CHEM/ENVS 380 S14, Midterm Exam ANSWERS 1 Apr 2014

Size: px
Start display at page:

Download "CHEM/ENVS 380 S14, Midterm Exam ANSWERS 1 Apr 2014"

Transcription

1 PART- A. Multiple Choice Questions (5 points each): Each question may have more than one correct answer. You must select ALL correct answers, and correct answers only, to receive full credit. 1. Which of the following are redox reactions? In (b) and (f), the oxidation number of Ca is +2. all are redox reactions except b) and f) a. 2CO + O 2 à 2CO 2 [C is oxidized from +2 to +4; O is reduced from zero to -2] b. Ca(OH) 2 + SO 2 à CaSO 3 + H 2 O [oxidation states of S, O and H are unchanged at +4, -2 and +1, respectively] c. 2Pb + O 2 + 4H + à 2Pb H 2 O [O is reduced from zero to -2; Pb is oxidized from zero to +2] d. 6NO + 4NH 3 à 5N 2 + 6H 2 O [N in NO is reduced from +2 to zero; N in NH 3 is oxidized from -3 to zero] e. 2N 2 + 3H 2 à 2NH 3 [N is reduced from zero to -3; H is oxidized from zero to +1] f. CaCO 3 à CaO + CO 2 [oxidation states of C and O are unchanged at +4 and -2, respectively] g. HgS + O 2 à Hg + SO 2 [O is reduced from zero to -2; Hg is oxidized from some positive value (in this case +2) to zero; S is oxidized from -2 to +4. Note that even if you don t know the exact oxidation numbers of Hg and S, because O underwent reduction, you can state with certainty that this is a redox reaction.] h. 2Fe + O 2 + 2H 2 O à 2Fe OH - [O reduced from zero to -2; Fe is oxidized from zero to +2] i. Zn + Cu 2+ à Zn 2+ + Cu [Zn is oxidized from zero to +2; Cu is reduced from +2 to zero] 2. Halon has higher ODP (ozone depletion potential) than CFC- 12. This means that: a. CFC- 12 has a shorter atmospheric lifetime than halon b. if equal masses of halon and CFC- 12 were to be emitted into the atmosphere, halon will destroy more stratospheric ozone than CFC- 12 c. CFC- 12 is currently emitted at a lower rate than halon d. at present, halon is doing more damage to stratospheric ozone than CFC- 12 [This is a common misconception. ODP is a measure of potential to do damage. Even if an ODS has very large ODP, if it is not emitted into the air, it will do zero damage. To determine which ODS is doing most damage, one must examine the ODP along with the quantity of the ODP that is present in the atmosphere.] e. halon reaches the stratosphere at a faster rate than CFC Which of the following apply to the composition of Cl- containing gases in the stratosphere in the mid- to low- latitudes, and over the Antarctic when there is no ozone hole? a. catalytically- inactive species dominate b. catalytically- reactive species dominate c. Cl- source gases are absent d. HCl is the dominant gas e. there is too much variability to make any meaningful prediction 4. A soil sample has been found to contain As (arsenic) at a level of 650 ppb. This means that: a. the concentration of As in this sample is 6.5 x 10 5 ppm b. there are 650 moles of As in 10 9 grams of soil c. there are 650 ng of As in 1 gram of soil d. there are grams of As in 10 6 grams of soil e. the concentration of As in this sample is ppm 1

2 PART- B. Short Answer Questions Final Score / Answer the following questions on O 3. This question continues on to the next page. a. To the right, sketch a vertical profile of overhead O 3 in the Antarctic for the time of year when the ozone hole is absent. Clearly label the ozone layer. [5 pts] 50 km Ozone Hole Absent stratopause altitude ozone layer b. Prior to the Industrial Revolution, stratospheric O 3 levels are expected to have been at steady state. To maintain steady state, production rates must be balanced by destruction rates. Describe the major pathways through which stratospheric O 3 was produced and destroyed prior to the Industrial Revolution. Be thorough, but concise. [14 pts] 15 km Ozone (arbitrary units) tropopause Production Pathway(s) Stratospheric ozone is produced by photolysis of O 2 by short-wave radiation (UV-C or shorter) and the reaction of resulting atomic O with intact O 2 : O 2 + hν à 2O where hν represents photons in the UV-C or shorter range O + O 2 + M à O 3 + M + heat where M is a third body (typically N 2 of another O 2 ) 4 points total for this box Destruction Pathway(s) Stratospheric ozone is naturally destroyed through catalytic and non-catalytic pathways. Non-catalytic destruction occurs in the following two ways (loss mechanisms in Chapman Cycle): O 3 + hν à O 2 + O where hν represents photons in the UV-B or shorter range O 3 + O à 2O 2 The second reaction is slow in the absence of catalysts. Ozone is also destroyed through Mechanism-I and Mechanism-II that are driven by X catalysts (HO, NO, Cl, Br) that exist naturally in unpolluted air. Mechanism-I: O 3 + X à XO + O 2 XO + O à X + O 2 O 3 + O à 2O 2 (overall reaction) Mechanism-II (X and X are both catalysts): O 3 + X à XO + O 2 O 3 + X à X O + O 2 XO + X O à X + X + O 2 2O 3 à 3O 2 (overall reaction) 10 points total for this box 2

