An Overview of the the Development of Stationary Phases for Reversed-Phase Liquid Chromatography

Size: px
Start display at page:

Download "An Overview of the the Development of Stationary Phases for Reversed-Phase Liquid Chromatography"

Transcription

1 An Overview of the the Development of Stationary Phases for Reversed-Phase Liquid Chromatography Analytical Potential of Stable Phases for Reversed-Phase Liquid Chromatography by Jacek Nawrocki, Jon Thompson, Yun Mao, Bingwen Yan, Dwight R. Stoll and Peter W. Carr

2 Key Papers in History of Stable Reversed-Phases: 1. A. Wehrli, J.C. Hildenbrand, H.P. Keller, R. Stampfli, R.W. Frei, "Influence of organic bases on the stability and separation properties of reversed-phase chemically bonded silica gels", J. Chromatogr. 19 (1978), J.J. Kirkland, J.L. Glajch, R.D. Farlee, "Synthesis and characterization of highly stable bonded phases for highperformance liquid chromatography column packings", Anal. Chem. 61 (1989), -11.

3 Outline Part I. Overview of analytical potential of high phase stability. Chemical stability. Thermal stability. Part II. Using stability to achieve selectivity. Thermally tuned tandem columns in HPLC. Part III. Using stability to speed up HPLC. High temperature ultrafast liquid chromatography. High temperature fast two dimensional liquid chromatography.

4 Advantages of Highly Stable Stationary Phases High Chemical Stability ph Stability Thermal Stability ph < 1 ph >13 Lower Pressure Drop Less Organic Solvent Thermally Optimized Selectivity Allows Cleaning with Conc. Acid Ion Suppression of COOH Sanitization Depyrogenation Ion Suppression of NH Less Ware and Tare Higher Flow Rate More Robust Analysis Easier Method Development Faster analyses

5 Temperature The Third Dimension in HPLC Temperature Mobile Phase Stationary Phase

6 Role of Temperature in LC High-Performance Liquid Chromatography at Elevated Temperatures: Examination of Condition for the Rapid Separation of Large Molecules, R. D. Antia and Cs. Horvath, J. Chromatogr., 3, 1-1 (1988). Temperature as a Variable in Reversed Phase High- Performance Liquid Chromatographic Separations of Peptide and Protein Samples, W. S. Hancock, R. C. Chloupek, J. J. Kirkland and L. R. Snyder, J. Chromatogr. A, 686, 31-3 (199) Superheated Water: A New Look at a Chromatographic Eluent for Reversed-Phase Liquid Chromatography, R. M. Smith and R. J. Burgess, LC-GC, 17, (1999)

7 Part II. The Thermally Tuned Tandem Column (T 3 C) Concept

8 Outline Importance of Selectivity in HPLC Optimization Thermally Tuned Tandem Column (T 3 C) Concept Theory Optimization An Example Ten Triazine Herbicides Applications Urea and Carbamate Pesticides Barbiturates Antihistamine Drugs Conclusions T 3 C Works It Can Save Time or Do Difficult Separations Only Four or Five Initial Runs Are Needed

9 The Ultimate Goal of Separation: Resolution (R) 3.. α Resolution (R) N k Efficiency Selectivity Retention R= N α-1 α k k Selectivity (α) has the greatest impact on improving resolution α N k

10 3% ACN vs. % ACN. 1. R =.989 SD=. Comparison of Variables Affecting Selectivity Carbon-ZrO vs. PBD-ZrO. 1. MeOH vs. THF R =.896 SD= logk' (/ ACN/H O) 8 o C vs. 3 o C R =.99 SD= R =.38 SD= logk' (THF/H O) C18-SiO vs. PBD-ZrO 1. R =.973 SD= logk' (PBD-ZrO ). 1 3 logk' (C18, 3 o C) logk' (PBD-ZrO ) Stationary phase type can have a very large effect on selectivity.

11 The Concept: Thermally Tuned Tandem Columns (T 3 C) A Mechanism to Continuously Adjust the Stationary Phase Temperature 1 Temperature Pump Injector Column 1 Column Detector e.g. C18-SiO e.g. C-ZrO Column 1 1, 3 Requirements for T 3 C: Column Optimized T 3 C 1 3, 1 3 Two columns with different (ideally orthogonal) selectivity One very thermally stable column Method development must be easy

12 Absorbance (mau) Separation of Ten Triazine Herbicides by T 3 C Time (min) 9 C18-SiO 3 o C C-ZrO 6 o C 3 T 3 C 1 CH 3 S, CH 3 O, Cl =R Solutes: 1. Simazine. Cyanazine 3. Simetryn. Atrazine. Prometon C18-SiO C-ZrO 3 o C 1 o C N N N N H R 1 H N R Other conditions: 3/7 ACN/water 1ml/min; nm detection 6. Ametryn 7. Propazine 8. Terbutylazine 9. Prometryn 1. Terbutryn T 3 C can improve separation without increasing analysis time

13 Guidelines for Optimizing T 3 C Choose Two Stationary Phases Window Diagram Optimization Choose Mobile Phase (1<k <) Calculating T 3 C Retentions ln k =A+B/T t rnet =t r1 +t r No Different Selectivity? Yes Two More Runs at High Temperatures

14 Steps in T 3 C Optimization of Triazine Herbicides Log k (C-ZrO, 6 o C) R =.17, sd= log k (ODS, 3 o C) Minimum Resolution T 3 C, 3ml/min 8 Temperature on C-Zr Column 9 1 T ODS =3 o C T C-ZrO =1 o C Rs= R= Temperature on ODS Column Time (min)

15 Applications of T 3 C Method Absorbance (mau) Urea and Carbamate Pesticides * * * T 3 C 39 o C+89 o C 9 Time (min) C18-SiO 3 o C C-ZrO 9 o C Absorbance (mau) Barbiturates +7 C18-SiO 3 o C Time (min) 1 C-ZrO 3 o C T 3 C 8 o C+ o C

16 Separation of Anti-Histamines by T 3 C C18-SiO o C Absorbance (mau) PBD-ZrO 3 o C T 3 C 3 o C + o C Time (min)

17 Conclusions T 3 C offers unique selectivity for the separation of complex mixtures. T 3 C requires that on the two phases the critical pairs must be different. Carbon Phase + Aliphatic Phase Reversed Phase + PBD-ZrO Phase Phosphate Buffer Neutral Compounds Basic Compounds Optimization needs only or trial runs. In many cases, T 3 C: is superior to mobile phase optimization. provides better resolution than a single phase. improves analysis speed.

