Graph the linear inequality. 1) x + 2y 6

Size: px
Start display at page:

Download "Graph the linear inequality. 1) x + 2y 6"

Transcription

1 Assignment Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Graph the linear inequality. 1) x + 2y 6 1) 1

2 2) x + y < -3 2) 2

3 Graph the feasible region for the system of inequalities. 3) 3x + 2y -6 3) x

4 4) 2y + x -2 4) y + 3x 9 Graph the linear inequality. 4

5 5) 3x + 4y 12 5) 5

6 6) y < x + 6 6) 6

7 Graph the feasible region for the system of inequalities. 7) 3x - 2y 6 7) x

8 A manufacturer of wooden chairs and tables must decide in advance how many of each item will be made in a given week. Use the table to find the system of inequalities that describes the manufacturer's weekly production. 8) Use x for the number of chairs and y for the number of tables made per week. The number of 8) work-hours available for construction and finishing is fixed. Hours per chair Hours per table Total hours available Construction Finishing A) x + 3 x + 2 x 27 y 20 B) x + y 36 3x x + 20 C) x + 3y 27 x + 2y 20 D) x + 3y 27 x + 2y 20 9) Use x for the number of chairs and y for the number of tables made per week. The number of 9) work-hours available for construction and finishing is fixed. Hours per chair Hours per table Total hours available Construction Finishing A) 3x + 3y 48 4x + 3y 42 B) 3x + 4y 48 3x + 3y 42 C) 4x + 3y 48 3x + 3y 42 D) 3x + 4y 48 3x + 3y 42 8

9 Graph the feasible region for the system of inequalities. 10) 2x + y 4 10) x Find the value(s) of the function, subject to the system of inequalities. 11) Find the maximum and minimum of P = 11x + 5y subject to: 11) 0 x 10, 0 y 5, 3x + 2y 6. A) 110, 15 B) 25, 15 C) 135, 15 D) 135, 110 9

10 Find the value(s) of the function on the given feasible region. 12) Find the maximum and minimum of z = 17x + 9y. 12) A) 45, 27 B) 170, 27 C) 215, 170 D) 215, 27 Use graphical methods to solve the linear programming problem. 13) Maximize z = 2x + 5y 13) subject to: 3x + 2y 6-2x + 4y 8 A) Maximum of 49 4 when x = 1 2 and y = 9 4 B) Maximum of 19 when x = 2 and y = 3 C) Maximum of 10 when x = 0 and y = 2 D) Maximum of 34 3 when x = 2 3 and y = 2 10

11 Find the value(s) of the function on the given feasible region. 14) Find the maximum and minimum of z = 15x - 23y. 14) A) 75, 0 B) , -138 C) -138, 0 D) 75, -138 Use graphical methods to solve the linear programming problem. 15) Minimize z = 4x + 5y 15) subject to: 2x - 4y 10 2x + y 15 A) Minimum of 33 when x = 7 and y = 1 B) Minimum of 75 when x = 0 and y = 15 C) Minimum of 20 when x = 5 and y = 0 D) Minimum of 39 when x = 1 and y = 7 Find the value(s) of the function, subject to the system of inequalities. 16) Find the maximum and minimum of P = 10x - 16y subject to: 16) 0 x 5, 0 y 8, 4x + 5y 30, and 4x + 3y 20. A) -67.5, -96 B) -96, 0 C) 50, 0 D) 50,

12 Use graphical methods to solve the linear programming problem. 17) Maximize z = 8x + 12y 17) subject to: 40x + 80y 560 6x + 8y 72 A) Maximum of 92 when x = 4 and y = 5 B) Maximum of 120 when x = 3 and y = 8 C) Maximum of 96 when x = 9 and y = 2 D) Maximum of 100 when x = 8 and y = 3 18) Maximize z = 6x + 7y 18) subject to: 2x + 3y 12 2x + y 8 A) Maximum of 32 when x = 2 and y = 3 B) Maximum of 52 when x = 4 and y = 4 C) Maximum of 32 when x = 3 and y = 2 D) Maximum of 24 when x = 4 and y = 0 Find the value(s) of the function, subject to the system of inequalities. 19) Find the minimum of P = 23x + 21y + 22 subject to: 19) x 0, y 0, x + y 1. A) 22 B) 66 C) 45 D) 43 12