3 c. Sketch a vertical profile of overhead O 3 in the Antarctic during the time of year when the ozone hole is present [5 pts]. Why doesn t the ozone hole persist throughout the year? Explain. [9 pts] The ozone hole does not persist throughout the year, because its occurrence requires conditions that are met only during the polar night and in the early Austral spring. Low temperature and pressure over the Antarctic during the polar night allows the formation of a polar vortex and polar stratospheric clouds (PSCs). Ozone destruction occurs inside the polar vortex as a combined result of chemical reactions that occur on the PCSs and subsequent photochemical reactions that take place at the end of the polar night. As the temperature warms and the vortex disintegrates and PSCs disappear, the ozone hole dissipates due to termination of the loss process, and mixing of ozone- (and NOO-) rich air into ozone- (and NOO-) poor air over the Antarctic. 50 km altitude 15 km Ozone Hole Present stratopause ozone layer is mostly gone tropopause Ozone (arbitrary units) 6. Using the information provided below and at the end of this exam, show that UV- C photons carry sufficient energy to photodissociate (a) O 2 to atomic O, and (b) O 3 to O 2 and O. [9 pts] O 2 à O + O O 3 à O 2 + O H rxn = 498 kj mol rxn - 1 H rxn = 105 kj mol rxn - 1 The above tells us that the first reaction (photolysis of O 2 ) requires more energy than the second reaction (photolysis of O 3 to O 2 + O). Therefore, if UV-C photons are sufficiently energetic to make the first reaction go, they are also energetic enough to make the second reaction proceed. Plan: We are given the energy of a mole of photons (498 kj/mol). Convert this to wavelength, and find where in the electromagnetic spectrum this lies. Solution: The relationship between the energy and wavelength of a single photon is given at the end of this exam. Scale this up to a mole by multiplying it by the Avogadro s number, N A E of a mole of photons = hcn A λ hcn λ = A E of a mole of photons Using the values given at the end of the exam for constants h, c and N A, and setting E of a mole of photons equal to 498 kj mol -1, one obtains λ = x 10-6 m = 240 nm. This is in the middle of the UV-C range (see end of exam). Therefore, UV-C photons (specifically those in the shorter half of the UV-C range) are energetic enough to make both of these reactions proceed. 3

4 7. Why do halons have high ozone depletion potential (ODP) relative to other ozone depleting substances? [9 pts] Halons are unique in that they contain Br in addition to Cl. With the exception of winter-early spring at the poles when the ozone hole is present, Cl exists primarily as reservoir species (or catalytically inactive forms; HCl and ClONOO) rather than in catalytically reactive forms (Cl and ClO). In contrast, Br exists primarily in catalytically reactive forms (Br and BrO) at all times, allowing Br to destroy more O 3 than Cl when compared on an equal-mass basis. This makes halons have higher ODP relative to other ozone depleting substances. (Note that the atmospheric lifetimes of halons are not that different from those of some major CFCs.) 8. The following reactions show the oxidation of methane to CO 2 (rxn- 1), oxidation of NO to NOO by hydroperoxy radicals (rxn- 2), photodissociation of NOO (rxn- 3), and generation of O 3 (rxn- 4) during a photochemical smog event. Please answer the questions below. CH 4 + 5O 2 + NO + 2HO à CO 2 + H 2 O + NOO + 4HOO (rxn- 1) 4HOO + 4NO à 4NOO + 4HO (rxn- 2) 5NOO + hν à 5NO + 5O (rxn- 3) 5O + 5O 2 à 5O 3 (rxn- 4) a. Add up the four reactions and derive the overall reaction. [5 pts] Add up reactions and cancel common terms that show up on opposite sides of reaction. Print overall reaction in this box: CH O 2 + hν à CO 2 + H 2 O + 2HO + 5O 3 b. Referring to the reactions above, describe how the production of O 3 during a photochemical smog event is fundamentally different from the production of O 3 in the stratosphere. [8 pts] As discussed in the answer to question 5 b), ozone production in the stratosphere is initiated by photolysis of O 2 by short-wavelength radiation (UV-C or shorter). Given that only limited UV-C penetrates the atmosphere to reach ground level, one would expect ozone production at ground level to occur through fundamentally different pathways, and that is indeed the case. Ozone is formed at ground level through reaction of O 2 with atomic O (rxn-4), but unlike the case in the stratosphere, atomic O is generated from the photolysis of NOO (rxn-3) in the presence of photons in the UV-A or shorter regions of the electromagnetic spectrum. NOO itself is generated by oxidation of NO by HOO (rxn-2) or ROO. HOO and ROO are byproducts of VOC oxidation in warm, stable air in the presence of sunlight (rxn-1). 4

5 9. Explain how driving a car with a conventional internal combustion engine is linked to acid rain. [8 pts] Internal combustion engines in conventional cars run hot enough to create NO from atmospheric N 2 and O 2 : N 2 + O 2 à 2NO NO (nitric oxide) thus formed is oxidized to NOO in the photochemical smog cycle. A major fate of NOO is conversion into nitric acid (HNO 3 ) through reaction with HO radical: NOO + HO à HNO 3 The above reaction is an example of many termination reactions that occur at the end of a smoggy day. 10. Using chemical reactions, explain why pure water becomes acidic when left to equilibrate with unpolluted air. In your description, distinguish dominant from non- dominant reactions. Assume 25 C and 1 atm pressure. Note that you are not expected to calculate the ph of this system. [8 pts] Water in equilibrium with unpolluted air is naturally acidic due to the presence of CO 2 in the air. (Note that there are also strong acids such as HNO 3 and H 2 SO 4 in unpolluted air, but you are not expected to include them here, because we have not yet discussed them in class.) The following reactions show the dissolution of CO 2 (g) into water, followed by ionization of carbonic acid that lowers the ph: CO 2 (g) + H 2 O H 2 CO 3 (1) H 2 CO 3 H HCO 3 (2) HCO - 3 H CO 3 (3) Reactions (1) and (2) dominate over reaction (3), as seen from the equilibrium constants given at the end of this exam. Adding reactions (1) and (2) give the overall reaction: CO 2 (g) + H 2 O H + + HCO 3 - The overall effect is to lower the ph from neutral (ph 7) to an acidic value. Resources Commonly used prefixes: n = nano = 10-9 µ = micro = 10-6 m = milli = 10-3 k = kilo = = million 10 9 = billion Some regions of the electromagnetic spectrum (in nm): , (UV-C); (UV-B); (UV-A); (VIS); >750 (IR) Energy, E of a single photon = hc/λ, where h is the Planck s constant (6.63 x J s), c is the speed of light in vacuum (3.00 x 10 8 m s -1 ), and λ is the wavelength of the photon (in meters, m). Avogadro s number = 6.02 x mol -1 Dissociation constants for the carbonate system (298 K): CO 2 (g) + H 2 O à H 2 CO 3 K H = 3.4 x 10-2 mol/l/atm H 2 CO 3 à H HCO 3 K a1 = 4.5 x 10-7 HCO - 3 à H CO 3 K a2 = 4.7 x

Measurements of Ozone. Why is Ozone Important?