18 Part III. High Temperature Ultra-Fast Liquid Chromatography

19 Why Fast HPLC? Monitor reaction rates with half-lives on order of minutes not hours. Monitor prep scale chromatography. Increase sample through-put thus lower cost. Increase screening rate in combinatorial chemistry (speed up LC side of LC-MS). Make D-HPLC practical and thus greatly enhance peak capacity of HPLC.

20 HPLC is Slow Compared to Other Methods* Technique TLC Open Column LC Early HPLC Current HPLC Packed GC Open Capillary GC CE** d p (µm) d c =.3 mm d c =.1-. mm N eff /t (plates/s) *L.R. Snyder; J.J. Kirkland, Introduction to Modern Liquid Chromatography; Wiley: New York, **R. Kennedy et al., Chem. Rev., 99, (1999).

21 Fast HPLC at High Temperature B 1 o C ml/min Absorbance (mau) A 3 o C 1 ml/min Time (min)

22 Effect of Temperature on Analysis Time at Constant N and P t R /t R, TEMPERATURE ( O C) High-Performance Liquid Chromatography at Elevated Temperatures: Examination of Condition for the Rapid Separation of Large Molecules, R. D. Antia and Cs. Horvath, J. Chromatogr., 3, 1-1 (1988).

23 Theoretical and Practical Limits of Fixed Pressure * Theoretical Limit * Reduced Velocity Limit Practical Limit Speed in HPLC t N t N ν = max (1 + D = k o D A(1 + D k ' ) m d m 1 / 3 m 3 p η h ν t C (1 + ν N D m P k ' ) η d p k ' ) max 1 / 3 d p L P / 3 / 3 max Practical Limit Temperature Dependence t N (1 + k ' ) A L P / 3 / 3 max η T 1/ 3 * G. Guiochon, Anal. Chem.,, -8 (198)

24 Solvent Viscosity vs. Temperature Viscosity (cp) Water / ACN-water MeOH ACN Temperature ( o C) Data from Horvath and Chen.

25 Thermal Mismatch Broadening Influence of Thermal Conditions on the Efficiency of High-Performance Liquid Chromatography. H. Poppe and J. C. Kraak, J. Chromatogr., 8, (1983).

26 Peak Shapes Observed for Various Mobile-Phase Feed Temperatures* σ obs = σ + σ σ column extra columnn + thermal mismatch LC conditions: Column water jacket, 3 o C; 6. mm IDx8cm; 3µ Zorbax ODS; at ml/min; / (v/v) ACN,H O; nitrobenzene *H. Poppe and J.C. Kraak

27 Comparison of the Effect of Incomplete Thermal Equilibration on Column Performance mm ID..6 mm ID6 mm ID cm/min 1 1 cm/min 3 1 Absorbance (mau) Absorbance (mau) Time (min).. 1. Time (min) LC conditions:.1 x cm, C-18 INERT, % ACN, cm preheater, 6 o C.6 x cm, C-18 INERT, 6% ACN, cm preheater, 6 o C. Peaks: 1. toluene,. ethylbenzene, 3. propylbenzene,. butylbenzene

28 Effect of Temperature on Column Efficiency in HTUFLC 6 o C 8 o C Plate Height ( x1 - cm ) o C 1 o C u ( cm/s ) Conclusion: Resistance to mass transfer is greatly reduced as the column temperature is increased., o C (decanophenone, k =1.3),, 8 o C (dodecanophenone, k =7.39),, 1 o C (tetradecanophenone, k =1.3).

29 Fast Separations NSAIDs at High Temperature Norm Column Temperature = 1 o C F =. ml/min. Separation in 1 minute! min LC Conditions: Column, x.6 DiamondBond TM -C18; Mobile phase, /7 ACN/mM phosphoric acid, ph.3; Flow rate,. ml/min.; Temperature, 1 o C; Injection volume, 1ul; Detection at nm; Solute concentration,.1 mg/ml.; Solutes, 1= Acetaminophen, =Ketoprofen, 3=Naproxen, =Ibuprofen, =Oxaprofen.

30 High Speed HPLC LC Conditions: Mobile Phase, 9/71 ACN/mM Tetramethylammonium hydroxide, ph 1.; Flow Rate, 1.3 ml/min.; Injection volume,. ul; nm detection; Column Temperature, 1 C; Pressure drop = 19 bar; Solutes: 1=Doxylamine, =Methapyrilene, 3=Chlorpheniramine, =Triprolidine, =Meclizine 1 x.6 ZirChrom-PBD mau VWD1 A, Wavelength= nm (P11\TEST16.D) Temperature: 1 o C Flow rate: 1.3 ml/min. Pressure drop: 19 bar Resolution (,3):.1 Analysis time: 1. min min min LC Conditions: Mobile Phase,./79. ACN/mM Tetramethylammonium hydroxide, ph 1.; Flow Rate,. ml/min.; Injection volume,. ul; nm detection; Column Temperature, 1 C; Pressure drop = 19 bar; Solutes: 1=Doxylamine, =Methapyrilene, 3=Chlorpheniramine, =Triprolidine, =Meclizine 1 x.6 ZirChrom-PBD VWD1 A, Wavelength= nm (G:\HPCHEM\DATA\P11\TEST18.D) ma U mau min min Temperature: 1 o C Flow rate:. ml/min. Pressure drop: 19 bar Resolution (,3):.1 Analysis time:.8 minutes Courtesy ZirChrom min

