CHEM340 Tutorial 4: Chromatography

Size: px
Start display at page:

Download "CHEM340 Tutorial 4: Chromatography"

Transcription

1 CHEM340 Tutorial 4: Chromatography 1. The data in the table below was obtained from a chromatogram obtained with a 10 cm liquid chromatography column. Under the conditions used, the compound uracil is not retained at all by the stationary phase Calculate: Component A Component B t M (min) t R (min) w ½ (min) a) the resolution (R) between the two peaks, b) the capacity factor (k) for component B. c) the selectivity coefficient ( ) for components A and B, d) the plate number (N) for the column according to component B, e) the plate height (H) for the column, f) the retention time for uracil. 2. In chromatography, the resolution between two adjacent peaks can be described by: R N α 1 k 2 4 α 1 k 2 N (plate number) is a measure of the column efficiency, (the selectivity coefficient) depends on the chemical structure of the substances involved and k 2 (the capacity factor for the second of the two peaks) depends largely on the temperature of the column (for GC) or the composition of the mobile phase (for HPLC). Resolution is usually sufficient when R = 1.5. A 15 m GC column with a plate number (N) of gives a resolution of 0.75 between two peaks, with the second peak eluting after 15 min. Assuming that the plate height does not vary with column length and that and k 2 remain constant: a) What length of column would be required to give a resolution of 1.5? b) What would be the retention time of the second peak? The resolution between two peaks is 1.1, the value of k 2 is 2.0 and t M is 1.5 min. a) What value of k 2 would be required to increase the resolution to 1.5? b) What would be the retention time of the second of the two peaks? For each of the following factors, state with a reason whether it affects the value of k. a) Column length b) Phase ratio (β) (in GC) c) Mobile phase velocity

2 3. In gas chromatography with an open tubular column, there are several experimental variables which can have an effect on the resultant chromatogram: a) How will increasing the column length affect: ii. Peak area iii. Plate height iv. Peak height b) How will increasing the stationary phase film thickness affect: ii. Capacity factor iii. Plate height iv. Peak area c) How will increasing the mobile phase velocity affect: ii. Capacity factor iii. Plate height d) How will increasing the analyte concentration affect: ii. Plate height iii. Peak width iv. Peak area 4. For each of the following applications, choose a technique (GC) or liquid chromatography (LC) and a detector (from the list above). In each case, give a brief (one sentence) reason. a) determination of alcohols and aldehydes in Scotch whisky b) determination of sucrose and glucose in a fermentation broth c) determination of large molecular weight polycyclic aromatic hydrocarbons d) determination of anions in boiler feed water e) determination of very low concentrations of semi-volatile chlorinated pesticides in water Page 2 of 6

3 plate height (mm) 5. The two chromatograms below were obtained using a non-polar HPLC stationary phase and an acetonitrile/water mobile phase for the separation of three compounds in a mixture Chromatogram A Chromatogram B One of the chromatograms was obtained using 12% acetonitrile in water and the other was obtained using a 6% acetonitrile in water mobile phase. The resolution in Chromatogram B is much better than it is in Chromatogram A there is almost no separation evident in Chromatogram A and all three substances are co-eluting. a) For each of the following changes, state with reasons whether it could have led to the increase in resolution seen in going from Chromatogram A to Chromatogram B: i. Increase in plate number (N). ii. Increase in selectivity factor ( ) iii. Increase in capacity factor (k). b) Which mobile phase is stronger (i.e. leads to shorter retention times) the 12% acetonitrile or the 6% acetonitrile? Explain briefly. c) Which mobile phase was used to obtain Chromatogram B? 6. The graph below shows two plots of plate height against mobile phase velocity (commonly known as van Deemter curves). They were both obtained using the same open tubular column with two different carrier gases (He and N 2 ). van Deemter curves for open tubular GC column using He and N 2 as carrier gas B A mobile phase velocity (cm/s) a) For curve B, what is the optimum mobile phase velocity? b) Consider curve B: in what range of mobile phase velocities is resistance to mass transfer (i.e. the C term ) the major contributor to band broadening, as measured by the plate height (H)? Page 3 of 6

4 c) In the region of the van Deemter curve where resistance to mass transfer dominates (i.e. where eddy diffusion and longitudinal diffusion can be ignored) would a gas with large diffusion coefficients give more or less band broadening than a gas with small diffusion coefficients? Explain briefly. d) Denser gases have lower diffusion coefficients. Which of the curves shown above was obtained using He as carrier gas? e) Curve B has a lower plate height at the optimum mobile phase velocity than does curve A. However, for most applications the gas for curve A would be preferred and the velocity would be set to about 30 or 40 cm/s. What advantage would there be for using a mobile phase velocity above the optimum? What would be the disadvantage? What advantage is there to having a less steep van Deemter curve? 7. The following two chromatograms were obtained using two different stationary phases; column a) had a methyl(95%) phenyl(5%) siloxane stationary phase (ZB-5) which is a non-polar phase, whereas column b) had a poly(ethylene glycol) Carbowax stationary phase (ZB-WAX) which is a polar phase. a) What effect would you expect changing the polarity of the stationary phase to have on: i) K ii) iii) iv) Peak area Plate height α b) The hydrocarbon mixture used for chromatograms a) and b) consists of two groups of compounds; alkanes and aromatics. Which group is most affected by the change to a more polar stationary phase? Why? c) Using the more polar stationary a) ZB-5 column 30 m x 0.32 mm x 0.25 µm 1= pentane, 2 = solvent, 3 = benzene, 4 = heptane,, 5 = toluene, 6 = ethylbenzene,7 = m-xylene, 8 = p-xylene, 9 = o-xylene, 10 = decane, 11 = dodecane b) ZB-WAX column 30 m x 0.32 mm x 0.50 µm 1= pentane, 2 = heptane, 3 = solvent, 4 = benzene, 5 = decane, 6 = toluene, 7 = ethylbenzene, 8 = p-xylene, 9 = m-xylene, 10 = dodecane, 11 = o-xylene phase has improved the resolution of the xylene isomers. What accounts for the improved resolution a change in N, α or k? Explain briefly. Page 4 of 6