Measurements of Ozone. Why is Ozone Important? Anthropogenic Climate Changes CO 2 CFC CH 4 Human production of freons (CFCs) Ozone Hole Depletion Human production of CO2 and CH4 Global Warming Human change of land use Deforestation (from Earth s Climate:

More information

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column.

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column. 190 PROBLEMS 10. 1 Shape of the ozone layer Consider a beam of solar radiation of wavelength λ propagating downward in the vertical direction with an actinic flux I at the top of the atmosphere. Assume

More information

Tananyag fejlesztés idegen nyelven

Tananyag fejlesztés idegen nyelven Tananyag fejlesztés idegen nyelven Prevention of the atmosphere KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖKI MSC (MSc IN AGRO-ENVIRONMENTAL STUDIES) Fundamentals to atmospheric chemical reactions. The stratospheric

More information

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion Chemistry 471/671 Atmospheric Chemistry III: Stratospheric Ozone Depletion 2 The Chapman Mechanism O 2 + hn 2 O( 1 D) O( 1 D) + O 2 + M O 3 + M Exothermic O( 1 D) + O 3 2 O 2 O 3 + hn O( 1 D) + O 2 ( 1

More information

Topic # 15 OZONE DEPLETION IN THE STRATOSPHERE. see pp in Class Notes

Topic # 15 OZONE DEPLETION IN THE STRATOSPHERE. see pp in Class Notes Topic # 15 OZONE DEPLETION IN THE STRATOSPHERE see pp 81-85 in Class Notes [ The Ozone Treaty is ] the first truly global treaty that offers protection to every single human being. ~ Mostofa K. Tolba,

More information

Chapman Cycle. The cycle describes reactions of O 2 and O 3 in stratosphere

Chapman Cycle. The cycle describes reactions of O 2 and O 3 in stratosphere Chapman Cycle The cycle describes reactions of O 2 and O 3 in stratosphere Even though reactions are happening, the concentration of O 3 remains constant This is an example of a dynamic equilibrium or

More information

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2 Lecture 36. Stratospheric ozone chemistry. Part2: Threats against ozone. Objectives: 1. Chlorine chemistry. 2. Volcanic stratospheric aerosols. 3. Polar stratospheric clouds (PSCs). Readings: Turco: p.

More information

Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151

Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151 Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151 1 Ozone Hole Theories 1. Solar activity: During periods of high solar activity, energetic particles are deposited high in the atmosphere, creating NOx. Perhaps

More information

Topic # 13 (cont.) OZONE DEPLETION IN THE STRATOSPHERE Part II

Topic # 13 (cont.) OZONE DEPLETION IN THE STRATOSPHERE Part II Topic # 13 (cont.) OZONE DEPLETION IN THE STRATOSPHERE Part II A Story of Anthropogenic Disruption of a Natural Steady State p 77-79 in Class Notes REVIEW... Q Is the depletion of STRATOSPHERIC OZONE (in

More information

Chapman. 4. O + O 3 2 O 2 ; k 4 5. NO + O 3 NO 2 + O 2 ; k 5 6. NO 2 + O NO + O 2 ; k 6 7. NO 2 + hν NO + O; k 7. NO X Catalytic.

Chapman. 4. O + O 3 2 O 2 ; k 4 5. NO + O 3 NO 2 + O 2 ; k 5 6. NO 2 + O NO + O 2 ; k 6 7. NO 2 + hν NO + O; k 7. NO X Catalytic. ATM 507 Lecture 8 Text reading Section 5.7 Problem Set # 2 due Sept. 30 Note: next week class as usual Tuesday, no class on Thursday Today s topics Mid-latitude Stratosphere Lower Stratosphere 1 Let s

More information

Lecture 25: Atmosphere & environment

Lecture 25: Atmosphere & environment Lecture 25: Atmosphere & environment Read: BLB 18.1 4 HW: BLB 18:9,11,15,29,69 Sup 18:1 3 Know: ozone chemistry chemistry of the lower atmosphere sulfer compounds & acid rain nitrogen oxides & smog check

More information

NATS 101 Section 13: Lecture 31. Air Pollution Part II

NATS 101 Section 13: Lecture 31. Air Pollution Part II NATS 101 Section 13: Lecture 31 Air Pollution Part II Last time we talked mainly about two types of smog:. 1. London-type smog 2. L.A.-type smog or photochemical smog What are the necessary ingredients

More information

Unique nature of Earth s atmosphere: O 2 present photosynthesis

Unique nature of Earth s atmosphere: O 2 present photosynthesis Atmospheric composition Major components N 2 78% O 2 21% Ar ~1% Medium components CO 2 370 ppmv (rising about 1.5 ppmv/year) CH 4 1700 ppbv H 2 O variable Trace components H 2 600 ppbv N 2 O 310 ppbv CO

More information

Stratosphere and Ozone

Stratosphere and Ozone Stratosphere and Ozone Ozone (Greek, ozein, to smell) O 3 Chapman Mechanism O 2 + hv O + O O + O 3 2O 2 O 3 + hv O 2 + O O + O 2 + M O 3 + M third-body. anything What units are used to report the amount