13 20) Find the maximum and minimum of Z = 9x + 8y subject to: 20) 0 x 10, 0 y 5, 3x + 2y 6. A) 90, 24 B) 130, 90 C) 40, 24 D) 130, 24 Provide an appropriate response. 21) If a system of inequalities includes x 1, then the feasibility region is restricted to what? 21) A) The region left of and including x = 1 B) The region right of and including x = -1 C) The region left of and including x = -1 D) The region right of and including x = 1 The Acme Class Ring Company designs and sells two types of rings: the VIP and the SST. They can produce up to 24 rings each day using up to 60 total man-hours of labor. It takes 3 man-hours to make one VIP ring, versus 2 man-hours to make one SST ring. 22) How many of each type of ring should be made daily to maximize the company's profit, if the 22) profit on a VIP ring is $50 and on an SST ring is $40? A) 12 VIP and 12 SST B) 14 VIP and 10 SST C) 20 VIP and 4 SST D) 10 VIP and 14 SST TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Provide an appropriate response. 23) The feasible region of a set of two inequalities must always be unbounded. True or false? 23) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 24) Explain why the solution to a linear programming problem always occurs at a corner point 24) of the feasible region. 25) Can there be more than one point in the feasible region where the maximum or minimum 25) occurs? Explain. 26) In an unbounded region, will there always be a solution? 26) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 27) What is the least number of inequalities needed to produce a closed region? 27) A) 4 B) 3 C) 2 D) 1 13

14 State the linear programming problem in mathematical terms, identifying the objective function and the constraints. 28) A car repair shop blends oil from two suppliers. 28) Supplier I can supply at most 41 gal with 3.6% detergent. Supplier II can supply at most 67 gal with 3.2% detergent. How much can be ordered from each to get at most 100 gal of oil with maximum detergent? A) Maximize 41x + 67y Subject to: x 41 y x y 100. C) Maximize 0.032x y Subject to: x 41 y 67 x + y 100. B) Maximize 0.036x y Subject to: 0 x 41 0 y 67 x + y 100. D) Maximize 41x + 67y Subject to: x 41 y x y 100. The Acme Class Ring Company designs and sells two types of rings: the VIP and the SST. They can produce up to 24 rings each day using up to 60 total man-hours of labor. It takes 3 man-hours to make one VIP ring, versus 2 man-hours to make one SST ring. 29) How many of each type of ring should be made daily to maximize the company's profit, if the 29) profit on a VIP ring is $40 and on an SST ring is $30? A) 14 VIP and 14 SST B) 12 VIP and 12 SST C) 10 VIP and 14 SST D) 14 VIP and 10 SST State the linear programming problem in mathematical terms, identifying the objective function and the constraints. 30) A breed of cattle needs at least 10 protein and 8 fat units per day. Feed type I provides 6 protein 30) and 2 fat units at $4/bag. Feed type II provides 2 protein and 5 fat units at $2/bag. Which mixture fills the needs at minimum cost? A) Minimize 4x + 2y Subject to: 6x + 2y 8 2x + 5y 10 x,. C) Minimize 2x + 4y Subject to: 6x + 2y 10 2x + 5y 8 x,. B) Minimize 4x + 2y Subject to: 6x + 2y 10 2x + 5y 8 x,. D) Minimize 4x + 2y Subject to: 6x + 2y 8 2x + 5y 10 x,. 14

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 132 Eam 2 Review (.1 -.5, 7.1-7.5) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Determine whether the given ordered set of numbers is a solution

More information

FALL 2012 MATH 1324 REVIEW EXAM 2

FALL 2012 MATH 1324 REVIEW EXAM 2 FALL 0 MATH 3 REVIEW EXAM MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the order of the matri product AB and the product BA, whenever the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math324 - Test Review 2 - Fall 206 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine the vertex of the parabola. ) f(x) = x 2-0x + 33 ) (0,

More information

Exam. Name. Use the indicated region of feasible solutions to find the maximum and minimum values of the given objective function.

Exam. Name. Use the indicated region of feasible solutions to find the maximum and minimum values of the given objective function. Exam Name Use the indicated region of feasible solutions to find the maximum and minimum values of the given objective function. 1) z = 12x - 22y y (0, 6) (1.2, 5) Solve the 3) The Acme Class Ring Company

More information

M= 4 s. 112j 127J. 20f25 Determine whether the given ordered set ofnumbers is a solution ofthe system ofequations.

M= 4 s. 112j 127J. 20f25 Determine whether the given ordered set ofnumbers is a solution ofthe system ofequations. Striving to provide a online education experience TM Note: You will only be allowed to submit this test one time. Your score will be averaged in your overall course grade and you will not be able to submit

More information

MATH M118 Practice Test Chapter 7

MATH M118 Practice Test Chapter 7 MATH M118 Practice Test Chapter 7 Problems #1-10: Identify the best answer from the given choices. Place the letter on the answer line. 1) Select the correct graph of x 5 C. A. D. B. E. Answer to #1 2)

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Stud Guide for Test II Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Graph the linear inequalit. 1) 3 + -6 1) - - - - A) B) - - - - - - - -

More information

MATH 1324 (Finite Mathematics or Business Math I) Lecture Notes Author / Copyright: Kevin Pinegar

MATH 1324 (Finite Mathematics or Business Math I) Lecture Notes Author / Copyright: Kevin Pinegar MATH 34 Module 3 Notes: SYSTEMS OF INEQUALITIES & LINEAR PROGRAMMING 3.3 SOLVING LINEAR PROGRAMMING PROBLEMS GEOMETRICALLY WE WILL BEGIN THIS SECTION WITH AN APPLICATION The Southern States Ring Company