5 d) The boiling points of some of the compounds are: compound pentane heptane toluene m-xylene p-xylene decane dodecane b. p 35 o C 98 o C 110 o C 138 o C 138 o C 174 o C 216 o C i. Look at the order of the boiling points and at the elution order in the chromatograms. ii. What property of the compounds determines the elution order on the non-polar column and why are m-xylene and p-xylene not separated? iii. What causes the elution order to change when the mixture is separated on the (polar) ZB- WAX column? 8. The following chromatogram shows the separation of some triazine herbicides by reversed phase HPLC (i.e. a non-polar stationary phase is used with a more polar mobile phase). A C- 18 column (15 cm x 4.6 mm) was used with a mixture of acetonitrile (33%) and 0.1 M sodium acetate (67%) as the mobile phase. Separation of herbicides by reversed phase HPLC 1 = simazine, 2 = atrazine, 3 = prometon, 4 = ametryn, 5 = propazine, 6 = prometryn, 7 = terbutryn Varian Chrompack Application note 1201-HPLC a) Which compounds will be more strongly retained on a reversed phase HPLC column polar compounds or non-polar compounds? b) Based on the chromatogram, which is the less polar compound, terbutryn or simazine? Justify your answer. c) The peaks for prometryn (6) and terbutryn (7) are much broader than those for simazine (1) and atrazine (2). Explain briefly why this is so. d) To make the prometryn and terbutryn peaks sharper and elute earlier, the mobile phase could be made stronger for reversed phase HPLC making the mobile phase stronger means Page 5 of 6

6 making it less polar so that it can better dissolve the non-polar analytes. To make the mobile phase stronger, would you increase or decrease the percentage of acetonitrile. Why? e) By changing the percentage of acetonitrile in the mobile phase are you changing the selectivity factor, α? (Hint: are you changing the chemical structure of the mobile phase?) f) By changing the percentage of acetonitrile in the mobile phase are you changing the capacity factor, k? (Hint: are you changing the average time an analyte spends in the stationary phase?) g) If you make the mobile phase stronger, what would happen to the separation between ametryn and propazine? How could you overcome that problem? h) These triazine herbicides can also be separated by normal phase HPLC in this case the mobile phase is less polar than the stationary phase. For example, a silica stationary phase could be used with a hexane/ethanol mobile phase. In normal phase chromatography, in which order would simazine and terbutryn elute? Explain briefly. i) In normal phase HPLC with a hexane/ethanol mobile phase in order to increase retention times and increase resolution would you increase or decrease the percentage of hexane in the mobile phase? Explain briefly.. Page 6 of 6

2. a) R N and L N so R L or L R 2.

2. a) R N and L N so R L or L R 2. 1. Use the formulae on the Some Key Equations and Definitions for Chromatography sheet. a) 0.74 (remember that w b = 1.70 x w ½ ) b) 5 c) 0.893 (α always refers to two adjacent peaks) d) 1.0x10 3 e) 0.1

More information

2] The plate height in chromatography is best described as 2

2] The plate height in chromatography is best described as 2 9 Chromatography. General Topics 1] Explain the three major components of the van Deemter equation. Sketch a clearly labeled diagram describing each effect. What is the salient point of the van Deemter

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Chromatographic Separations KAM021 2016 Dr. A. Jesorka, 6112, aldo@chalmers.se Introduction to Chromatographic Separations Theory of Separations -Chromatography Terms Summary: Chromatography

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

Volatile organic compounds (VOCs):

Volatile organic compounds (VOCs): Volatile organic compounds (VOCs): Organic chemicals with a high vapour pressure at room temperature. High vapour pressure results from a low boiling point. The World Health Organization (WHO) defined

More information

Gas Chromatography. Introduction

Gas Chromatography. Introduction Gas Chromatography Introduction 1.) Gas Chromatography Mobile phase (carrier gas) is a gas - Usually N 2, He, Ar and maybe H 2 - Mobile phase in liquid chromatography is a liquid Requires analyte to be