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. chem10b 18.2-30 What is the final stage in municipal water treatment? A. aeration B. settling C. removal of added fluoride

More information

ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer. Some perspective The British Antarctic Survey The Ozone Hole International Regulations

ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer. Some perspective The British Antarctic Survey The Ozone Hole International Regulations ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer Some perspective The British Antarctic Survey The Ozone Hole International Regulations Rowland (1974): The work is going very well, but it may mean the

More information

DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW UNIVERSITY OF VICTORIA. CHEMISTRY 102 Midterm Test 1 February 1, pm (60 minutes)

DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW UNIVERSITY OF VICTORIA. CHEMISTRY 102 Midterm Test 1 February 1, pm (60 minutes) SECTION: (circle one): A01 MR (Dr. Lipson) A02 (Dr. Briggs) A03 MWR (Dr. Brolo) NAME Student No. V0 (Please print clearly.) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Version A UNIVERSITY

More information

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1 ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1 Note Page numbers refer to Daniel Jacob s online textbook: http://acmg.seas.harvard.edu/publications/ jacobbook/index.html Atmos = vapor + sphaira

More information

CHAPTER 17 CHEMISTRY IN THE ATMOSPHERE

CHAPTER 17 CHEMISTRY IN THE ATMOSPHERE CHAPTR 17 CHMISTRY IN TH ATMOSPHR 17.5 or ideal gases, mole fraction is the same as volume fraction. rom Table 17.1 of the text, CO is 0.0% of the composition of dry air, by volume. The value 0.0% means

More information

Section 3 Environmental Chemistry

Section 3 Environmental Chemistry Section 3 Environmental Chemistry 1 Environmental Chemistry Definitions Chemical Reactions Stoichiometry Photolytic Reactions Enthalpy and Heat of Reaction Chemical Equilibria ph Solubility Carbonate Systems

More information

Stratospheric O 3 : Overview

Stratospheric O 3 : Overview Stratospheric Chemistry READING: Chapter 10 of text Mid-latitude Ozone Chemistry (and depletion) Polar Ozone Destruction (the Ozone Hole) Stratospheric O 3 : Overview Most O 3 (90%) in stratosphere. Remaining

More information

Chapter 2 Protecting the Ozone Layer. The Ozone Hole

Chapter 2 Protecting the Ozone Layer. The Ozone Hole Today (Tues 2/24) Newspaper Articles: Ciara Rodwell and Melissa Regan Intro to Ozone, Ozone Hole, & Chapter 2 Light, matter, and human health! Laboratory: Experiment 4 You design investigation Start Ozone

More information

The Atmosphere. All of it. In one hour. Mikael Witte 10/27/2010

The Atmosphere. All of it. In one hour. Mikael Witte 10/27/2010 The Atmosphere All of it. In one hour. Mikael Witte 10/27/2010 Outline Structure Dynamics - heat transport Composition Trace constituent compounds Some Atmospheric Processes Ozone destruction in stratosphere

More information

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual Ch 4 Chemical Reactions Ionic Theory of Solutions - Ionic substances produce freely moving ions when dissolved in water, and the ions carry electric current. (S. Arrhenius, 1884) - An electrolyte is a

More information

Topic # 14 OZONE DEPLETION IN THE STRATOSPHERE

Topic # 14 OZONE DEPLETION IN THE STRATOSPHERE Topic # 14 OZONE DEPLETION IN THE STRATOSPHERE A Story of Anthropogenic Disruption of a Natural Steady State p 77 in Class Notes AN OZONE-RELATED CARTOON: MISCONCEPTION! Q1 Is the depletion of STRATOSPHERIC

More information

Chem. 1B Final Practice First letter of last name

Chem. 1B Final Practice First letter of last name Chem. 1B Final Practice First letter of last name Name Student Number All work must be shown on the exam for partial credit. Points will be taken off for incorrect or no units. Calculators are allowed.

More information

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 10. Stratospheric chemistry Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 The ozone layer Dobson unit: physical thickness (0.01 mm) of ozone layer if compressed to 1 atm, 0 o

More information

Chemistry 112, Spring 2006 Prof. Metz Final Exam Name Each question is worth 4 points, unless otherwise noted

Chemistry 112, Spring 2006 Prof. Metz Final Exam Name Each question is worth 4 points, unless otherwise noted Chemistry 112, Spring 2006 Prof. Metz Final Exam Name Each question is worth 4 points, unless otherwise noted 1. The predominant intermolecular attractive force in solid sodium is: (A) metallic (B) ionic

More information

CHEMISTRY 107 Section 501 Final Exam Version A December 12, 2016 Dr. Larry Brown

CHEMISTRY 107 Section 501 Final Exam Version A December 12, 2016 Dr. Larry Brown NAME: (print) UIN #: CHEMISTRY 107 Section 501 Final Exam Version A December 12, 2016 Dr. Larry Brown This is a 2-hour exam, and contains 11 problems. There should be 14 numbered pages, including this

More information

Atmospheric Chemistry III

Atmospheric Chemistry III Atmospheric Chemistry III Chapman chemistry, catalytic cycles: reminder Source of catalysts, transport to stratosphere: reminder Effect of major (O 2 ) and minor (N 2 O, CH 4 ) biogenic gases on [O 3 ]:

More information

PROBLEMS Sources of CO Sources of tropospheric ozone

PROBLEMS Sources of CO Sources of tropospheric ozone 220 PROBLEMS 11. 1 Sources of CO The two principal sources of CO to the atmosphere are oxidation of CH 4 and combustion. Mean rate constants for oxidation of CH 4 and CO by OH in the troposphere are k

More information

NAME Student No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Mid-Term Test I February 3, Part II Score Exam results Score