More information

SECTION 3.2: Graphing Linear Inequalities

SECTION 3.2: Graphing Linear Inequalities 6 SECTION 3.2: Graphing Linear Inequalities GOAL: Graphing One Linear Inequality Example 1: Graphing Linear Inequalities Graph the following: a) x + y = 4 b) x + y 4 c) x + y < 4 Graphing Conventions:

More information

Chapter 3 Introduction to Linear Programming PART 1. Assoc. Prof. Dr. Arslan M. Örnek

Chapter 3 Introduction to Linear Programming PART 1. Assoc. Prof. Dr. Arslan M. Örnek Chapter 3 Introduction to Linear Programming PART 1 Assoc. Prof. Dr. Arslan M. Örnek http://homes.ieu.edu.tr/~aornek/ise203%20optimization%20i.htm 1 3.1 What Is a Linear Programming Problem? Linear Programming

More information

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables We learned to find the maxima and minima of a function of a single variable earlier in the course We had a second derivative test

More information

Exam 2 Review Math1324. Solve the system of two equations in two variables. 1) 8x + 7y = 36 3x - 4y = -13 A) (1, 5) B) (0, 5) C) No solution D) (1, 4)

Exam 2 Review Math1324. Solve the system of two equations in two variables. 1) 8x + 7y = 36 3x - 4y = -13 A) (1, 5) B) (0, 5) C) No solution D) (1, 4) Eam Review Math3 Solve the sstem of two equations in two variables. ) + 7 = 3 3 - = -3 (, 5) B) (0, 5) C) No solution D) (, ) ) 3 + 5 = + 30 = -, B) No solution 3 C) - 5 3 + 3, for an real number D) 3,

More information

Chapter 4 Test Review. 1. Sketch the graph of the equation 3x + 5y = Sketch the graph of the equation 4x + 3y = 24.

Chapter 4 Test Review. 1. Sketch the graph of the equation 3x + 5y = Sketch the graph of the equation 4x + 3y = 24. Name Chapter 4 Test Review Per. 1. Sketch the graph of the equation 3x + 5y = 30. 2. Sketch the graph of the equation 4x + 3y = 24. 3. Sketch the graph of the inequality 2x + 4y 12. 4. Sketch the graph

More information

3.1 Linear Programming Problems

3.1 Linear Programming Problems 3.1 Linear Programming Problems The idea of linear programming problems is that we are given something that we want to optimize, i.e. maximize or minimize, subject to some constraints. Linear programming

More information

Introduction to LP. Types of Linear Programming. There are five common types of decisions in which LP may play a role

Introduction to LP. Types of Linear Programming. There are five common types of decisions in which LP may play a role Linear Programming RK Jana Lecture Outline Introduction to Linear Programming (LP) Historical Perspective Model Formulation Graphical Solution Method Simplex Method Introduction to LP Continued Today many

More information

5.3 Linear Programming in Two Dimensions: A Geometric Approach

5.3 Linear Programming in Two Dimensions: A Geometric Approach : A Geometric Approach A Linear Programming Problem Definition (Linear Programming Problem) A linear programming problem is one that is concerned with finding a set of values of decision variables x 1,

More information

Math Week in Review #3 - Exam 1 Review

Math Week in Review #3 - Exam 1 Review Math 166 Exam 1 Review Fall 2006 c Heather Ramsey Page 1 Math 166 - Week in Review #3 - Exam 1 Review NOTE: For reviews of the other sections on Exam 1, refer to the first page of WIR #1 and #2. Section

More information

Multi-Step Inequalities Practice True False Questions Indicate True or False for the following Statements.

Multi-Step Inequalities Practice True False Questions Indicate True or False for the following Statements. Multi-Step Inequalities Practice True False Questions Indicate True or False for the following Statements. 1. There is no solution to the inequality 5x 2 8, given that x is a natural number. ( True/False

More information

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker 56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker Answer all of Part One and two (of the four) problems of Part Two Problem: 1 2 3 4 5 6 7 8 TOTAL Possible: 16 12 20 10

More information

Study Unit 3 : Linear algebra

Study Unit 3 : Linear algebra 1 Study Unit 3 : Linear algebra Chapter 3 : Sections 3.1, 3.2.1, 3.2.5, 3.3 Study guide C.2, C.3 and C.4 Chapter 9 : Section 9.1 1. Two equations in two unknowns Algebraically Method 1: Elimination Step

More information

3.1 Solving Linear Systems by Graphing 1. Graph and solve systems of linear equations in two variables. Solution of a system of linear equations

3.1 Solving Linear Systems by Graphing 1. Graph and solve systems of linear equations in two variables. Solution of a system of linear equations 3.1 Solving Linear Systems by Graphing Objectives 1. Graph and solve systems of linear equations in two variables. Key Terms System of linear equations Solution of a system of linear equations Check whether

More information

Unit 4: Inequalities. Inequality Symbols. Algebraic Inequality. Compound Inequality. Interval Notation