31 Fast, Comprehensive Two-Dimensional HPLC One-dimensional HPLC has low peak capacity n c N 1 + ln + R ( k' 1) = n s Comprehensive two-dimensional HPLC has high peak capacity n = n n ctotal c1 c 6 Peak Capcity (nc) Retention Factor (N) t A major limitation is low speed related to the second dimension linear velocity, u rtotal = ( ) ( k' + 1) N [ L ( k' + )] max1 1 c max 1 υ Giddings, J. C. Multidimensional Chromatography: Techniques and Applications; Marcel Dekker: New York, 199

32 LC UFHTLC Separation of Ten Triazine Herbicides mau Tim e (min.) H 3 C H N N N Cl N H N CH 3 Simazine 1 st Dimension Conditions: Column, mm x.1 mm I.d. PBD-ZrO ; Flow rate,.8 ml/min.; Temperature, o C nd Dimension Conditions: Column, mm x.1 mm I.d. PBD-C-ZrO ; Flow rate, 7. ml/min.; Temperature, 1 o C; 1 st dimension sampling frequency,.1 Hz Total LC UFHTLC peak capacity = 18 A single column would be. meter and take hours to generate same peak capacity

33 mv Fast Chromatography on the nd Column Time (s) nd Dimension Time (seconds)

34 Conclusions: (1)Heat transfer, pressure drop and extra-column broadening considerations are key to design HTUFLC. ()Tubing pressure drop is important. (3) HTUFLC can be as much as times faster than room temperature HPLC. () HTUFLC can be done with 1% water as the eluent. () Fast (<. hr.) D-LC can be done.

35 National Institutes of Health

High Temperature Ultra Fast Liquid Chromatography. Peter W. Carr, Jon Thompson, Dwight Stoll, and Adam Schallinger

High Temperature Ultra Fast Liquid Chromatography. Peter W. Carr, Jon Thompson, Dwight Stoll, and Adam Schallinger High Temperature Ultra Fast Liquid Chromatography Peter W. Carr, Jon Thompson, Dwight Stoll, and Adam Schallinger Conclusions 1. To do fast LC, use a WEAK eluent and a HOT column.. Use a highly retentive

More information

Retention and Selectivity Variables

Retention and Selectivity Variables Applications of Ultra-Stable Phases for HPLC: High Temperature Ultra-Fast Liquid Chromatography and Thermally Tuned Tandem Column (T 3 C) Liquid Chromatography Yun Mao, Merck & Co. Jon Thompson, Peter

More information

High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension

High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension Minnesota Chromatography Forum Spring Symposium Dwight Stoll and Peter W. Carr Department of Chemistry University

More information

Synthesis and Use of a New Covalently Bonded C18 Modified Carbon Clad Microporous Zirconia for Fast High Temperature Separations

Synthesis and Use of a New Covalently Bonded C18 Modified Carbon Clad Microporous Zirconia for Fast High Temperature Separations Synthesis and Use of a New Covalently Bonded C18 Modified Carbon Clad Microporous Zirconia for Fast High Temperature Separations by Peter W. Carr, Clayton V. McNeff, Dwight R. Stoll, Danielle R. Hawker,

More information

Method Development on Next Generation RPLC Supports

Method Development on Next Generation RPLC Supports Method Development on Next Generation RPLC Supports Dr. Peter W. Carr President Dr. Clayton McNeff Vice President 1-866-STABLE-1 www.zirchrom.com Specialists in High Efficiency, Ultra-Stable Phases for

More information

ZirChrom Columns and the Metalox 200-C High Temperature Liquid Chromatography Column Heater - The Future of HPLC has Arrived.

ZirChrom Columns and the Metalox 200-C High Temperature Liquid Chromatography Column Heater - The Future of HPLC has Arrived. ZirChrom Columns and the Metalox 2-C High Temperature Liquid Chromatography Column Heater - The Future of HPLC has Arrived. Welcome to the fifth issue of ZirChrom's electronic newsletter. In response to

More information

Characteristics and Advantages of Zirconia-Based Stationary Phases for Use in Multi-Dimensional HPLC

Characteristics and Advantages of Zirconia-Based Stationary Phases for Use in Multi-Dimensional HPLC Characteristics and Advantages of Zirconia-Based Stationary hases for Use in Multi-Dimensional LC Dwight Stoll and Clayton V. Mceff ZirChrom Separations, Inc. Multi-Dimensional Chromatography Workshop

More information

Carbonaceous RPLC Stationary Phases Based on Porous Zirconia STABILITY is the Name and SELECTIVITY is the Game Paul T. Jackson

Carbonaceous RPLC Stationary Phases Based on Porous Zirconia STABILITY is the Name and SELECTIVITY is the Game Paul T. Jackson Carbonaceous RPLC Stationary Phases Based on Porous Zirconia STABILITY is the Name and SELECTIVITY is the Game Paul T. Jackson Chemistry Department, St. laf College 1520 St. laf Avenue Northfield, MN 55057

More information

CHEM340 Tutorial 4: Chromatography

CHEM340 Tutorial 4: Chromatography CHEM340 Tutorial 4: Chromatography 1. The data in the table below was obtained from a chromatogram obtained with a 10 cm liquid chromatography column. Under the conditions used, the compound uracil is

More information

Xiqin Yang, Jun Dai, Peter W. Carr* Chemistry Department University of Minnesota

Xiqin Yang, Jun Dai, Peter W. Carr* Chemistry Department University of Minnesota Comparison of the Reversed-Phase and Ion- Exchange Contributions to Retention on Polybutadiene Coated Zirconia and Octadecyl Silane Bonded Silica Phases Xiqin Yang, Jun Dai, Peter W. Carr* Chemistry Department