NAME Student No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Mid-Term Test I February 3, Part II Score Exam results Score NAME Student No. Section (circle one): A01 (Lipson) A02 (Briggs) A03 (Cartwright) UNIVERSITY OF VICTORIA Version B CHEMISTRY 102 Mid-Term Test I February 3, 2012 Version B This test has two parts: (A Data

More information

NAME Student No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Mid-Term Test I February 3, Part II Score Exam results Score

NAME Student No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Mid-Term Test I February 3, Part II Score Exam results Score NAME Student No. Section (circle one): A01 (Lipson) A02 (Briggs) A03 (Cartwright) UNIVERSITY OF VICTORIA Version A CHEMISTRY 102 Mid-Term Test I February 3, 2012 Version A This test has two parts: (A Data

More information

CHEM 101 Fall 09 Final Exam (a)

CHEM 101 Fall 09 Final Exam (a) CHEM 101 Fall 09 Final Exam (a) On the answer sheet (scantron) write your name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it on

More information

Stratospheric Ozone Depletion, Regional Ozone, Aerosols: Connections to Climate Change

Stratospheric Ozone Depletion, Regional Ozone, Aerosols: Connections to Climate Change Stratospheric Ozone Depletion, Regional Ozone, Aerosols: Connections to Climate Change Jeff Gaffney Chemistry Department University of Arkansas at Little Rock DOE Biological and Environmental Science Climate

More information

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Version A UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) Version A DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Answer all multiple choice questions

More information

1. (4) For this reaction: NO 2. + H 3 AsO 3 D H 2 AsO 3

1. (4) For this reaction: NO 2. + H 3 AsO 3 D H 2 AsO 3 Exam 1 Chem 1B, Spring 2017 Fossum Name: There are 6 points of extra credit built in to this exam. Always show your work and explain your reasoning, include units, and check significant figures. Note:

More information

NAME Student ID No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Term Test I February 4, 2011

NAME Student ID No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Term Test I February 4, 2011 NAME Student ID No. Section (circle one): A01 (Dr. Lipson) A02 (Dr. Briggs) A03 (Dr. Brolo) UNIVERSITY OF VICTORIA Version A CHEMISTRY 102 Term Test I February 4, 2011 Version A This test has two parts:

More information

14.4 Reaction Mechanism

14.4 Reaction Mechanism 14.4 Reaction Mechanism Steps of a Reaction Fred Omega Garces Chemistry 201 Miramar College 1 Reaction Mechanism The Ozone Layer Ozone is most important in the stratosphere, at this level in the atmosphere,

More information

3. Which of the following elements is primarily responsible for the photochemical smog? Chemistry 12, Exam III, Form A, April 4, 2001

3. Which of the following elements is primarily responsible for the photochemical smog? Chemistry 12, Exam III, Form A, April 4, 2001 Chemistry 12, Exam III, Form A, April 4, 2001 In all questions involving gases, assume that the ideal-gas laws hold, unless the question specifically refers to the non-ideal behavior. 1. It takes 21.3

More information

Chapter 2: Protecting the Ozone Layer

Chapter 2: Protecting the Ozone Layer Chapter 2: Protecting the Ozone Layer Student: 1. O2 and O3 molecules are A. allotropes. B. structural isomers. C. isotopes. D. geometrical isomers. 2. How many protons, neutrons, and electrons are there

More information

STRATOSPHERIC OZONE DEPLETION. Adapted from K. Sturges at MBHS

STRATOSPHERIC OZONE DEPLETION. Adapted from K. Sturges at MBHS STRATOSPHERIC OZONE DEPLETION Adapted from K. Sturges at MBHS Ozone Layer Ozone is Good up high Stratosphere Bad nearby Troposphere Solar Radiation - range of electromagnetic waves UV shortest we see if

More information

(g) 2NH 3. (g) ΔH = 92 kj mol 1

(g) 2NH 3. (g) ΔH = 92 kj mol 1 1 The uses of catalysts have great economic and environmental importance For example, catalysts are used in ammonia production and in catalytic converters (a) Nitrogen and hydrogen react together in the

More information

General Chemistry. Contents. Chapter 8: The Atmospheric Gases and Hydrogen. Composition of Dry Air. 8-1 The Atmosophere. Chemicals from the Atmosphere

General Chemistry. Contents. Chapter 8: The Atmospheric Gases and Hydrogen. Composition of Dry Air. 8-1 The Atmosophere. Chemicals from the Atmosphere General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 8: The Atmospheric Gases and Hydrogen Philip Dutton University of Windsor, Canada N9B 3P4 Contents 8-1

More information

General Chemistry. Chapter 8: The Atmospheric Gases and Hydrogen. Principles and Modern Applications Petrucci Harwood Herring 8 th Edition

General Chemistry. Chapter 8: The Atmospheric Gases and Hydrogen. Principles and Modern Applications Petrucci Harwood Herring 8 th Edition General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 8: The Atmospheric Gases and Hydrogen Philip Dutton University of Windsor, Canada N9B 3P4 Prentice-Hall

More information

ATM 507 Lecture 9 Text reading Section 5.7 Problem Set # 2 due Sept. 30 Next Class Tuesday, Sept. 30 Today s topics Polar Stratospheric Chemistry and the Ozone Hole, Required reading: 20 Questions and

More information

Name. Practice Test 2 Chemistry 111

Name. Practice Test 2 Chemistry 111 Name Practice Test 2 Chemistry 111 1) In the aqueous reaction of K 2 SO 4 (aq) + Ba(NO 3 ) 2 (aq) BaSO 4 (s) + 2KNO 3 (aq), which ions are the spectator ions? A) Ba 2+ 2- and SO 4 B) Ba 2+ and K + C) Ba

More information

f N 2 O* + M N 2 O + M

f N 2 O* + M N 2 O + M CHM 5423 Atmospheric Chemistry Problem Set 2 Due date: Thursday, February 7 th. Do the following problems. Show your work. 1) Before the development of lasers, atomic mercury lamps were a common source

