IE 5531: Engineering Optimization I

Size: px
Start display at page:

Download "IE 5531: Engineering Optimization I"

Transcription

1 IE 5531: Engineering Optimization I Lecture 7: Duality and applications Prof. John Gunnar Carlsson September 29, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

2 Administrivia PS 2 posted this evening Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

3 Recap Any linear program minimize c T x s.t. Ax = b x 0 has a dual of the form maximize b T y s.t. A T y c If both problems are feasible, we have c T x b T y for all feasible x and y At optimality, we have c T x = b T y The dual of the dual is the primal Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

4 Duality relationships Primal minimize c T x maximize b T y Dual A A T b i 0 constraints b i 0 variables = b i free 0 c j variables 0 c j constraints free = c j Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

5 Today Weak & strong duality Duality examples Complementary slackness Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

6 Weak duality The weak duality theorem says that if x is a feasible point for the primal (minimization) problem and y is a feasible point for the dual (maximization) problem, then we have b T y c T x If optimal solutions exist for both problems, the strong duality theorem says that b T y = c T x Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

7 Proof of weak duality Let x and y be feasible primal-dual pairs for a standard-form LP, so that Ax = b; x 0; A T y c We nd that b T y = x T A T y c T x since x 0 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

8 Proof of strong duality Suppose that x is an optimal solution to a standard-form LP that we found via the simplex method, let B denote the basic indices at x, and let N denote the non-basic indices Let x B = A 1 B b and x N = 0 Recall the denition of the reduced cost vector r in the simplex method (the top row): r = c A ( ) T A 1 T B c B When the simplex method terminates, the reduced cost vector must be nonnegative, thus ) T c B 0 c A ( T A 1 B }{{} y Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

9 Proof of strong duality Dene y by setting y = ( ) A 1 T B c B as in the preceding; clearly we have and thus y is dual feasible Finally, note that b T y = b T ( A 1 B which completes the proof c A T y ) T c B = ( ) A 1 T b c B = c T B x = B ct x y must be optimal for the dual problem, by weak duality B Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

10 Unboundedness Note that if one of the problems is unbounded, then the other must be infeasible Suppose that c T x is unbounded below in a standard-form LP; weak duality says that for all x and y b T y c T x Suppose that y is feasible in the dual; we can choose x to make c T x arbitrarily small and thus b T y, a contradiction Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

11 Infeasibility On the other hand, it is not true that if one problem is infeasible, the other must be unbounded The following primal-dual pairs are both infeasible: with dual minimize x 1 + 2x 2 x 1 + x 2 = 1 2x 1 + 2x 2 = 3 maximize y 1 + 3y 2 y 1 + 2y 2 = 1 y 1 + 2y 2 = 2 s.t. s.t. Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

12 Feasibility and boundedness An obvious corollary: if the primal problem is infeasible and the dual problem has a feasible point, then it must be unbounded A less obvious corollary: unless both problems are infeasible, at least one of them must have an unbounded feasible set The following relationships between primal and dual LPs are possible: Primal Finite optimum Unbounded Infeasible Finite optimum Possible X X Dual Unbounded X X Possible Infeasible X Possible Possible Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

13 Duality example Consider a transportation problem: We have m warehouses, each containing an amount a i of a product We have n stores that need to receive an amount b j of that product It costs c ij to transport one unit of the product from warehouse i to store j How can we minimize our costs while satisfying all stores' demands? Assume that m i=1 a i = n j=1 b j (total supply equals total demand) Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

14 Duality example The LP formulation is minimize m n c ij x ij s.t. i=1 j=1 m x ij = a i i j=1 n x ij = b j j i=1 x ij 0 i, j Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

15 Duality example The dual of the transportation problem is maximize m n a i u i + b j v j s.t. i=1 j=1 u i + v j c ij i, j Remember: ai is the amount of the product available at warehouse i bj is the amount of the product required at store j cij is the transportation cost from i to j Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

16 Duality example Since there is no sign constraint, we can set u i u i (for interpretation purposes): n m maximize b j v j a i u i s.t. j=1 i=1 v j u i c ij i, j Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

17 Duality example Since there is no sign constraint, we can set u i u i (for interpretation purposes): n m maximize b j v j a i u i s.t. j=1 i=1 v j u i c ij i, j Interpretation: think of the u i 's and v j 's as prices Specically, think of a new logistics company that wants to ship these products The company will buy the goods at each warehouse at a price u i and sell them back to the warehouses at a price v j In order to be competitive with the original company's transportation modes, the new company must have v j u i c ij i, j (otherwise the original transportation company won't use them) Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