More information

Thermo Scientific Accucore XL HPLC Columns. Technical Manual

Thermo Scientific Accucore XL HPLC Columns. Technical Manual Thermo Scientific Accucore XL HPLC Columns Technical Manual Thermo Scientific Accucore XL HPLC Columns Based on Core Enhanced Technology using µm solid core particles, Accucore XL HPLC columns allow users

More information

Product Bulletin. ACE LC/MS and Rapid Analysis HPLC Columns. HPLC Columns

Product Bulletin. ACE LC/MS and Rapid Analysis HPLC Columns. HPLC Columns Product Bulletin HPLC Columns ACE LC/MS and Rapid Analysis HPLC Columns 0 mm, 30 mm, 35 mm and 50 mm column lengths.0,., 3.0, 4.0 and 4.6 mm column diameters Configured for High Sample Throughput Specially

More information

Liquid Chromatography

Liquid Chromatography Liquid Chromatography 1. Introduction and Column Packing Material 2. Retention Mechanisms in Liquid Chromatography 3. Method Development 4. Column Preparation 5. General Instrumental aspects 6. Detectors

More information

On the Advantages and Costs of Two-dimensional HPLC (2D-LC)

On the Advantages and Costs of Two-dimensional HPLC (2D-LC) On the Advantages and Costs of Two-dimensional HPLC (2D-LC) Georges Guiochon, Krisztìan Horvàth, Jacob Fairchild CoSMoS, Boston, 08/3-5/2009 1 What is Chromatography About? Separating Components of Mixtures

More information

LC and LC/MS Column Selection Flow Chart

LC and LC/MS Column Selection Flow Chart LC and LC/MS Column Selection Flow Chart To use the column selection diagram below, simply follow the path for your analyte and mobile phase. At the far right, follow your final column selection to the

More information

Fast Analysis of Small MW Analytes in a Beverage and Serum Samples on a Zirconiabased Strong Anion-Exchanger

Fast Analysis of Small MW Analytes in a Beverage and Serum Samples on a Zirconiabased Strong Anion-Exchanger Fast Analysis of Small MW Analytes in a Beverage and Serum Samples on a Zirconiabased Strong Anion-Exchanger Pittcon 2005 BINGWEN YAN 1, CLAYTON V. MCNEFF 1, 1 ZirChrom Separations, Inc., 617 Pierce Street,

More information

HPLC Background Chem 250 F 2008 Page 1 of 24

HPLC Background Chem 250 F 2008 Page 1 of 24 HPLC Background Chem 250 F 2008 Page 1 of 24 Outline: General and descriptive aspects of chromatographic retention and separation: phenomenological k, efficiency, selectivity. Quantitative description

More information

The Secrets of Rapid HPLC Method Development. Choosing Columns for Rapid Method Development and Short Analysis Times

The Secrets of Rapid HPLC Method Development. Choosing Columns for Rapid Method Development and Short Analysis Times The Secrets of Rapid HPLC Method Development Choosing Columns for Rapid Method Development and Short Analysis Times Rapid Analysis Is More Than Run Time It is developing a method to meet a goal and developing

More information

High Resolution Fast LC

High Resolution Fast LC High Resolution Fast LC Easier Than You Think Rita Steed LC Columns Application Engineer May 9, 2013 What is High Resolution Fast LC? Maintain Resolution with Faster Run Time Increased Resolution with

More information

A C18 Silica Column With Exceptional Temperature and ph Stability

A C18 Silica Column With Exceptional Temperature and ph Stability A C18 lica Column With Exceptional Temperature and ph Stability Brian A. Jones 1, Stephanie J. Marin 1, Jody Clark 1, Nathan L. Porter 1, J. Andreas Lippert 2, and Todd M. Johnson 2 1. Selerity Technologies,

More information

Zirconia: the Ideal Substrate for Ion-Exchange LC and LC-MS

Zirconia: the Ideal Substrate for Ion-Exchange LC and LC-MS Zirconia: the Ideal Substrate for Ion-Exchange LC and LC-MS EAS 2005 Bingwen Yan 1, Clayton V. McNeff 1, Richard A. Henry 2, and David S. Bell 2 1 ZirChrom Separations, Inc., 617 Pierce Street, Anoka,

More information

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for? Chromatography- Separation of mixtures CHEM 212 What is solvent extraction and what is it commonly used for? How does solvent extraction work? Write the partitioning coefficient for the following reaction:

More information

Luna 2.5 µm C18(2)-HST. Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency

Luna 2.5 µm C18(2)-HST. Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency Luna 2.5 µm C18(2)-HST Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency Table of Contents Part 1 Theory 1.1 Abstract...3 1.2 Introduction...3 Part 2 Set Up 2.1

More information

2. a) R N and L N so R L or L R 2.

2. a) R N and L N so R L or L R 2. 1. Use the formulae on the Some Key Equations and Definitions for Chromatography sheet. a) 0.74 (remember that w b = 1.70 x w ½ ) b) 5 c) 0.893 (α always refers to two adjacent peaks) d) 1.0x10 3 e) 0.1

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Chromatographic Separations KAM021 2016 Dr. A. Jesorka, 6112, aldo@chalmers.se Introduction to Chromatographic Separations Theory of Separations -Chromatography Terms Summary: Chromatography

More information

New 5-micron HALO-5 columns based on Fused- Core particle technology boost the performance of HPLC. Compared to other HPLC columns, HALO-5 columns

New 5-micron HALO-5 columns based on Fused- Core particle technology boost the performance of HPLC. Compared to other HPLC columns, HALO-5 columns New 5-micron HALO-5 columns based on Fused- Core particle technology boost the performance of HPLC. Compared to other HPLC columns, HALO-5 columns have: the highest plate number versus any other 5-micron

More information

Improving HPLC Column Selection and System Performance

Improving HPLC Column Selection and System Performance Improving HPLC Column Selection and System Performance Richard A. Henry Penn State University T410170 sigma-aldrich.com LC Particle Innovation Leads the Way* Particle Size and Architecture (porosity) More