More information

Topic # 13 (cont.) OZONE DEPLETION IN THE STRATOSPHERE Part II

Topic # 13 (cont.) OZONE DEPLETION IN THE STRATOSPHERE Part II Topic # 13 (cont.) OZONE DEPLETION IN THE STRATOSPHERE Part II A Story of Anthropogenic Disruption of a Natural Steady State p 77-79 in Class Notes THE DESTRUCTION OF STRATOSPHERIC OZONE The ozone hole

More information

2. Write a balanced chemical equation which corresponds to the following equilibrium constant expression.

2. Write a balanced chemical equation which corresponds to the following equilibrium constant expression. Practice Problems for Chem 1B Exam 1 Chapter 14: Chemical Equilibrium 1. Which of the following statements is/are CORRECT? 1. For a chemical system, if the reaction quotient (Q) is greater than K, products

More information

F325: Equilibria, Energetics and Elements How Far?

F325: Equilibria, Energetics and Elements How Far? F325: Equilibria, Energetics and Elements 5.1.2 How Far? 100 marks 1. Syngas is a mixture of carbon monoxide and hydrogen gases, used as a feedstock for the manufacture of methanol. A dynamic equilibrium

More information

CHEM 101 Fall 09 Exam 1 (a)

CHEM 101 Fall 09 Exam 1 (a) CHEM 101 Fall 09 Exam 1 (a) On the answer sheet (scantron) write your name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it on your

More information

Earth and Planetary Sciences 5 Midterm Exam January 22, 2008

Earth and Planetary Sciences 5 Midterm Exam January 22, 2008 Earth and Planetary Sciences 5 Midterm Exam January 22, 2008 Name: Teaching Fellow: INSTRUCTIONS PUT YOUR NAME ON EACH PAGE. Complete the problems directly on the exam. Extra paper is available if needed.

More information

Reaction Mechanisms. Chemical Kinetics. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms

Reaction Mechanisms. Chemical Kinetics. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms Chemical Kinetics Kinetics is a study of the rate at which a chemical reaction occurs. The study of kinetics may be done in steps: Determination of reaction mechanism Prediction of rate law Measurement

More information

Kwantlen Polytechnic University Chemistry 1105 S10 Spring Term Test No. 3 Thursday, April 4, 2013

Kwantlen Polytechnic University Chemistry 1105 S10 Spring Term Test No. 3 Thursday, April 4, 2013 Kwantlen Polytechnic University Chemistry 1105 S10 Spring Term Test No. 3 Thursday, April 4, 2013 Name: Student Number Instructions: Ensure that this exam contains all eight pages including this page.

More information

2. (i) Infrared (radiation absorbed) by (C H) bond vibration ALLOW bond stretching OR bond bending DO NOT ALLOW molecules vibrating 2

2. (i) Infrared (radiation absorbed) by (C H) bond vibration ALLOW bond stretching OR bond bending DO NOT ALLOW molecules vibrating 2 . (i) Species with an unpaired electron ALLOW atom, molecule or particle with an unpaired electron ALLOW has an unpaired electron ALLOW particle formed by homolytic fission DO NOT ALLOW particle with a

More information

SUSTAINABILITY MATTERS FACT SHEET 7: THE HOLE IN THE OZONE LAYER

SUSTAINABILITY MATTERS FACT SHEET 7: THE HOLE IN THE OZONE LAYER SUSTAINABILITY MATTERS FACT SHEET 7: THE HOLE IN THE OZONE LAYER What is the ozone layer? Ozone is an allotrope of oxygen, which means it is a pure element, but has a different chemical structure to that

More information

CFC Numbering System Add 90 to the number; the three digits represent the numbers of C, H, F atoms; make up the rest of the "unused bonds" with Cl.

CFC Numbering System Add 90 to the number; the three digits represent the numbers of C, H, F atoms; make up the rest of the unused bonds with Cl. The CFC Story CFC - chlorofluorocarbon Saturated carbon compounds with carbon bonded to chlorine and fluorine Were/are used as: Refrigerants Propellants for foams Propellants for aerosols CFC Numbering

More information

1. How many protons, electrons, and neutrons are in one atom of the following isotopes (6 points)?

1. How many protons, electrons, and neutrons are in one atom of the following isotopes (6 points)? Chemistry 11 Department of Physical Sciences Kingsborough Community College City University of New York NAME Exam 1: Chapters 1-3 50 points 1. How many protons, electrons, and neutrons are in one atom

More information

1. How many electrons, protons and neutrons does 87 Sr 2+ have?

1. How many electrons, protons and neutrons does 87 Sr 2+ have? ***This is a sample exam is lacking some questions over chapter 12 as this is a new chapter for the general chemistry sequence this semester. For a sampling of some chapter 12 problems, see the additional

More information

Outline. Chemical lifetime. Photochemistry. Ozone chemistry Chapman model Catalytic cycles Ozone hole. Institute of Applied Physics University of Bern

Outline. Chemical lifetime. Photochemistry. Ozone chemistry Chapman model Catalytic cycles Ozone hole. Institute of Applied Physics University of Bern Institute of Applied Physics University of Bern Outline Introduction Chemical reactions between stable molecules are quite slow in planetary s Absorption of solar UV-radiation leads to the production of

More information

Review of Lectures 9 to 16 AOSC 433/633 & CHEM 433. Ross Salawitch

Review of Lectures 9 to 16 AOSC 433/633 & CHEM 433. Ross Salawitch Review of Lectures 9 to 16 AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2015 Review of Problem Set #4 will be held Mon, 13 April 6:30 pm Unfortunately the

More information

1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time

1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time Name answer key period IB topic 6 Kinetics 1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time b. the reaction between C

More information

P T = P A + P B + P C..P i Boyle's Law The volume of a given quantity of gas varies inversely with the pressure of the gas, at a constant temperature.