Unit 4: Inequalities. Inequality Symbols. Algebraic Inequality. Compound Inequality. Interval Notation Section 4.1: Linear Inequalities Section 4.2: Solving Linear Inequalities Section 4.3: Solving Inequalities Applications Section 4.4: Compound Inequalities Section 4.5: Absolute Value Equations and Inequalities

More information

LINEAR INEQUALITIES. Chapter Overview

LINEAR INEQUALITIES.  Chapter Overview LINEAR INEQUALITIES Chapter 6 6.1 Overview 6.1.1 A statement involving the symbols >, 3, x 4, x + y 9. (ii) (iii) (iv) (v) Inequalities which do not involve

More information

Section 4.1 Solving Systems of Linear Inequalities

Section 4.1 Solving Systems of Linear Inequalities Section 4.1 Solving Systems of Linear Inequalities Question 1 How do you graph a linear inequality? Question 2 How do you graph a system of linear inequalities? Question 1 How do you graph a linear inequality?

More information

Lesson 7: Literal Equations, Inequalities, and Absolute Value

Lesson 7: Literal Equations, Inequalities, and Absolute Value , and Absolute Value In this lesson, we first look at literal equations, which are equations that have more than one variable. Many of the formulas we use in everyday life are literal equations. We then

More information

Applications of Systems of Linear Inequalities

Applications of Systems of Linear Inequalities Applications of Systems of Linear Inequalities Finite Math 26 April 2017 Finite Math Applications of Systems of Linear Inequalities 26 April 2017 1 / 17 Quiz What does it mean for a feasible region to

More information

ST. JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) CUDDALORE-1

ST. JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) CUDDALORE-1 ST. JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) CUDDALORE-1 SUB:OPERATION RESEARCH CLASS: III B.SC SUB CODE:EMT617S SUB INCHARGE:S.JOHNSON SAVARIMUTHU 2 MARKS QUESTIONS 1. Write the general model of

More information

Chapter 4 The Simplex Algorithm Part I

Chapter 4 The Simplex Algorithm Part I Chapter 4 The Simplex Algorithm Part I Based on Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan Lewis Ntaimo 1 Modeling

More information

Linear Programming: Model Formulation and Graphical Solution

Linear Programming: Model Formulation and Graphical Solution Linear Programming: Model Formulation and Graphical Solution 1 Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions of Linear Programming Models A Minimization Model Example

More information

Chapter 2. Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall 2-1

Chapter 2. Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall 2-1 Linear Programming: Model Formulation and Graphical Solution Chapter 2 2-1 Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions of Linear Programming Models A Minimization

More information

Math 3 Variable Manipulation Part 7 Absolute Value & Inequalities

Math 3 Variable Manipulation Part 7 Absolute Value & Inequalities Math 3 Variable Manipulation Part 7 Absolute Value & Inequalities 1 MATH 1 REVIEW SOLVING AN ABSOLUTE VALUE EQUATION Absolute value is a measure of distance; how far a number is from zero. In practice,

More information

Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions

Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions 11. Consider the following linear program. Maximize z = 6x 1 + 3x 2 subject to x 1 + 2x 2 2x 1 + x 2 20 x 1 x 2 x

More information

Practice Questions for Math 131 Exam # 1

Practice Questions for Math 131 Exam # 1 Practice Questions for Math 131 Exam # 1 1) A company produces a product for which the variable cost per unit is $3.50 and fixed cost 1) is $20,000 per year. Next year, the company wants the total cost

More information

Concept and Definition. Characteristics of OR (Features) Phases of OR

Concept and Definition. Characteristics of OR (Features) Phases of OR Concept and Definition Operations research signifies research on operations. It is the organized application of modern science, mathematics and computer techniques to complex military, government, business

More information

2. Linear Programming Problem

2. Linear Programming Problem . Linear Programming Problem. Introduction to Linear Programming Problem (LPP). When to apply LPP or Requirement for a LPP.3 General form of LPP. Assumptions in LPP. Applications of Linear Programming.6

More information

Graphical and Computer Methods

Graphical and Computer Methods Chapter 7 Linear Programming Models: Graphical and Computer Methods Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna 2008 Prentice-Hall, Inc. Introduction Many management

More information

Spring 2018 IE 102. Operations Research and Mathematical Programming Part 2

Spring 2018 IE 102. Operations Research and Mathematical Programming Part 2 Spring 2018 IE 102 Operations Research and Mathematical Programming Part 2 Graphical Solution of 2-variable LP Problems Consider an example max x 1 + 3 x 2 s.t. x 1 + x 2 6 (1) - x 1 + 2x 2 8 (2) x 1,

More information

2.4 Graphing Inequalities

2.4 Graphing Inequalities .4 Graphing Inequalities Why We Need This Our applications will have associated limiting values - and either we will have to be at least as big as the value or no larger than the value. Why We Need This

More information

Multicriteria Decision Making

Multicriteria Decision Making Multicriteria Decision Making Goal Programming Multicriteria Decision Problems Goal Programming Goal Programming: Formulation and Graphical Solution 1 Goal Programming Goal programming may be used to solve