More information

Chromatographic Separation

Chromatographic Separation What is? is the ability to separate molecules using partitioning characteristics of molecule to remain in a stationary phase versus a mobile phase. Once a molecule is separated from the mixture, it can

More information

Chromatographic Analysis

Chromatographic Analysis Chromatographic Analysis Distribution of Analytes between Phases An analyte is in equilibrium between the two phases [S 1 ] [S 2 ] (in phase 1) (in phase 2) AS [S2 ] K 2 A S [S1 ] 1 AS, A 1 S Activity

More information

Easy Method Transfer from HPLC to RSLC with the Dionex Method Speed-Up Calculator

Easy Method Transfer from HPLC to RSLC with the Dionex Method Speed-Up Calculator Technical Note 75 Easy Method Transfer from HPLC to RSLC with the Dionex Method Speed-Up Calculator Introduction The goal of every chromatographic optimization is a method that sufficiently resolves all

More information

State-of-the-art C18 HPLC Columns

State-of-the-art C18 HPLC Columns An HPLC GL Sciences Newest and Most Advanced ODS Phase-New For 00 State-of-the-art C HPLC s Improved Peak Shapes and Heights Enhancing Sensitivity High Resolution Fast Equilibration Compatible with 00%

More information

Alternatives to Sub-2 µm UHPLC Columns

Alternatives to Sub-2 µm UHPLC Columns Alternatives to Sub-2 µm UHPLC Columns J. J. DeStefano, B. E. Boyes, S. Schuster, W. L. Miles, and J. J. Kirkland Advanced Materials Technology, Inc. 3521 Silverside Rd., Quillen Bld., Ste. 1-K Wilmington,

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 High Performance Liquid Chromatography () Instrumentation Normal Phase Chromatography Normal Phase - a polar stationary phase with a less polar mobile phase.

More information

Reversed Phase Solvents

Reversed Phase Solvents Part 1. General Chromatographic Theory Part 2. verview of HPLC Media Part 3. The Role of the Mobile Phase in Selectivity Part 4. Column Care and Use Reversed Phase Solvents 2 Solvents for RP Chromatography

More information

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis Watch this lesson online: https://edrolo.com.au/vce/subjects/chemistry/vce-chemistry/aos-1-chemical-analysis/chromatography-hplc-glc/column-chromatography/#watch CHEMISTRY Unit 3, Area of Study 1: Chemical

More information

Changing the way you think about HPLC

Changing the way you think about HPLC 3521 Silverside Road Suite 1-K Quillen Building Wilmington, DE 19810 USA info@advanced-materials-tech.com Changing the way you think about HPLC Changing the way you think about HPLC New 5-micron HALO-5

More information

Welcome to our E-Seminar: Choosing HPLC Columns for Faster Analysis Smaller and Faster

Welcome to our E-Seminar: Choosing HPLC Columns for Faster Analysis Smaller and Faster Welcome to our E-Sear: Choosing HPLC Columns for Faster Analysis Smaller and Faster High Throughput/Fast LC Requires. Short columns 0 mm or shorter Small particle sizes. µm Rapid Resolution or new.8 µm

More information

Separation of Explosives in EPA 8330: Column Choices Optimize Speed, Resolution, and Solvent Use. Application. Authors. Abstract.

Separation of Explosives in EPA 8330: Column Choices Optimize Speed, Resolution, and Solvent Use. Application. Authors. Abstract. Separation of Explosives in EPA 833: Column Choices Optimize Speed, Resolution, and Solvent Use Application Environmental Authors John W. Henderson Jr. and William J. Long Agilent Technologies, Inc. 28

More information

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents No. 089 SEPARATION REPORT Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS Table of Contents 1. Introduction 1 2. Column Specification 1 3. Features of Packing Materials

More information

Chapter content. Reference

Chapter content. Reference Chapter 7 HPLC Instrumental Analysis Rezaul Karim Environmental Science and Technology Jessore University of Science and Technology Chapter content Liquid Chromatography (LC); Scope; Principles Instrumentation;

More information

LIQUID CHROMATOGRAPHY

LIQUID CHROMATOGRAPHY LIQUID CHROMATOGRAPHY RECENT TECHNIQUES HPLC High Performance Liquid Chromatography RRLC Rapid Resolution Liquid Chromatography UPLC Ultra Performance Liquid Chromatography UHPLC Ultra High Pressure Liquid

More information

Isomer Separation on ZirChrom -CARB

Isomer Separation on ZirChrom -CARB Bulletin #34 Isomer Separation on ZirChrom CARB Analytes 6 Ethylbenzene 5 3 mxylene 4 3 4 3 pxylene 4 Xylene 4 6 8 min LC Conditions Column: A: ZirChrom CARB, 5 4.6 mm; Mobile Phase: 5/5 A/B B: Water Flow

More information

Polymer Coated Titania for Analytical and Preparative Reversed-Phase Chromatography

Polymer Coated Titania for Analytical and Preparative Reversed-Phase Chromatography Polymer Coated tania for Analytical and Preparative Reversed-Phase Chromatography Pittcon 2005 CLAYT V. MCEFF 1, BIGWE YA 1, JCHE WIKLER 2 1 ZirChrom Separations, Inc., 617 Pierce Street, Anoka, M 55303

More information

HPLC at High Temperature and High ph with a New, Highly Stable Silica Column

HPLC at High Temperature and High ph with a New, Highly Stable Silica Column HPLC at High Temperature and High ph with a New, Highly Stable Silica Column W. Dale Felix, Stephanie J. Marin Brian A. Jones Selerity Technologies, Inc. 2484 W. Custer Road Salt Lake City, UT 84104 www.selerity.com

More information

High Performance Liquid Chromatography. Table 1: Allowed HPLC Adjustment of USP <621> and EP <2.2.46>