P T = P A + P B + P C..P i Boyle's Law The volume of a given quantity of gas varies inversely with the pressure of the gas, at a constant temperature. CHEM/TOX 336 Winter 2004 Lecture 2 Review Atmospheric Chemistry Gas Chemistry Review The Gaseous State: our atmosphere consists of gases Confined only by gravity force of gas on a unit area is due to the

More information

Chemistry 400: General Chemistry Miller Exam II November 4, 2015 Approximately 150 points

Chemistry 400: General Chemistry Miller Exam II November 4, 2015 Approximately 150 points Chemistry 400: General Chemistry Name: Miller Exam II November 4, 2015 Approximately 150 points Please answer each of the following questions to the best of your ability. If you wish to receive partial

More information

Lecture 6 - spectroscopy

Lecture 6 - spectroscopy Lecture 6 - spectroscopy 1 Light Electromagnetic radiation can be thought of as either a wave or as a particle (particle/wave duality). For scattering of light by particles, air, and surfaces, wave theory

More information

Test 1 Chemistry 9 Dr. Kline January 14, 2016

Test 1 Chemistry 9 Dr. Kline January 14, 2016 Test 1 Chemistry 9 Dr. Kline January 14, 2016 Name There should be a total of nineteen questions on four pages; please check to make sure that they are all here. Do not use your own tables, scratch paper

More information

Unit 5 - Energetics. Exo vs Endo, Enthalpy, Hess s Law, Born-Haber, Entropy, Spontaneity (Gibbs Free Energy)

Unit 5 - Energetics. Exo vs Endo, Enthalpy, Hess s Law, Born-Haber, Entropy, Spontaneity (Gibbs Free Energy) Unit 5 - Energetics Exo vs Endo, Enthalpy, Hess s Law, Born-Haber, Entropy, Spontaneity (Gibbs Free Energy) Heating some water... You re job is to figure out how we can find the heat change for one mole

More information

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK 17.29 At 425 o C, Kp = 4.18x10-9 for the reaction 2HBr(g) H 2 (g) + Br 2 (g) In one experiment, 0.20 atm of HBr(g), 0.010 atm of H 2 (g), and 0.010

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 M15/4/CHEMI/SPM/ENG/TZ1/XX Chemistry Standard level Paper 1 Thursday 14 May 2015 (afternoon) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all

More information

Ozone in the Atmosphere

Ozone in the Atmosphere Ozone in the Atmosphere Why are we concerned with ozone? This simple molecule affects us in very important ways. It protects us, as well as all animals and plants on our planet, from the harm that ultraviolet

More information

Please take a seat in Row Seat

Please take a seat in Row Seat Chem 106 Spring 2011 Hour Exam 3 Chap 19,20,Environ,22,23 Kotz 7 th Ed NAMEPRACTICE Please take a seat in Row_ Seat_ Please: Keep this booklet closed until instructed to open it. Turn off and remove from

More information

Chemistry of Ozone. Explain the following terms: resonance, resonance hybrid, delocalisation

Chemistry of Ozone. Explain the following terms: resonance, resonance hybrid, delocalisation Chemistry of Ozone Ozone is triatomic oxygen, O 3. (Ozone is from the Greek ozein, to smell. ) It is a form of oxygen in which the atoms combine in threes, (correct IUPAC name: trioxygen, O 3 ), rather

More information

O 3 + UV photon (λ < 320 nm) O 2 * + O* O 3 + O 2O 2

O 3 + UV photon (λ < 320 nm) O 2 * + O* O 3 + O 2O 2 Tro Chpt 13 Chemical Kinetics Rate of a chemical reaction Effect of concentration on reaction rate Integrated rate laws: How concentrations change with time Effect of temperature on rate Reaction mechanisms

More information

Section EXAM III Total Points = 150. November 15, Each student is responsible for following directions. Read this page carefully.

Section EXAM III Total Points = 150. November 15, Each student is responsible for following directions. Read this page carefully. Name Chemistry 11100 Test 66 Section EXAM III Total Points = 150 TA Thursday, 8:00 PM November 15, 2012 Directions: 1. Each student is responsible for following directions. Read this page carefully. 2.

More information

CHEMpossible. Final Exam Review

CHEMpossible. Final Exam Review CHEMpossible Final Exam Review 1. Given the following pair of reactions and their equilibrium constants: 2NO 2 (g) 2NO (g) + O 2 (g) K c = 15.5 2NO (g) + Cl 2 (g) 2 NOCl (g) K c = 3.20 10-3 Calculate a

More information

Chapter 18 problems (with solutions)

Chapter 18 problems (with solutions) Chapter 18 problems (with solutions) 1) Assign oxidation numbers for the following species (for review see section 9.4) a) H2SO3 H = +1 S = +4 O = -2 b) Ca(ClO3)2 Ca = +2 Cl = +5 O = -2 c) C2H4 C = -2

More information

Concentration 0. 5 M solutions 1. 0 M solutions. Rates Fast Slow. Which factor would account for the faster reaction rate in Experiment 1?

Concentration 0. 5 M solutions 1. 0 M solutions. Rates Fast Slow. Which factor would account for the faster reaction rate in Experiment 1? 72. Consider the following experimental results: Experiment 1 Experiment 2 2+ - - 4 2 2 4 aq Reactants Fe ( aq) + MnO4 ( aq) MnO ( aq) + H C O ( ) Temperature 20 C 40 C Concentration 0. 5 M solutions 1.

More information

CHEMISTRY 110 Final EXAM Dec 17, 2012 FORM A

CHEMISTRY 110 Final EXAM Dec 17, 2012 FORM A CEMISTRY 110 Final EXAM Dec 17, 2012 FORM A 1. Given the following reaction which of the following statements is true? Fe(s) + CuCl 2 (aq)! Cu(s) + FeCl 2 (aq) A. Iron is oxidized and copper is reduced.