More information

MSA 640 Homework #2 Due September 17, points total / 20 points per question Show all work leading to your answers

MSA 640 Homework #2 Due September 17, points total / 20 points per question Show all work leading to your answers Name MSA 640 Homework #2 Due September 17, 2010 100 points total / 20 points per question Show all work leading to your answers 1. The annual demand for a particular type of valve is 3,500 units. The cost

More information

UNIT-4 Chapter6 Linear Programming

UNIT-4 Chapter6 Linear Programming UNIT-4 Chapter6 Linear Programming Linear Programming 6.1 Introduction Operations Research is a scientific approach to problem solving for executive management. It came into existence in England during

More information

PRACTICE EXAM UNIT #6: SYSTEMS OF LINEAR INEQUALITIES

PRACTICE EXAM UNIT #6: SYSTEMS OF LINEAR INEQUALITIES _ School: Date: /45 SCAN OR FAX TO: Ms. Stamm (Central Collegiate) stamm.shelly@prairiesouth.ca FAX: (306) 692-6965 PH: (306) 693-4691 PRACTICE EXAM UNIT #6: SYSTEMS OF LINEAR INEQUALITIES Multiple Choice

More information

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved.

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved. 3 LINEAR PROGRAMMING: A GEOMETRIC APPROACH Copyright Cengage Learning. All rights reserved. 3.4 Sensitivity Analysis Copyright Cengage Learning. All rights reserved. Sensitivity Analysis In this section,

More information

Linear Programming II NOT EXAMINED

Linear Programming II NOT EXAMINED Chapter 9 Linear Programming II NOT EXAMINED 9.1 Graphical solutions for two variable problems In last week s lecture we discussed how to formulate a linear programming problem; this week, we consider

More information

END3033 Operations Research I Sensitivity Analysis & Duality. to accompany Operations Research: Applications and Algorithms Fatih Cavdur

END3033 Operations Research I Sensitivity Analysis & Duality. to accompany Operations Research: Applications and Algorithms Fatih Cavdur END3033 Operations Research I Sensitivity Analysis & Duality to accompany Operations Research: Applications and Algorithms Fatih Cavdur Introduction Consider the following problem where x 1 and x 2 corresponds

More information

Quadratic function - Test Yourself

Quadratic function - Test Yourself Quadratic function - Test Yourself All Multiple choice Instructions: 1. Read the questions carefully. 2. Solve each problem and decide which of the offered answer choices is correct. 3. ENJOY 1. Which

More information

. So the solution set is parameterized by x = t and y = 2 3 t

. So the solution set is parameterized by x = t and y = 2 3 t Review for Eam II Solutions MAT 2. Solve the following sstem of linear equations using an algebraic method. You must show all steps of the algebraic process used. 5 + = 39 4 + 6 = 4 Solve for in the first

More information

LINEAR PROGRAMMING. Lessons 28. Lesson. Overview. Important Terminology. Making inequalities (constraints)

LINEAR PROGRAMMING. Lessons 28. Lesson. Overview. Important Terminology. Making inequalities (constraints) LINEAR PROGRAMMING Learning Outcomes and Assessment Standards Learning Outcome 2: Functions and algebra Assessment Standard 12.2.8 Solve linear programming problems by optimising a function in two variables,

More information

MAT 111 Final Exam Fall 2013 Name: If solving graphically, sketch a graph and label the solution.

MAT 111 Final Exam Fall 2013 Name: If solving graphically, sketch a graph and label the solution. MAT 111 Final Exam Fall 2013 Name: Show all work on test to receive credit. Draw a box around your answer. If solving algebraically, show all steps. If solving graphically, sketch a graph and label the

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS This is for your practice. DEPARTMENT OF MATHEMATICS Ma162 Samples from old Final Exams 1. Fred Foy has $100, 000 to invest in stocks, bonds and a money market account. The stocks have an expected return

More information

LP Definition and Introduction to Graphical Solution Active Learning Module 2

LP Definition and Introduction to Graphical Solution Active Learning Module 2 LP Definition and Introduction to Graphical Solution Active Learning Module 2 J. René Villalobos and Gary L. Hogg Arizona State University Paul M. Griffin Georgia Institute of Technology Background Material

More information

Chapter 3: Systems of Linear Equations and Inequalities. Chapter 3.1: Solving Linear Systems by Graphing. System of Two Linear Equations: Solution:

Chapter 3: Systems of Linear Equations and Inequalities. Chapter 3.1: Solving Linear Systems by Graphing. System of Two Linear Equations: Solution: Chapter 3: Systems of Linear Equations and Inequalities Chapter 3.1: Solving Linear Systems by Graphing System of Two Linear Equations: Solution: x 3y = 5 Example: Check whether the ordered pair on solution

More information

Section 5.3: Linear Inequalities

Section 5.3: Linear Inequalities 336 Section 5.3: Linear Inequalities In the first section, we looked at a company that produces a basic and premium version of its product, and we determined how many of each item they should produce fully

