be solved graphically. We relied on computer programs (WINQSB, Excel,

More information

Part 1. The Review of Linear Programming Introduction

Part 1. The Review of Linear Programming Introduction In the name of God Part 1. The Review of Linear Programming 1.1. Spring 2010 Instructor: Dr. Masoud Yaghini Outline The Linear Programming Problem Geometric Solution References The Linear Programming Problem

More information

Introduction to linear programming

Introduction to linear programming Chapter 2 Introduction to linear programming 2.1 Single-objective optimization problem We study problems of the following form: Given a set S and a function f : S R, find, if possible, an element x S that

More information

Another max flow application: baseball

Another max flow application: baseball CS124 Lecture 16 Spring 2018 Another max flow application: baseball Suppose there are n baseball teams, and team 1 is our favorite. It is the middle of baseball season, and some games have been played

More information

Graphing Linear Inequalities

Graphing Linear Inequalities Graphing Linear Inequalities Linear Inequalities in Two Variables: A linear inequality in two variables is an inequality that can be written in the general form Ax + By < C, where A, B, and C are real

More information

Algebraic Simplex Active Learning Module 4

Algebraic Simplex Active Learning Module 4 Algebraic Simplex Active Learning Module 4 J. René Villalobos and Gary L. Hogg Arizona State University Paul M. Griffin Georgia Institute of Technology Time required for the module: 50 Min. Reading Most

More information

Solutions to Review Questions, Exam 1

Solutions to Review Questions, Exam 1 Solutions to Review Questions, Exam. What are the four possible outcomes when solving a linear program? Hint: The first is that there is a unique solution to the LP. SOLUTION: No solution - The feasible

More information

3E4: Modelling Choice

3E4: Modelling Choice 3E4: Modelling Choice Lecture 6 Goal Programming Multiple Objective Optimisation Portfolio Optimisation Announcements Supervision 2 To be held by the end of next week Present your solutions to all Lecture

More information

Sensitivity Analysis and Duality

Sensitivity Analysis and Duality Sensitivity Analysis and Duality Part II Duality Based on Chapter 6 Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan

More information

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control 19/4/2012 Lecture content Problem formulation and sample examples (ch 13.1) Theoretical background Graphical

More information

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta Chapter 4 Linear Programming: The Simplex Method An Overview of the Simplex Method Standard Form Tableau Form Setting Up the Initial Simplex Tableau Improving the Solution Calculating the Next Tableau

More information

Section 7.1 Objective 1: Solve Quadratic Equations Using the Square Root Property Video Length 12:12

Section 7.1 Objective 1: Solve Quadratic Equations Using the Square Root Property Video Length 12:12 Section 7.1 Video Guide Solving Quadratic Equations by Completing the Square Objectives: 1. Solve Quadratic Equations Using the Square Root Property. Complete the Square in One Variable 3. Solve Quadratic

More information

Optimisation. 3/10/2010 Tibor Illés Optimisation

Optimisation. 3/10/2010 Tibor Illés Optimisation Optimisation Lectures 3 & 4: Linear Programming Problem Formulation Different forms of problems, elements of the simplex algorithm and sensitivity analysis Lecturer: Tibor Illés tibor.illes@strath.ac.uk

More information

9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS

9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS SECTION 9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS 557 9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS In Sections 9. and 9., you looked at linear programming problems that occurred in standard form. The constraints

More information

Today s class. Constrained optimization Linear programming. Prof. Jinbo Bi CSE, UConn. Numerical Methods, Fall 2011 Lecture 12

Today s class. Constrained optimization Linear programming. Prof. Jinbo Bi CSE, UConn. Numerical Methods, Fall 2011 Lecture 12 Today s class Constrained optimization Linear programming 1 Midterm Exam 1 Count: 26 Average: 73.2 Median: 72.5 Maximum: 100.0 Minimum: 45.0 Standard Deviation: 17.13 Numerical Methods Fall 2011 2 Optimization

More information