18 Maximum ow Recall from earlier the maximum ow problem: Given a directed, weighted graph G = (V, E, W ) and a pair of nodes s and t Think of the edge weights w ij as the capacity of that edge What's the largest amount of ow we can send from s to t, subject to the capacity constraints? Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

19 Maximum ow In lecture 1 we derived an LP formulation: let x ij denote the amount of ow across edge (i, j); the problem is maximize (s,i) E (i,j) E x si s.t. x ij w ij (i, j) E x ij = x ji i s, t (j,i) E x ij 0 (i, j) E Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

20 Maximum ow The dual of the maximum ow problem is minimize w ij z ij s.t. (i,j) E z ij = y i y j (i, j) E y s y t = 1 z ij 0 (i, j) E (see B&T 7.5 for derivation) Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

21 Maximum ow The dual of the maximum ow problem is minimize w ij z ij s.t. (i,j) E (see B&T 7.5 for derivation) z ij = y i y j (i, j) E y s y t = 1 z ij 0 (i, j) E We're assigning values y i to the nodes, and incurring costs y i y j for all (i, j) E We can assume WLOG that y s = 1 and y t = 0 It is not hard to show that, in fact, y i {0, 1} for all i Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

22 Min cut The preceding problem is equivalent to nding a subset S of vertices, such that s S, that minimizes the cut length of S, i.e. i S:j / S w ij Thus, strong duality says that the maximum ow we can push through the network is equal to the smallest cut size of any subset S of vertices Corollary: if the value of a ow is equal to the value of some cut, then both are optimal Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

23 Max-ow min-cut theorem Input graph Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

24 Max-ow min-cut theorem Maximum ow Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

25 Max-ow min-cut theorem Minimum cut Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

26 Complementary slackness Consider a standard-form linear program and let A i denote column i of A We know that any constraint in the primal corresponds to a variable in the dual, and vice versa An important relationship between optimal primal and dual solutions is known as complementary slackness, or complementarity: Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

27 Complementary slackness Theorem Let x and y be feasible solutions to the primal and dual problem, respectively. The vectors x and y are optimal solutions for the two respective problems if and only if x i > 0 = A T i y = c i A T i y < c i = x i = 0 in other words, x i (A T i y c i ) = 0 i Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

28 Proof of complementary slackness Suppose that A T i x i > 0 = A T i y = c i y < c i = x i = 0 as in the theorem; then certainly ( A T y c) T x = = = 0 (y T A c T ) n i=1 x (y T A i c i ) x i Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

29 Proof of complementary slackness Since ( y T A c T ) x = 0, we know that 0 = (y T A c T ) = y T Ax c T x = y T b c T x c T x = b T y x which completes one direction of the proof by weak duality. Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

30 Proof of complementary slackness To prove the other direction, suppose that x and y are optimal, so that c T x = b T y (strong duality) We can write c T x b T y = 0 c T x (Ax) T y = 0 c T x y T Ax = 0 ( ) c T y T A x = 0 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

31 Proof of complementary slackness We can rewrite the equation ( ) c T y T A x = 0 as a summation: n i=1 Since x and y are feasible, we have so ( c i y T A i ) xi for all i (c i y T A i ) x i = 0 c i y T A i 0 i x i 0 i Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

32 Non-standard form LPs Complementarity holds for LPs that are not in standard form as well Let a T j denote the jth row of A and let A i denote the ith column of A A primal-dual pair x, y is optimal if and only if ) y j (a T j x b j = 0 j {1,..., m} ) (c i y T A i x i = 0 i {1,..., n} where A R m n In other words: take each variable, multiply it by its associated constraint; the product must be 0 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, / 30

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 1 In this section we lean about duality, which is another way to approach linear programming. In particular, we will see: How to define

More information

Linear Programming Duality

Linear Programming Duality Summer 2011 Optimization I Lecture 8 1 Duality recap Linear Programming Duality We motivated the dual of a linear program by thinking about the best possible lower bound on the optimal value we can achieve

More information

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2)

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2) Note 3: LP Duality If the primal problem (P) in the canonical form is min Z = n j=1 c j x j s.t. nj=1 a ij x j b i i = 1, 2,..., m (1) x j 0 j = 1, 2,..., n, then the dual problem (D) in the canonical

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 5: The Simplex method, continued Prof. John Gunnar Carlsson September 22, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, 2010

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP Different spaces and objective functions but in general same optimal