More information

CHEM Chemical Kinetics

CHEM Chemical Kinetics Chemical Kinetics Catalysts A catalyst is a substance that increases the rate of the reaction but is neither created nor destroyed in the process. Catalysts can be divided into two broad categories. Homogeneous

More information

Name Section Number TA. 1. You may use crib sheets which you prepared in your own handwriting. This may be up to

Name Section Number TA. 1. You may use crib sheets which you prepared in your own handwriting. This may be up to 1. You may use crib sheets which you prepared in your own handwriting. This may be up to five 8-1/2 by 11 inch sheets of paper with handwriting only on one side. This corresponds to one page each for Chapters

More information

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base Pole Eq Lecture 3: ATMOSPHERE (Outline) JS JP Hadley Cell Ferrel Cell Polar Cell (driven by eddies) L H L H Basic Structures and Dynamics General Circulation in the Troposphere General Circulation in the

More information

January 23, Lecture 3. The Ozone Chemistry.

January 23, Lecture 3. The Ozone Chemistry. Lecture 3 January 23, 2018 The Ozone Chemistry http://svs.gsfc.nasa.gov/vis/a010000/a010000/a010015/index.html The atmosphere is divided vertically into four layers based on temperature: the troposphere,

More information

ATM 507 Meeting 6. ftp://ftp.nilu.no/pub/nilu/geir/assessment-2006/10%20q&aschapter.pdf

ATM 507 Meeting 6. ftp://ftp.nilu.no/pub/nilu/geir/assessment-2006/10%20q&aschapter.pdf ATM 507 Meeting 6 Text reading Section 5.7 Problem Set # 4 due Oct. 11 Today s topics Polar Stratospheric Chemistry and the Ozone Hole, Global Ozone Trends Required reading: 20 Questions and Answers from

More information

The Layered Atmosphere:

The Layered Atmosphere: The Layered Atmosphere: The Earth s Atmosphere Like all the planets, the Earth s atmosphere is highly distinct. What makes it different from the other terrestrial planets? Comparative Planetology The basic

More information

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT?

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT? 1 Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT? A) The collisions between gas molecules are perfectly elastic. B) At absolute zero, the average kinetic

More information

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C Units of Energy Like we saw with pressure, many different units are used throughout the world for energy. SI unit for energy 1kg m 1J = 2 s 2 Joule (J) calorie (cal) erg (erg) electron volts (ev) British

More information

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be Name (Print) Section # or TA 1. You may use a crib sheet which you prepared in your own handwriting. This may be one 8-1/2 by 11 inch sheet of paper with handwriting only on one side. 2. You may use a

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium 12-1 12.1 Reaction Rates a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow 12-2 12.2 Collision Theory In order for a

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium : 12-1 12.1 Reaction Rates : a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow: 12-2 1 12.2 Collision Theory In order

More information

Stratospheric Chemistry

Stratospheric Chemistry Stratospheric Chemistry Stratospheric Chemistry Why Ozone? Part of global energy balance determines T and hence u. Protection of the biosphere from UV. Sensitive to human pollution. Search for extraterrestrial

More information

Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations

Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations Key Questions 1. Does the entropy of the system increase or decrease for the following changes?

More information

4.02 Chemical Reactions

4.02 Chemical Reactions 4.02 Chemical Reactions The Law of Conservation of Mass Dr. Fred Omega Garces Chemistry 111 Miramar College 1 Chemical Reactions Making Substances Chemical Reactions; the heart of chemistry is the chemical

More information

General Chemistry I Final Exam 100 pts Fall 2010

General Chemistry I Final Exam 100 pts Fall 2010 General Chemistry I Final Exam 100 pts Fall 2010 Name This is a closed-book exam: the only reference materials you may use are a periodic table of the elements, a table of enthalpies of formation, and

More information

The last 2 million years.

The last 2 million years. Lecture 5: Earth Climate History - Continued Ice core records from both Greenland and Antarctica have produced a remarkable record of climate during the last 450,000 years. Trapped air bubbles provide

More information

Chem. 1A Final Practice Test 2

Chem. 1A Final Practice Test 2 Chem. 1A Final Practice Test 2 All work must be shown on the exam for partial credit. Points will be taken off for incorrect or missing units. Calculators are allowed. Cell phones may not be used as calculators.

More information

Part I Short Answer Choose a letter to fill in the blanks. Use choices as many times as you wish. Only one choice is needed per blank. All are 3 points each. 1. First set. How can you tell these apart?

More information

SCIAMACHY book. Ozone variability and long-term changes Michel Van Roozendael, BIRA-IASB

SCIAMACHY book. Ozone variability and long-term changes Michel Van Roozendael, BIRA-IASB SCIAMACHY book Ozone variability and long-term changes Michel Van Roozendael, BIRA-IASB 1928: start of CFC production 1971: 1 st observation of CFC in the atmosphere (J. Lovelock) 1974: identification

More information

If anything confuses you or is not clear, raise your hand and ask!

If anything confuses you or is not clear, raise your hand and ask! CHM 1045 Dr. Light s Section December 10, 2002 FINAL EXAM Name (please print) Recitation Section Meeting Time This exam consists of six pages. Make sure you have one of each. Print your name at the top

More information

elemental state. There are two different possibilities: DESCRIPTION 1. One cation (+ ion) replaces another. 2. One anion (- ion) replaces another.

elemental state. There are two different possibilities: DESCRIPTION 1. One cation (+ ion) replaces another. 2. One anion (- ion) replaces another. CHEMICAL TYPES HANDOUT In these reactions, a free element reacts with a compound to form another compound and release one of the elements of the original compound in the elemental state. There are two

More information