High Performance Liquid Chromatography. Table 1: Allowed HPLC Adjustment of USP <621> and EP <2.2.46> High Performance Liquid Chromatography HPLC-9 Ultra-high Speed Analysis of Ibuprofen within USP Allowed Limits by Nexera Method Scouting In recent years, high-throughput analytical techniques have

More information

penta-hilic UHPLC COLUMNS

penta-hilic UHPLC COLUMNS penta-hilic UHPLC COLUMNS penta-hilic Highly retentive, proprietary penta-hydroxy-ligand Excellent peak shape for polar compounds with a variety of functional groups: acids, bases, zwitterions strong and

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

C18 Column. Care & Use Sheet

C18 Column. Care & Use Sheet C18 Column Care & Use Sheet HALO Description HALO C18 is a high-speed, high-performance liquid chromatography column based on a new Fused-CoreTM particle design. The Fused-Core particle provides a thin

More information

2] The plate height in chromatography is best described as 2

2] The plate height in chromatography is best described as 2 9 Chromatography. General Topics 1] Explain the three major components of the van Deemter equation. Sketch a clearly labeled diagram describing each effect. What is the salient point of the van Deemter

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 1 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

Polymer Coated Titania for Analytical and Preparative Reversed-Phase Chromatography

Polymer Coated Titania for Analytical and Preparative Reversed-Phase Chromatography Polymer Coated tania for Analytical and Preparative Reversed-Phase Chromatography EAS 200 BIGWE YA 1, CLAYT V. MCEFF 1, JCHE WIKLER 2 1 ZirChrom Separations, Inc., 617 Pierce Street, Anoka, M 303 2 Sachtleben,

More information

Oligonucleotide Separation on ZirChrom -SAX

Oligonucleotide Separation on ZirChrom -SAX Technical Bulletin #166 Oligonucleotide Separation on ZirChrom -SAX Absorbance () 5 45 4 35 3 25 2 15 1 5 Analytes Poly (A)- hydrolysate 2 4 6 8 1 12 Time (Minutes LC Conditions Column: ZirChrom -SAX,

More information

Dilution(*) Chromatography

Dilution(*) Chromatography WA20264 Poster # 184, HPLC 2002, Montreal, 4-5 June 2002 At-Column Column-Dilution for Preparative Dilution(*) Chromatography Cecilia Mazza, Jie Cavanaugh, Ziling Lu,Tom Sirard,Tom Wheat and Uwe Neue Waters

More information

Chapter 26. An Introduction to Chromatographic Separations. Chromatography

Chapter 26. An Introduction to Chromatographic Separations. Chromatography Chapter 26 An Introduction to Chromatographic Separations Chromatography 1 Chromatography-Model as Extraction Chromatography-Model as Extraction 2 Chromatography Planar Chromatography-Types paper chromatography

More information

Packings for HPLC. Packings for HPLC

Packings for HPLC. Packings for HPLC Summary of packings for HPLC In analytical HPLC, packings with particle sizes of 3 to 10 µm are preferred. For preparative separation tasks, also particles with diameters larger than 10 µm are applied.

More information

Method Development Kits

Method Development Kits Method Development Kits sales representative for ordering information or contact...77 Method Development Kits First column choice for Pharma Development USP L C Method Development Kits Maximize retention

More information

Practical Applications of Method Translation Using the Agilent Method Translation Tool Rita Steed Inside Application Engineer Agilent Technologies

Practical Applications of Method Translation Using the Agilent Method Translation Tool Rita Steed Inside Application Engineer Agilent Technologies Practical Applications of Method Translation Using the Agilent Method Translation Tool Rita Steed Inside Application Engineer Agilent Technologies Title Objectives Demonstrate Agilent Method Translation

More information

Unexpected Peaks in Chromatograms - Are They Related Compounds, System Peaks or Contaminations? From the Diary of an HPLC Detective

Unexpected Peaks in Chromatograms - Are They Related Compounds, System Peaks or Contaminations? From the Diary of an HPLC Detective Unexpected Peaks in Chromatograms - Are They Related Compounds, System Peaks or Contaminations? From the Diary of an HPLC Detective SHULAMIT LEVIN HPLC in Pharmaceutics Σ Stability Indicating Methods Extra

More information

Transferring Yesterdays Methods to Tomorrows Technology: The Evolution from HPLC to UPLC TM

Transferring Yesterdays Methods to Tomorrows Technology: The Evolution from HPLC to UPLC TM Transferring Yesterdays Methods to Tomorrows Technology: The Evolution from HPLC to UPLC TM Eric S. Grumbach Thomas E. Wheat Chuck Phoebe Joe Arsenault Jeffrey R. Mazzeo Diane M. Diehl UPLC TECHNOLOGY

More information

Chemistry 3200 High Performance Liquid Chromatography: Quantitative Determination of Headache Tablets

Chemistry 3200 High Performance Liquid Chromatography: Quantitative Determination of Headache Tablets Chemistry 3200 High Performance Liquid Chromatography: Quantitative Determination of Headache Tablets Liquid chromatography was developed by Tswett in early 1900 s and was shown to be a powerful separation

More information

LC Technical Information

LC Technical Information LC Technical Information Method Transfer to Accucore.6 μm Columns Containing solid core particles, which are engineered to a diameter of.6μm and a very narrow particle size distribution; Accucore HPLC

More information

Epic Aromatic Selectivity

Epic Aromatic Selectivity Epic Aromatic Selectivity HPLC Columns p h a r m a c e u t i c a l e n v i r o n m e n t a l c h e m i c a l b i o c h e m i c a l s e p a r a t i o n & p u r i f i c a t i o n ES Industries 701 S. Route

More information

Zirconia-Based Phases as a Powerful Complement to Silica-Based Phases for LC and LC-MS under Non-extreme Mobile Phase Conditions