More information

Lecture 10: Linear programming. duality. and. The dual of the LP in standard form. maximize w = b T y (D) subject to A T y c, minimize z = c T x (P)

Lecture 10: Linear programming. duality. and. The dual of the LP in standard form. maximize w = b T y (D) subject to A T y c, minimize z = c T x (P) Lecture 10: Linear programming duality Michael Patriksson 19 February 2004 0-0 The dual of the LP in standard form minimize z = c T x (P) subject to Ax = b, x 0 n, and maximize w = b T y (D) subject to

More information

Algorithms and Theory of Computation. Lecture 13: Linear Programming (2)

Algorithms and Theory of Computation. Lecture 13: Linear Programming (2) Algorithms and Theory of Computation Lecture 13: Linear Programming (2) Xiaohui Bei MAS 714 September 25, 2018 Nanyang Technological University MAS 714 September 25, 2018 1 / 15 LP Duality Primal problem

More information

Discrete Optimization

Discrete Optimization Prof. Friedrich Eisenbrand Martin Niemeier Due Date: April 15, 2010 Discussions: March 25, April 01 Discrete Optimization Spring 2010 s 3 You can hand in written solutions for up to two of the exercises

More information

F 1 F 2 Daily Requirement Cost N N N

F 1 F 2 Daily Requirement Cost N N N Chapter 5 DUALITY 5. The Dual Problems Every linear programming problem has associated with it another linear programming problem and that the two problems have such a close relationship that whenever

More information

Optimisation and Operations Research

Optimisation and Operations Research Optimisation and Operations Research Lecture 9: Duality and Complementary Slackness Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/OORII/

More information

Lecture 5. x 1,x 2,x 3 0 (1)

Lecture 5. x 1,x 2,x 3 0 (1) Computational Intractability Revised 2011/6/6 Lecture 5 Professor: David Avis Scribe:Ma Jiangbo, Atsuki Nagao 1 Duality The purpose of this lecture is to introduce duality, which is an important concept

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG630, The simplex method; degeneracy; unbounded solutions; infeasibility; starting solutions; duality; interpretation Ann-Brith Strömberg 2012 03 16 Summary of the simplex method Optimality condition:

More information

II. Analysis of Linear Programming Solutions

II. Analysis of Linear Programming Solutions Optimization Methods Draft of August 26, 2005 II. Analysis of Linear Programming Solutions Robert Fourer Department of Industrial Engineering and Management Sciences Northwestern University Evanston, Illinois

More information

Linear Programming Inverse Projection Theory Chapter 3

Linear Programming Inverse Projection Theory Chapter 3 1 Linear Programming Inverse Projection Theory Chapter 3 University of Chicago Booth School of Business Kipp Martin September 26, 2017 2 Where We Are Headed We want to solve problems with special structure!

More information

Sensitivity Analysis and Duality

Sensitivity Analysis and Duality Sensitivity Analysis and Duality Part II Duality Based on Chapter 6 Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan

More information

Lectures 6, 7 and part of 8

Lectures 6, 7 and part of 8 Lectures 6, 7 and part of 8 Uriel Feige April 26, May 3, May 10, 2015 1 Linear programming duality 1.1 The diet problem revisited Recall the diet problem from Lecture 1. There are n foods, m nutrients,

More information

Sensitivity Analysis and Duality in LP

Sensitivity Analysis and Duality in LP Sensitivity Analysis and Duality in LP Xiaoxi Li EMS & IAS, Wuhan University Oct. 13th, 2016 (week vi) Operations Research (Li, X.) Sensitivity Analysis and Duality in LP Oct. 13th, 2016 (week vi) 1 /

More information

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. Problem 1 Consider

More information

Chapter 1 Linear Programming. Paragraph 5 Duality

Chapter 1 Linear Programming. Paragraph 5 Duality Chapter 1 Linear Programming Paragraph 5 Duality What we did so far We developed the 2-Phase Simplex Algorithm: Hop (reasonably) from basic solution (bs) to bs until you find a basic feasible solution

More information

Example Problem. Linear Program (standard form) CSCI5654 (Linear Programming, Fall 2013) Lecture-7. Duality

Example Problem. Linear Program (standard form) CSCI5654 (Linear Programming, Fall 2013) Lecture-7. Duality CSCI5654 (Linear Programming, Fall 013) Lecture-7 Duality Lecture 7 Slide# 1 Lecture 7 Slide# Linear Program (standard form) Example Problem maximize c 1 x 1 + + c n x n s.t. a j1 x 1 + + a jn x n b j