More information

Exam 3 Review Math 118 Sections 1 and 2

Exam 3 Review Math 118 Sections 1 and 2 Exam 3 Review Math 118 Sections 1 and 2 This exam will cover sections 5.3-5.6, 6.1-6.3 and 7.1-7.3 of the textbook. No books, notes, calculators or other aids are allowed on this exam. There is no time

More information

Systems of Equations. Red Company. Blue Company. cost. 30 minutes. Copyright 2003 Hanlonmath 1

Systems of Equations. Red Company. Blue Company. cost. 30 minutes. Copyright 2003 Hanlonmath 1 Chapter 6 Systems of Equations Sec. 1 Systems of Equations How many times have you watched a commercial on television touting a product or services as not only the best, but the cheapest? Let s say you

More information

Modern Logistics & Supply Chain Management

Modern Logistics & Supply Chain Management Modern Logistics & Supply Chain Management As gold which he cannot spend will make no man rich, so knowledge which he cannot apply will make no man wise. Samuel Johnson: The Idler No. 84 Production Mix

More information

Theory of Linear Programming

Theory of Linear Programming SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BF360 Operations Research Unit Two Theory of Linear Programming Moses Mwale e-mail: moses.mwale@ictar.ac.zm BF360 Operations Research Contents Unit 2: Theory

More information

y in both equations.

y in both equations. Syllabus Objective: 3.1 The student will solve systems of linear equations in two or three variables using graphing, substitution, and linear combinations. System of Two Linear Equations: a set of two

More information

Systems of Equations and Inequalities

Systems of Equations and Inequalities 1 Systems of Equations and Inequalities 2015 03 24 2 Table of Contents Solving Systems by Graphing Solving Systems by Substitution Solve Systems by Elimination Choosing your Strategy Solving Systems of

More information

1. Introduce slack variables for each inequaility to make them equations and rewrite the objective function in the form ax by cz... + P = 0.

1. Introduce slack variables for each inequaility to make them equations and rewrite the objective function in the form ax by cz... + P = 0. 3.4 Simplex Method If a linear programming problem has more than 2 variables, solving graphically is not the way to go. Instead, we ll use a more methodical, numeric process called the Simplex Method.

More information

Linear programming Dr. Arturo S. Leon, BSU (Spring 2010)

Linear programming Dr. Arturo S. Leon, BSU (Spring 2010) Linear programming (Adapted from Chapter 13 Supplement, Operations and Management, 5 th edition by Roberta Russell & Bernard W. Taylor, III., Copyright 2006 John Wiley & Sons, Inc. This presentation also

More information

AM 121 Introduction to Optimization: Models and Methods Example Questions for Midterm 1

AM 121 Introduction to Optimization: Models and Methods Example Questions for Midterm 1 AM 121 Introduction to Optimization: Models and Methods Example Questions for Midterm 1 Prof. Yiling Chen Fall 2018 Here are some practice questions to help to prepare for the midterm. The midterm will

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 1 (First Group of Students) Students with first letter of surnames A F Due: February 12, 2013 1. Each student

More information

An Introduction to Linear Programming

An Introduction to Linear Programming An Introduction to Linear Programming Linear Programming Problem Problem Formulation A Maximization Problem Graphical Solution Procedure Extreme Points and the Optimal Solution Computer Solutions A Minimization

More information

Chapter 2 Introduction to Optimization and Linear Programming

Chapter 2 Introduction to Optimization and Linear Programming Ch. 2 Introduction to Optimization and Linear Programming TB-9 Chapter 2 Introduction to Optimization and Linear Programming Multiple Choice 1. What most motivates a business to be concerned with efficient

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 2 First Group of Students) Students with first letter of surnames A H Due: February 21, 2013 Problem Set Rules: 1. Each student

More information

7.1 Solving Systems of Equations

7.1 Solving Systems of Equations Date: Precalculus Notes: Unit 7 Systems of Equations and Matrices 7.1 Solving Systems of Equations Syllabus Objectives: 8.1 The student will solve a given system of equations or system of inequalities.

More information

Chapter 6 Outline Systems of Linear Inequalities

Chapter 6 Outline Systems of Linear Inequalities SOLVES AN INEQUALITY Chapter 6 Outline Systems of Linear Inequalities FORGETS TO FLIP THE SYMBOL Date Topic Homework Lesson 1: Exploring Linear Inequalities Homework Completion Complete In Progress Not

More information

Linear Programming: A Geometric Approach

Linear Programming: A Geometric Approach OpenStax-CNX module: m18903 1 Linear Programming: A Geometric Approach Rupinder Sekhon This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract This

More information

The Simplex Algorithm and Goal Programming

The Simplex Algorithm and Goal Programming The Simplex Algorithm and Goal Programming In Chapter 3, we saw how to solve two-variable linear programming problems graphically. Unfortunately, most real-life LPs have many variables, so a method is

More information

Chapter 2 Introduction to Optimization & Linear Programming

Chapter 2 Introduction to Optimization & Linear Programming Chapter 2 - Introduction to Optimization & Linear Programming : S-1 Spreadsheet Modeling and Decision Analysis A Practical Introduction to Business Analytics 8th Edition Ragsdale SOLUTIONS MANUAL Full

More information

Assignment 6.2. Calculus F a2l0i1]6^ LKduFtHaz esnopfctqwzatreet ELOLeCq.h ] gaplhlw BrJiKg\hTtjsJ brmehsdeurpvreqdu. Name ID: 1.