Zirconia-Based Phases as a Powerful Complement to Silica-Based Phases for LC and LC-MS under Non-extreme Mobile Phase Conditions Zirconia-Based Phases as a Powerful Complement to Silica-Based Phases for LC and LC-MS under on-extreme Mobile Phase Conditions Richard A. Henry, Shawn R. Wyatt, Carmen T. Santasania and David S. Bell

More information

Nexera UC Unified Chromatography

Nexera UC Unified Chromatography Nexera UC Unified Chromatography The latest addition to the chromatography toolbox Dr. Gesa J. Schad Shimadzu Europa GmbH A brief history of SFC ϒ Late 1800 s: it was found that heavy, non-volatile organic

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

Introduction to Pharmaceutical Chemical Analysis

Introduction to Pharmaceutical Chemical Analysis Introduction to Pharmaceutical Chemical Analysis Hansen, Steen ISBN-13: 9780470661222 Table of Contents Preface xv 1 Introduction to Pharmaceutical Analysis 1 1.1 Applications and Definitions 1 1.2 The

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

Pure Chromatography Consumables Pure flexibility. Pure specialization. Pure convenience.

Pure Chromatography Consumables Pure flexibility. Pure specialization. Pure convenience. Pure Chromatography Consumables Pure flexibility. Pure specialization. Pure convenience. Pure Consumables More focus on your application The Pure consumable portfolio offers an unrivaled range of products

More information

Breaking the speed limit: Fast, high-resolution peptide and tryptic digest separations using fused-core particles

Breaking the speed limit: Fast, high-resolution peptide and tryptic digest separations using fused-core particles Breaking the speed limit: Fast, high-resolution peptide and tryptic digest separations using fused-core particles Stephanie Schuster 1, Barry Boyes 1,2, and Darryl Johnson 2 1 Advanced Materials Technology,

More information

Automated Switching Between 1D-LC and Comprehensive 2D-LC Analysis

Automated Switching Between 1D-LC and Comprehensive 2D-LC Analysis Automated Switching Between D-LC and Comprehensive D-LC Analysis The Agilent 90 Infinity D-LC Solution Technical Overview Author Sonja Krieger Agilent Technologies, Inc. Waldbronn, Germany Abstract This

More information

637. Thiamethoxam. HPLC method

637. Thiamethoxam. HPLC method 637. Thiamethoxam HPLC method CIPAC Collaborative Trial according to CIPAC Information Sheet N o 293 Dr. Sven Adolph Syngenta Crop Protection Münchwilen AG CH-4333 Münchwilen Switzerland May 212 page 1

More information

Application Note. Authors. Abstract. Pharmaceuticals

Application Note. Authors. Abstract. Pharmaceuticals Enantiomer separation of nonsteroidal anti-inflammatory drugs Using Daicel immobilized polysaccharide-derived chiral columns and the Agilent 1260 Infinity Analytical SFC System Application Note Pharmaceuticals

More information

InertSustainSwift C8

InertSustainSwift C8 Physical Properties Silica Particle Size Surface Area Pore Size Pore Volume Bonded Phase End-capping Carbon Loading ph Range USP Code :ES (Evolved Surface) Silica Gel :.9 μm, μm, μm :00 m /g :00 Å (0 nm)

More information

Basic Principles for Purification Using Supercritical Fluid Chromatography

Basic Principles for Purification Using Supercritical Fluid Chromatography Basic Principles for Purification Using Supercritical Fluid Chromatography Jo-Ann M. Jablonski, Christopher J. Hudalla, Kenneth J. Fountain, Steven M. Collier, and Damian Morrison Waters Corporation, Milford,

More information

Multi-mode Separations Using Zirconiabased Stationary Phases

Multi-mode Separations Using Zirconiabased Stationary Phases Multi-mode Separations Using Zirconiabased Stationary Phases PITTC 2010 Dan owlan 1, Bingwen Yan 1, Clayton V. Mceff 1, R.A. Henry 2 1 ZirChrom Separations, Inc. 617 Pierce St., Anoka, M 55303 2 Independent

More information

penta-hilic UHPLC COLUMNS

penta-hilic UHPLC COLUMNS penta-hilic UHPLC COLUMNS Highly retentive, proprietary penta-hydroxy-ligand penta-hilic Excellent peak shape for polar compounds with a variety of functional groups: acids, bases, zwitterions strong and

More information

Lab scale isolation of compounds by Flash Chromatography

Lab scale isolation of compounds by Flash Chromatography Lab scale isolation of compounds by Flash Chromatography Lab scale isolation of compounds by Flash Chromatography - Rapid and reliable transfer from TLC to Flash Chromatography Properties of Silica Gel

More information

Introductory Separations

Introductory Separations Introductory Separations General Figure Acknowledgements Colin F. Poole s- The Essence of Chromatography, Elsevier Science, 2003. C.F. Poole and S. A. Schuette, Contemporary Practice of Chromatography

More information

Analysis of Beer by Comprehensive 2D-LC with the Agilent 1290 Infinity 2D-LC system

Analysis of Beer by Comprehensive 2D-LC with the Agilent 1290 Infinity 2D-LC system Analysis of Beer by Comprehensive 2D-LC with the Agilent 1290 Infinity 2D-LC system Application Note Food Testing & Agriculture Authors Edgar Naegele Agilent Technologies, Inc. Waldbronn, Germany Keiko

More information

Journal of Chromatography A

Journal of Chromatography A Journal of Chromatography A, 1216 (2009) 642 658 Contents lists available at ScienceDirect Journal of Chromatography A journal homepage: www.elsevier.com/locate/chroma Review Sense and nonsense of high-temperature

More information

InertSustainSwift C8

InertSustainSwift C8 HPLC, LC/MS Columns InertSustainSwift TM C8 New! InertSustainSwift C8 is an octyl group (C8) bonded column offering the same extreme inertness to any type of compounds just like InertSustainSwift C8, which

More information

High Speed vs. High Resolution Analyses in HPLC: A Critical Performance Comparison of Column Options Using Poppe and Kinetic Plots

High Speed vs. High Resolution Analyses in HPLC: A Critical Performance Comparison of Column Options Using Poppe and Kinetic Plots High Speed vs. High Resolution Analyses in HPLC: A Critical Performance Comparison of Column Options Using Poppe and Kinetic Plots Jason C. Link, William E. Barber, William Long, Anne Mack Agilent Technologies

More information

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers.