More information

Farkas Lemma, Dual Simplex and Sensitivity Analysis

Farkas Lemma, Dual Simplex and Sensitivity Analysis Summer 2011 Optimization I Lecture 10 Farkas Lemma, Dual Simplex and Sensitivity Analysis 1 Farkas Lemma Theorem 1. Let A R m n, b R m. Then exactly one of the following two alternatives is true: (i) x

More information

Lecture 10: Linear programming duality and sensitivity 0-0

Lecture 10: Linear programming duality and sensitivity 0-0 Lecture 10: Linear programming duality and sensitivity 0-0 The canonical primal dual pair 1 A R m n, b R m, and c R n maximize z = c T x (1) subject to Ax b, x 0 n and minimize w = b T y (2) subject to

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis

MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis Ann-Brith Strömberg 2017 03 29 Lecture 4 Linear and integer optimization with

More information

CSCI5654 (Linear Programming, Fall 2013) Lecture-8. Lecture 8 Slide# 1

CSCI5654 (Linear Programming, Fall 2013) Lecture-8. Lecture 8 Slide# 1 CSCI5654 (Linear Programming, Fall 2013) Lecture-8 Lecture 8 Slide# 1 Today s Lecture 1. Recap of dual variables and strong duality. 2. Complementary Slackness Theorem. 3. Interpretation of dual variables.

More information

Duality in LPP Every LPP called the primal is associated with another LPP called dual. Either of the problems is primal with the other one as dual. The optimal solution of either problem reveals the information

More information

Linear and Combinatorial Optimization

Linear and Combinatorial Optimization Linear and Combinatorial Optimization The dual of an LP-problem. Connections between primal and dual. Duality theorems and complementary slack. Philipp Birken (Ctr. for the Math. Sc.) Lecture 3: Duality

More information

Lecture 11: Post-Optimal Analysis. September 23, 2009

Lecture 11: Post-Optimal Analysis. September 23, 2009 Lecture : Post-Optimal Analysis September 23, 2009 Today Lecture Dual-Simplex Algorithm Post-Optimal Analysis Chapters 4.4 and 4.5. IE 30/GE 330 Lecture Dual Simplex Method The dual simplex method will

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Formulation of the Dual Problem Primal-Dual Relationship Economic Interpretation

More information

Chap6 Duality Theory and Sensitivity Analysis

Chap6 Duality Theory and Sensitivity Analysis Chap6 Duality Theory and Sensitivity Analysis The rationale of duality theory Max 4x 1 + x 2 + 5x 3 + 3x 4 S.T. x 1 x 2 x 3 + 3x 4 1 5x 1 + x 2 + 3x 3 + 8x 4 55 x 1 + 2x 2 + 3x 3 5x 4 3 x 1 ~x 4 0 If we

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 3: Linear Programming, Continued Prof. John Gunnar Carlsson September 15, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 15, 2010

More information

Duality Theory, Optimality Conditions

Duality Theory, Optimality Conditions 5.1 Duality Theory, Optimality Conditions Katta G. Murty, IOE 510, LP, U. Of Michigan, Ann Arbor We only consider single objective LPs here. Concept of duality not defined for multiobjective LPs. Every

More information

ECE 307- Techniques for Engineering Decisions

ECE 307- Techniques for Engineering Decisions ECE 307- Techniques for Engineering Decisions Lecture 4. Dualit Concepts in Linear Programming George Gross Department of Electrical and Computer Engineering Universit of Illinois at Urbana-Champaign DUALITY

More information

Review Solutions, Exam 2, Operations Research

Review Solutions, Exam 2, Operations Research Review Solutions, Exam 2, Operations Research 1. Prove the weak duality theorem: For any x feasible for the primal and y feasible for the dual, then... HINT: Consider the quantity y T Ax. SOLUTION: To

More information

Introduction to Mathematical Programming

Introduction to Mathematical Programming Introduction to Mathematical Programming Ming Zhong Lecture 22 October 22, 2018 Ming Zhong (JHU) AMS Fall 2018 1 / 16 Table of Contents 1 The Simplex Method, Part II Ming Zhong (JHU) AMS Fall 2018 2 /

More information

MAT016: Optimization

MAT016: Optimization MAT016: Optimization M.El Ghami e-mail: melghami@ii.uib.no URL: http://www.ii.uib.no/ melghami/ March 29, 2011 Outline for today The Simplex method in matrix notation Managing a production facility The