Assignment 6.2. Calculus F a2l0i1]6^ LKduFtHaz esnopfctqwzatreet ELOLeCq.h ] gaplhlw BrJiKg\hTtjsJ brmehsdeurpvreqdu. Name ID: 1. Calculus F al0i1]6^ LKduFtHaz esnopfctqwzatreet ELOLeCq.h ] gaplhlw BrJiKg\hTtjsJ brmehsdeurpvreqdu. Assignment 6. Solve each optimization problem. Name ID: 1 Date Period 1) A company has started selling

More information

constant matrix Study Guide and Review - Chapter 3

constant matrix Study Guide and Review - Chapter 3 Choose the term from above to complete each sentence. 1. A feasible region that is open and can go on forever is called. unbounded 2. To means to seek the best price or profit using linear programming.

More information

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3).

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3). 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3). 2. Let the supply and demand functions for sugar be given by p = S(q) = 1.4q 0.6 and p = D(q) = 2q + 3.2 where p is the

More information

Review Questions, Final Exam

Review Questions, Final Exam Review Questions, Final Exam A few general questions 1. What does the Representation Theorem say (in linear programming)? 2. What is the Fundamental Theorem of Linear Programming? 3. What is the main idea

More information

Practice Problems. Skills Practice

Practice Problems. Skills Practice Practice Problems Skills Practice 1. Solve the following equations for the given variable. Show all steps. Simplify your answers. a) I = Prt Solve for t b) 2x + 3y = 6 Solve for y c) A = B(C + D) Solve

More information

constant matrix Study Guide and Review - Chapter 3

constant matrix Study Guide and Review - Chapter 3 Choose the term from above to complete each sentence. 1. A feasible region that is open and can go on forever is called. unbounded 2. To means to seek the best price or profit using linear programming.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) Math 6 Fall 28 Name Qui 2 Chapters 2 & 3 Each problem worth 5 points Number 2 is etra credit MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question ) The result

More information

12-1. Example 1: Which relations below represent functions? State the domains and ranges. a) {(9,81), (4,16), (5,25), ( 2,4), ( 6,36)} Function?

12-1. Example 1: Which relations below represent functions? State the domains and ranges. a) {(9,81), (4,16), (5,25), ( 2,4), ( 6,36)} Function? MA 000, Lessons a and b Introduction to Functions Algebra: Sections 3.5 and 7.4 Calculus: Sections 1. and.1 Definition: A relation is any set of ordered pairs. The set of first components in the ordered

More information

IE 400 Principles of Engineering Management. Graphical Solution of 2-variable LP Problems

IE 400 Principles of Engineering Management. Graphical Solution of 2-variable LP Problems IE 400 Principles of Engineering Management Graphical Solution of 2-variable LP Problems Graphical Solution of 2-variable LP Problems Ex 1.a) max x 1 + 3 x 2 s.t. x 1 + x 2 6 - x 1 + 2x 2 8 x 1, x 2 0,

More information

Pre-Leaving Certificate Examination, 2017 Triailscrúdú na hardteistiméireachta, Mathematics. Paper 1. Higher Level. 2½ hours.

Pre-Leaving Certificate Examination, 2017 Triailscrúdú na hardteistiméireachta, Mathematics. Paper 1. Higher Level. 2½ hours. *P6* Pre-Leaving Certificate Examination, 2017 Triailscrúdú na hardteistiméireachta, 2017 Mathematics Paper 1 Higher Level 2½ hours 300 marks Name: School: Address: Class: Teacher: For examiner Question

More information

Solving Equations and Inequalities

Solving Equations and Inequalities Solving Equations and Inequalities Secondary Mathematics 3 Page Jordan School District Unit 4 Cluster (A.CED., A.SSE., and A.CED.4): Writing and Solving Equations and Inequalities in One Variable Cluster

More information

You solve inequalities the way you solve equations: Algebra Rule Equation Inequality 2x 5 = 3 2x 5 3. Add 5 to both sides 2x = 8 2x 8.