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers. CHEM 322 Name Fall 2012 Due In Class Friday, Oct. 19 Complete the following on separate paper. Show your work and clearly identify your answers. General Separations 1. Describe the relative contributions

More information

Agilent s New Weak Anion Exchange (WAX) Solid Phase Extraction Cartridges: SampliQ WAX

Agilent s New Weak Anion Exchange (WAX) Solid Phase Extraction Cartridges: SampliQ WAX Agilent s New Weak Anion Exchange (WAX) Solid Phase Extraction Cartridges: SampliQ WAX Technical Note Agilent s SampliQ WAX provides Applications for strongly acidic, acidic and neutral compounds Excellent

More information

High-Speed Liquid Chromatography by Simultaneous Optimization of Temperature and Eluent Composition

High-Speed Liquid Chromatography by Simultaneous Optimization of Temperature and Eluent Composition Anal. Chem. 00, 74, 4150-4159 High-Speed Liquid Chromatography by Simultaneous Optimization of Temperature and Eluent Composition Jonathan D. Thompson and Peter W. Carr* Department of Chemistry, University

More information

HPLC Method Development with Eclipse Plus: Standard Practices and New Columns. Agilent Technologies

HPLC Method Development with Eclipse Plus: Standard Practices and New Columns. Agilent Technologies HPLC Method Development with Eclipse Plus: Standard Practices and New Columns Agilent Technologies What are Some Standard Method Development Practices?. Follow preferred method development scheme and do

More information

LECTURE 2. Advanced Separation Science Techniques Present and Future Separation Tools

LECTURE 2. Advanced Separation Science Techniques Present and Future Separation Tools LECTURE 2 Advanced Separation Science Techniques Present and Future Separation Tools Jack Henion, Ph.D. Emeritus Professor, Analytical Toxicology Cornell University Ithaca, NY 14850 Lecture 2, Page 1 Contents

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHROMATOGRAPHY. The term chromatography is derived from the original use of this method for separating yellow and green plant pigments. CHROMATOGRAPHY The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments. THEORY OF CHROMATOGRAPHY: Separation of two sample components in

More information

Comparison of Solid Core HPLC Column Performance: Effect of Particle Diameter

Comparison of Solid Core HPLC Column Performance: Effect of Particle Diameter Comparison of Solid Core HPLC Column Performance: Effect of Particle Diameter Luisa Pereira, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 20755 Key Words Solid core, fused core, superficially

More information

MODERN HPLC FOR PRACTICING SCIENTISTS

MODERN HPLC FOR PRACTICING SCIENTISTS MODERN HPLC FOR PRACTICING SCIENTISTS Michael W. Dong Synomics Pharmaceutical Services, LLC Wareham, Massachusetts WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface xv 1 Introduction 1

More information

Orosil HPLC Columns. OroSil HPLC columns are designed for the separation of polar, semi-polar, and nonpolar compounds at low to medium ph.

Orosil HPLC Columns. OroSil HPLC columns are designed for the separation of polar, semi-polar, and nonpolar compounds at low to medium ph. Orosil OroSil HPLC columns are designed for the separation of polar, semi-polar, and nonpolar compounds at low to medium ph. Excellent organic base selectivity with very low asymmetry values Compatible

More information

Biochemistry. Biochemical Techniques HPLC

Biochemistry. Biochemical Techniques HPLC Description of Module Subject Name Paper Name 12 Module Name/Title 13 1. Objectives 1.1. To understand the basic concept and principle of 1.2. To understand the components and techniques of 1.3. To know

More information

(HILIC) Bill Champion Agilent Technologies, Inc opt 3/opt3/opt 2 HILIC - Agilent Restricted

(HILIC) Bill Champion Agilent Technologies, Inc opt 3/opt3/opt 2 HILIC - Agilent Restricted Hydrophilic Interaction Chromatography (HILIC) Bill Champion Agilent Technologies, Inc. 800-227-9770 opt 3/opt3/opt 2 william_champion@agilent.com Page 1 HILIC A method of recent attention Bill Champion

More information

Better HPLC Methods Using Temperature Programming

Better HPLC Methods Using Temperature Programming Better HPLC Methods Using Temperature Programming Stephanie J. Marin Brian A. Jones, W. Dale Felix Selerity Technologies, Inc. Salt Lake City, UT www.selerity.com 1 Abstract Temperature programmed liquid

More information

UPLC Method Development and Validation

UPLC Method Development and Validation UPLC Method Development and Validation Rev. 2 2008 Waters Corporation Challenges of Method Development Methods are developed throughout the drug development process Samples vary in complexity Redundancy

More information

Advantages and Applications of Revolutionary Superficially Porous Particle Columns in Liquid Chromatography

Advantages and Applications of Revolutionary Superficially Porous Particle Columns in Liquid Chromatography WHITE PAPER Fast and Efficient HPLC Separations With Superficially Porous Particles Authors D. Guillarme, S. Fekete University of Geneva, University of Lausanne Analytical Pharmaceutical Chemistry Advantages

More information

How proteins separate on reverse-phase HPLC

How proteins separate on reverse-phase HPLC 1 Reverse Phase How proteins separate on reverse-phase HPLC RP chromatography separates proteins through the interaction of the hydrophobic foot of the protein with a nonpolar surface of the particle RP

More information

Choosing Columns and Conditions for the Best Peak Shape

Choosing Columns and Conditions for the Best Peak Shape Choosing Columns and Conditions for the Best Peak Shape What is Good Peak Shape and Why is it Important? Good peak shape can be defined as a symmetrical or gaussian peak and poor peak shape can include

More information