More information

BBM402-Lecture 20: LP Duality

BBM402-Lecture 20: LP Duality BBM402-Lecture 20: LP Duality Lecturer: Lale Özkahya Resources for the presentation: https://courses.engr.illinois.edu/cs473/fa2016/lectures.html An easy LP? which is compact form for max cx subject to

More information

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis:

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Sensitivity analysis The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Changing the coefficient of a nonbasic variable

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 19: Midterm 2 Review Prof. John Gunnar Carlsson November 22, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 22, 2010 1 / 34 Administrivia

More information

CS261: A Second Course in Algorithms Lecture #9: Linear Programming Duality (Part 2)

CS261: A Second Course in Algorithms Lecture #9: Linear Programming Duality (Part 2) CS261: A Second Course in Algorithms Lecture #9: Linear Programming Duality (Part 2) Tim Roughgarden February 2, 2016 1 Recap This is our third lecture on linear programming, and the second on linear programming

More information

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra LP Duality: outline I Motivation and definition of a dual LP I Weak duality I Separating hyperplane theorem and theorems of the alternatives I Strong duality and complementary slackness I Using duality

More information

Linear Programming: Chapter 5 Duality

Linear Programming: Chapter 5 Duality Linear Programming: Chapter 5 Duality Robert J. Vanderbei September 30, 2010 Slides last edited on October 5, 2010 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544

More information

4. Duality and Sensitivity

4. Duality and Sensitivity 4. Duality and Sensitivity For every instance of an LP, there is an associated LP known as the dual problem. The original problem is known as the primal problem. There are two de nitions of the dual pair

More information

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. Midterm Review Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapter 1-4, Appendices) 1 Separating hyperplane

More information

Spring 2017 CO 250 Course Notes TABLE OF CONTENTS. richardwu.ca. CO 250 Course Notes. Introduction to Optimization

Spring 2017 CO 250 Course Notes TABLE OF CONTENTS. richardwu.ca. CO 250 Course Notes. Introduction to Optimization Spring 2017 CO 250 Course Notes TABLE OF CONTENTS richardwu.ca CO 250 Course Notes Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4, 2018 Table

More information

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 1 Simplex solves LP by starting at a Basic Feasible Solution (BFS) and moving from BFS to BFS, always improving the objective function,

More information

The Simplex Algorithm

The Simplex Algorithm 8.433 Combinatorial Optimization The Simplex Algorithm October 6, 8 Lecturer: Santosh Vempala We proved the following: Lemma (Farkas). Let A R m n, b R m. Exactly one of the following conditions is true:.

More information

Review Questions, Final Exam

Review Questions, Final Exam Review Questions, Final Exam A few general questions 1. What does the Representation Theorem say (in linear programming)? 2. What is the Fundamental Theorem of Linear Programming? 3. What is the main idea

More information

LINEAR PROGRAMMING II

LINEAR PROGRAMMING II LINEAR PROGRAMMING II LP duality strong duality theorem bonus proof of LP duality applications Lecture slides by Kevin Wayne Last updated on 7/25/17 11:09 AM LINEAR PROGRAMMING II LP duality Strong duality

More information

4. Duality Duality 4.1 Duality of LPs and the duality theorem. min c T x x R n, c R n. s.t. ai Tx = b i i M a i R n

4. Duality Duality 4.1 Duality of LPs and the duality theorem. min c T x x R n, c R n. s.t. ai Tx = b i i M a i R n 2 4. Duality of LPs and the duality theorem... 22 4.2 Complementary slackness... 23 4.3 The shortest path problem and its dual... 24 4.4 Farkas' Lemma... 25 4.5 Dual information in the tableau... 26 4.6

More information

CO 250 Final Exam Guide

CO 250 Final Exam Guide Spring 2017 CO 250 Final Exam Guide TABLE OF CONTENTS richardwu.ca CO 250 Final Exam Guide Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4,

More information

CS261: A Second Course in Algorithms Lecture #8: Linear Programming Duality (Part 1)

CS261: A Second Course in Algorithms Lecture #8: Linear Programming Duality (Part 1) CS261: A Second Course in Algorithms Lecture #8: Linear Programming Duality (Part 1) Tim Roughgarden January 28, 2016 1 Warm-Up This lecture begins our discussion of linear programming duality, which is