You solve inequalities the way you solve equations: Algebra Rule Equation Inequality 2x 5 = 3 2x 5 3. Add 5 to both sides 2x = 8 2x 8. 1. Math 210 Finite Mathematics Chapter 3.1 Halfplanes Chapter 3.2 Linear Programming Problems Chapter 3.3 Graphical Solution Professor Richard Blecksmith Dept. of Mathematical Sciences Northern Illinois

More information

The Graphical Method & Algebraic Technique for Solving LP s. Métodos Cuantitativos M. En C. Eduardo Bustos Farías 1

The Graphical Method & Algebraic Technique for Solving LP s. Métodos Cuantitativos M. En C. Eduardo Bustos Farías 1 The Graphical Method & Algebraic Technique for Solving LP s Métodos Cuantitativos M. En C. Eduardo Bustos Farías The Graphical Method for Solving LP s If LP models have only two variables, they can be

More information

Unit 7 Systems and Linear Programming

Unit 7 Systems and Linear Programming Unit 7 Systems and Linear Programming PREREQUISITE SKILLS: students should be able to solve linear equations students should be able to graph linear equations students should be able to create linear equations

More information

MTH 201 Applied Mathematics Sample Final Exam Questions. 1. The augmented matrix of a system of equations (in two variables) is:

MTH 201 Applied Mathematics Sample Final Exam Questions. 1. The augmented matrix of a system of equations (in two variables) is: MTH 201 Applied Mathematics Sample Final Exam Questions 1. The augmented matrix of a system of equations (in two variables) is: 2 1 6 4 2 12 Which of the following is true about the system of equations?

More information

OPERATIONS RESEARCH. Michał Kulej. Business Information Systems

OPERATIONS RESEARCH. Michał Kulej. Business Information Systems OPERATIONS RESEARCH Michał Kulej Business Information Systems The development of the potential and academic programmes of Wrocław University of Technology Project co-financed by European Union within European

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) Find the line passing through the two points. Write the equation

More information

Algebra 1 Unit 3 Practice

Algebra 1 Unit 3 Practice Lesson 1-1 Use the table for Items 1 and. Canoe Rental Days Cost ($) 1 5 3 78 5 1 7 13 1. Use function notation to write a linear function that gives the cost C in dollars of renting a canoe for t days.

More information

Math Homework 3: solutions. 1. Consider the region defined by the following constraints: x 1 + x 2 2 x 1 + 2x 2 6

Math Homework 3: solutions. 1. Consider the region defined by the following constraints: x 1 + x 2 2 x 1 + 2x 2 6 Math 7502 Homework 3: solutions 1. Consider the region defined by the following constraints: x 1 + x 2 2 x 1 + 2x 2 6 x 1, x 2 0. (i) Maximize 4x 1 + x 2 subject to the constraints above. (ii) Minimize

More information

Equations Quadratic in Form NOT AVAILABLE FOR ELECTRONIC VIEWING. B x = 0 u = x 1 3

Equations Quadratic in Form NOT AVAILABLE FOR ELECTRONIC VIEWING. B x = 0 u = x 1 3 SECTION.4 Equations Quadratic in Form 785 In Eercises, without solving the equation, determine the number and type of solutions... In Eercises 3 4, write a quadratic equation in standard form with the

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

You solved systems of equations algebraically and represented data using matrices. (Lessons 0-5 and 0-6)

You solved systems of equations algebraically and represented data using matrices. (Lessons 0-5 and 0-6) You solved systems of equations algebraically and represented data using matrices. (Lessons 0-5 and 0-6) Solve systems of linear equations using matrices and Gaussian elimination. Solve systems of linear

More information

PROJECT MANAGEMENT CHAPTER 1

PROJECT MANAGEMENT CHAPTER 1 PROJECT MANAGEMENT CHAPTER 1 Project management is the process and activity of planning, organizing, motivating, and controlling resources, procedures and protocols to achieve specific goals in scientific

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MAC 1105 Fall 2007 - Final Exam Dr. Schnackenberg If you do not agree with the given answers, answer "E" for "None of the above". MULTIPLE CHOICE. Choose the one alternative that best completes the statement

More information

4. Duality and Sensitivity

4. Duality and Sensitivity 4. Duality and Sensitivity For every instance of an LP, there is an associated LP known as the dual problem. The original problem is known as the primal problem. There are two de nitions of the dual pair

More information

Linear programming: introduction and examples

Linear programming: introduction and examples Linear programming: introduction and examples G. Ferrari Trecate Dipartimento di Ingegneria Industriale e dell Informazione Università degli Studi di Pavia Industrial Automation Ferrari Trecate (DIS) Linear

More information

Linear Programming. Businesses seek to maximize their profits while operating under budget, supply, Chapter

Linear Programming. Businesses seek to maximize their profits while operating under budget, supply, Chapter Chapter 4 Linear Programming Businesses seek to maximize their profits while operating under budget, supply, labor, and space constraints. Determining which combination of variables will result in the

More information

Section 2.2 Objectives

Section 2.2 Objectives Section 2.2 Objectives Solve multi-step equations using algebra properties of equality. Solve equations that have no solution and equations that have infinitely many solutions. Solve equations with rational

More information

Ω R n is called the constraint set or feasible set. x 1

Ω R n is called the constraint set or feasible set. x 1 1 Chapter 5 Linear Programming (LP) General constrained optimization problem: minimize subject to f(x) x Ω Ω R n is called the constraint set or feasible set. any point x Ω is called a feasible point We

More information