More information

SEN301 OPERATIONS RESEARCH I LECTURE NOTES

SEN301 OPERATIONS RESEARCH I LECTURE NOTES SEN30 OPERATIONS RESEARCH I LECTURE NOTES SECTION II (208-209) Y. İlker Topcu, Ph.D. & Özgür Kabak, Ph.D. Acknowledgements: We would like to acknowledge Prof. W.L. Winston's "Operations Research: Applications

More information

1 Review Session. 1.1 Lecture 2

1 Review Session. 1.1 Lecture 2 1 Review Session Note: The following lists give an overview of the material that was covered in the lectures and sections. Your TF will go through these lists. If anything is unclear or you have questions

More information

MS-E2140. Lecture 1. (course book chapters )

MS-E2140. Lecture 1. (course book chapters ) Linear Programming MS-E2140 Motivations and background Lecture 1 (course book chapters 1.1-1.4) Linear programming problems and examples Problem manipulations and standard form Graphical representation

More information

SAMPLE QUESTIONS. b = (30, 20, 40, 10, 50) T, c = (650, 1000, 1350, 1600, 1900) T.

SAMPLE QUESTIONS. b = (30, 20, 40, 10, 50) T, c = (650, 1000, 1350, 1600, 1900) T. SAMPLE QUESTIONS. (a) We first set up some constant vectors for our constraints. Let b = (30, 0, 40, 0, 0) T, c = (60, 000, 30, 600, 900) T. Then we set up variables x ij, where i, j and i + j 6. By using

More information

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations The Simplex Method Most textbooks in mathematical optimization, especially linear programming, deal with the simplex method. In this note we study the simplex method. It requires basically elementary linear

More information

MS-E2140. Lecture 1. (course book chapters )

MS-E2140. Lecture 1. (course book chapters ) Linear Programming MS-E2140 Motivations and background Lecture 1 (course book chapters 1.1-1.4) Linear programming problems and examples Problem manipulations and standard form problems Graphical representation

More information

Introduction to linear programming using LEGO.

Introduction to linear programming using LEGO. Introduction to linear programming using LEGO. 1 The manufacturing problem. A manufacturer produces two pieces of furniture, tables and chairs. The production of the furniture requires the use of two different

More information

The Dual Simplex Algorithm

The Dual Simplex Algorithm p. 1 The Dual Simplex Algorithm Primal optimal (dual feasible) and primal feasible (dual optimal) bases The dual simplex tableau, dual optimality and the dual pivot rules Classical applications of linear

More information

Duality of LPs and Applications

Duality of LPs and Applications Lecture 6 Duality of LPs and Applications Last lecture we introduced duality of linear programs. We saw how to form duals, and proved both the weak and strong duality theorems. In this lecture we will

More information

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Module - 03 Simplex Algorithm Lecture 15 Infeasibility In this class, we

More information

x 1 + 4x 2 = 5, 7x 1 + 5x 2 + 2x 3 4,

x 1 + 4x 2 = 5, 7x 1 + 5x 2 + 2x 3 4, LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR OCH KOMBINATORISK OPTIMERING 2018-03-16 1. a) The rst thing to do is to rewrite the problem so that the right hand side of all constraints are positive.

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 1: Introduction Prof. John Gunnar Carlsson September 8, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 8, 2010 1 / 35 Administrivia

More information

Review Questions, Final Exam

Review Questions, Final Exam Review Questions, Final Exam A few general questions. What does the Representation Theorem say (in linear programming)? In words, the representation theorem says that any feasible point can be written

More information

Minimum cost transportation problem

Minimum cost transportation problem Minimum cost transportation problem Complements of Operations Research Giovanni Righini Università degli Studi di Milano Definitions The minimum cost transportation problem is a special case of the minimum

More information

How to Take the Dual of a Linear Program

How to Take the Dual of a Linear Program How to Take the Dual of a Linear Program Sébastien Lahaie January 12, 2015 This is a revised version of notes I wrote several years ago on taking the dual of a linear program (LP), with some bug and typo

More information

4. The Dual Simplex Method

4. The Dual Simplex Method 4. The Dual Simplex Method Javier Larrosa Albert Oliveras Enric Rodríguez-Carbonell Problem Solving and Constraint Programming (RPAR) Session 4 p.1/34 Basic Idea (1) Algorithm as explained so far known

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 15: Nonlinear optimization Prof. John Gunnar Carlsson November 1, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 1, 2010 1 / 24

More information

A Review of Linear Programming

A Review of Linear Programming A Review of Linear Programming Instructor: Farid Alizadeh IEOR 4600y Spring 2001 February 14, 2001 1 Overview In this note we review the basic properties of linear programming including the primal simplex

More information

Linear programming. Saad Mneimneh. maximize x 1 + x 2 subject to 4x 1 x 2 8 2x 1 + x x 1 2x 2 2

Linear programming. Saad Mneimneh. maximize x 1 + x 2 subject to 4x 1 x 2 8 2x 1 + x x 1 2x 2 2 Linear programming Saad Mneimneh 1 Introduction Consider the following problem: x 1 + x x 1 x 8 x 1 + x 10 5x 1 x x 1, x 0 The feasible solution is a point (x 1, x ) that lies within the region defined

More information

Answer the following questions: Q1: Choose the correct answer ( 20 Points ):

Answer the following questions: Q1: Choose the correct answer ( 20 Points ): Benha University Final Exam. (ختلفات) Class: 2 rd Year Students Subject: Operations Research Faculty of Computers & Informatics Date: - / 5 / 2017 Time: 3 hours Examiner: Dr. El-Sayed Badr Answer the following

More information

Fundamentals of Operations Research. Prof. G. Srinivasan. Indian Institute of Technology Madras. Lecture No. # 15

Fundamentals of Operations Research. Prof. G. Srinivasan. Indian Institute of Technology Madras. Lecture No. # 15 Fundamentals of Operations Research Prof. G. Srinivasan Indian Institute of Technology Madras Lecture No. # 15 Transportation Problem - Other Issues Assignment Problem - Introduction In the last lecture

More information

"SYMMETRIC" PRIMAL-DUAL PAIR

SYMMETRIC PRIMAL-DUAL PAIR "SYMMETRIC" PRIMAL-DUAL PAIR PRIMAL Minimize cx DUAL Maximize y T b st Ax b st A T y c T x y Here c 1 n, x n 1, b m 1, A m n, y m 1, WITH THE PRIMAL IN STANDARD FORM... Minimize cx Maximize y T b st Ax

More information

Relation of Pure Minimum Cost Flow Model to Linear Programming

Relation of Pure Minimum Cost Flow Model to Linear Programming Appendix A Page 1 Relation of Pure Minimum Cost Flow Model to Linear Programming The Network Model The network pure minimum cost flow model has m nodes. The external flows given by the vector b with m

More information

Part IB Optimisation

Part IB Optimisation Part IB Optimisation Theorems Based on lectures by F. A. Fischer Notes taken by Dexter Chua Easter 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Lecture 15 (Oct 6): LP Duality

Lecture 15 (Oct 6): LP Duality CMPUT 675: Approximation Algorithms Fall 2014 Lecturer: Zachary Friggstad Lecture 15 (Oct 6): LP Duality Scribe: Zachary Friggstad 15.1 Introduction by Example Given a linear program and a feasible solution

More information

END3033 Operations Research I Sensitivity Analysis & Duality. to accompany Operations Research: Applications and Algorithms Fatih Cavdur

END3033 Operations Research I Sensitivity Analysis & Duality. to accompany Operations Research: Applications and Algorithms Fatih Cavdur END3033 Operations Research I Sensitivity Analysis & Duality to accompany Operations Research: Applications and Algorithms Fatih Cavdur Introduction Consider the following problem where x 1 and x 2 corresponds

More information

56:171 Operations Research Fall 1998

56:171 Operations Research Fall 1998 56:171 Operations Research Fall 1998 Quiz Solutions D.L.Bricker Dept of Mechanical & Industrial Engineering University of Iowa 56:171 Operations Research Quiz

More information

Lec12p1, ORF363/COS323. The idea behind duality. This lecture

Lec12p1, ORF363/COS323. The idea behind duality. This lecture Lec12 Page 1 Lec12p1, ORF363/COS323 This lecture Linear programming duality + robust linear programming Intuition behind the derivation of the dual Weak and strong duality theorems Max-flow=Min-cut Primal/dual

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.854J / 18.415J Advanced Algorithms Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advanced

More information

The dual simplex method with bounds

The dual simplex method with bounds The dual simplex method with bounds Linear programming basis. Let a linear programming problem be given by min s.t. c T x Ax = b x R n, (P) where we assume A R m n to be full row rank (we will see in the

More information

System Planning Lecture 7, F7: Optimization

System Planning Lecture 7, F7: Optimization System Planning 04 Lecture 7, F7: Optimization System Planning 04 Lecture 7, F7: Optimization Course goals Appendi A Content: Generally about optimization Formulate optimization problems Linear Programming

More information

3. Duality: What is duality? Why does it matter? Sensitivity through duality.

3. Duality: What is duality? Why does it matter? Sensitivity through duality. 1 Overview of lecture (10/5/10) 1. Review Simplex Method 2. Sensitivity Analysis: How does solution change as parameters change? How much is the optimal solution effected by changing A, b, or c? How much

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612 Gaussian Elimination! Solving a system of simultaneous

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 14: Unconstrained optimization Prof. John Gunnar Carlsson October 27, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I October 27, 2010 1

More information

UNIT-4 Chapter6 Linear Programming

UNIT-4 Chapter6 Linear Programming UNIT-4 Chapter6 Linear Programming Linear Programming 6.1 Introduction Operations Research is a scientific approach to problem solving for executive management. It came into existence in England during

More information

Another max flow application: baseball

Another max flow application: baseball CS124 Lecture 16 Spring 2018 Another max flow application: baseball Suppose there are n baseball teams, and team 1 is our favorite. It is the middle of baseball season, and some games have been played

More information

ORIE 6300 Mathematical Programming I August 25, Lecture 2

ORIE 6300 Mathematical Programming I August 25, Lecture 2 ORIE 6300 Mathematical Programming I August 25, 2016 Lecturer: Damek Davis Lecture 2 Scribe: Johan Bjorck Last time, we considered the dual of linear programs in our basic form: max(c T x : Ax b). We also

More information

Linear Programming. Jie Wang. University of Massachusetts Lowell Department of Computer Science. J. Wang (UMass Lowell) Linear Programming 1 / 47

Linear Programming. Jie Wang. University of Massachusetts Lowell Department of Computer Science. J. Wang (UMass Lowell) Linear Programming 1 / 47 Linear Programming Jie Wang University of Massachusetts Lowell Department of Computer Science J. Wang (UMass Lowell) Linear Programming 1 / 47 Linear function: f (x 1, x 2,..., x n ) = n a i x i, i=1 where

More information

MATH 445/545 Test 1 Spring 2016

MATH 445/545 Test 1 Spring 2016 MATH 445/545 Test Spring 06 Note the problems are separated into two sections a set for all students and an additional set for those taking the course at the 545 level. Please read and follow all of these

More information

56:270 Final Exam - May

56:270  Final Exam - May @ @ 56:270 Linear Programming @ @ Final Exam - May 4, 1989 @ @ @ @ @ @ @ @ @ @ @ @ @ @ Select any 7 of the 9 problems below: (1.) ANALYSIS OF MPSX OUTPUT: Please refer to the attached materials on the

More information

The Strong Duality Theorem 1

The Strong Duality Theorem 1 1/39 The Strong Duality Theorem 1 Adrian Vetta 1 This presentation is based upon the book Linear Programming by Vasek Chvatal 2/39 Part I Weak Duality 3/39 Primal and Dual Recall we have a primal linear

More information

Topic: Primal-Dual Algorithms Date: We finished our discussion of randomized rounding and began talking about LP Duality.

Topic: Primal-Dual Algorithms Date: We finished our discussion of randomized rounding and began talking about LP Duality. CS787: Advanced Algorithms Scribe: Amanda Burton, Leah Kluegel Lecturer: Shuchi Chawla Topic: Primal-Dual Algorithms Date: 10-17-07 14.1 Last Time We finished our discussion of randomized rounding and

More information

Planning and Optimization

Planning and Optimization Planning and Optimization C23. Linear & Integer Programming Malte Helmert and Gabriele Röger Universität Basel December 1, 2016 Examples Linear Program: Example Maximization Problem Example maximize 2x

More information

Linear and Integer Programming - ideas

Linear and Integer Programming - ideas Linear and Integer Programming - ideas Paweł Zieliński Institute of Mathematics and Computer Science, Wrocław University of Technology, Poland http://www.im.pwr.wroc.pl/ pziel/ Toulouse, France 2012 Literature

More information

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. If necessary,

More information

Week 3 Linear programming duality

Week 3 Linear programming duality Week 3 Linear programming duality This week we cover the fascinating topic of linear programming duality. We will learn that every minimization program has associated a maximization program that has the

More information

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize Metode Kuantitatif Bisnis Week 4 Linear Programming Simplex Method - Minimize Outlines Solve Linear Programming Model Using Graphic Solution Solve Linear Programming Model Using Simplex Method (Maximize)

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information