More information

Title Experiment 7: Gas Chromatography and Mass Spectrometry: Fuel Analysis

Title Experiment 7: Gas Chromatography and Mass Spectrometry: Fuel Analysis Title Experiment 7: Gas Chromatography and Mass Spectrometry: Fuel Analysis Name Manraj Gill (Partner: Tanner Adams, Lab Section: 102) Introduction In this experiment, we use chromatography and mass spectrometry

More information

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography Emqal module: M0925 - Quality parameters and optimization in is a separation technique used for quantification of mixtures of analytes Svein.mjos@kj.uib.no Exercises and lectures can be found at www.chrombox.org/emq

More information

Chapter 26: An Introduction to Chromatographic Separations

Chapter 26: An Introduction to Chromatographic Separations Chapter 26: An Introduction to Chromatographic Separations Column Chromatography Migration Rates Distribution Contstants Retention Times Selectivity Factor Zone Broadening & Column Efficiency Optimizing

More information

Chemistry Instrumental Analysis Lecture 26. Chem 4631

Chemistry Instrumental Analysis Lecture 26. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 26 Rate Theory Focuses on the contributions of various kinetic factors to zone or band broadening. Column Dispensivity, H, is assumed to be the sum of the individual

More information

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine Webcast Notes Type your questions in the Submit Question box, located below the slide window You can enlarge the slide window at any time by clicking on the Enlarge Slides button, located below the presentation

More information

HPLC Background Chem 250 F 2008 Page 1 of 24

HPLC Background Chem 250 F 2008 Page 1 of 24 HPLC Background Chem 250 F 2008 Page 1 of 24 Outline: General and descriptive aspects of chromatographic retention and separation: phenomenological k, efficiency, selectivity. Quantitative description

More information

CHEM 429 / 529 Chemical Separation Techniques

CHEM 429 / 529 Chemical Separation Techniques CHEM 429 / 529 Chemical Separation Techniques Robert E. Synovec, Professor Department of Chemistry University of Washington Lecture 1 Course Introduction Goal Chromatography and Related Techniques Obtain

More information

Liquid Chromatography

Liquid Chromatography Liquid Chromatography 1. Introduction and Column Packing Material 2. Retention Mechanisms in Liquid Chromatography 3. Method Development 4. Column Preparation 5. General Instrumental aspects 6. Detectors

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 Two types in general use: -packed (stationary phase) -open tubular or capillary determine selectivity and efficiency of the sample. Column Materials Column

More information

Partitioning. Separation is based on the analyte s relative solubility between two liquid phases or a liquid and solid.

Partitioning. Separation is based on the analyte s relative solubility between two liquid phases or a liquid and solid. Chromatography Various techniques for the separation of complex mixtures that rely on the differential affinities of substances for a gas or liquid mobile medium and for a stationary adsorbing medium through

More information

Chromatographic Separation

Chromatographic Separation What is? is the ability to separate molecules using partitioning characteristics of molecule to remain in a stationary phase versus a mobile phase. Once a molecule is separated from the mixture, it can

More information

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas GAS CHROMATOGRAPHY Mobile phase is a gas! Stationary phase could be anything but a gas Gas Chromatography (GC) GC is currently one of the most popular methods for separating and analyzing compounds. This

More information

The Effects of Carrier Gas Viscosity and Diffusion on Column Efficiency in Capillary Gas Chromatography

The Effects of Carrier Gas Viscosity and Diffusion on Column Efficiency in Capillary Gas Chromatography Page 1 of 5 Return The Effects of Carrier Gas Viscosity and Diffusion on Column Efficiency in Capillary Gas Chromatography Stephanye D. Armstrong and Harold M. McNair Department of Chemistry, Virginia

More information

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Gas Chromatography (GC) In gas chromatography, the sample is vaporized and injected onto the head of a chromatographic

More information

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers.

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers. CHEM 322 Name Fall 2012 Due In Class Friday, Oct. 19 Complete the following on separate paper. Show your work and clearly identify your answers. General Separations 1. Describe the relative contributions

More information

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction. LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set Extraction Problem #1 1. Devise a scheme to be able to isolate organic acids, bases

More information

Introduction and Principles of Gas Chromatography

Introduction and Principles of Gas Chromatography Introduction and Principles of Gas Chromatography Jaap de Zeeuw Restek, Middelburg, The Netherlands Jaap.dezeeuw@restek.com Definition and Uses of Gas Chromatography GC Components and Types of Columns

More information

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis Watch this lesson online: https://edrolo.com.au/vce/subjects/chemistry/vce-chemistry/aos-1-chemical-analysis/chromatography-hplc-glc/column-chromatography/#watch CHEMISTRY Unit 3, Area of Study 1: Chemical

More information

Introduction to Chromatography

Introduction to Chromatography Introduction to Chromatography Dr. Sana Mustafa Assistant Professor Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Karachi. What is Chromatography? Derived from the Greek

More information

CHAPTER 1. Introduction, Chromatography Theory, and Instrument Calibration

CHAPTER 1. Introduction, Chromatography Theory, and Instrument Calibration 1 1 1 1 1 1 CHAPTER 1 Introduction, Chromatography Theory, and Instrument Calibration 1.1 Introduction Analytical chemists have few tools as powerful as chromatography to measure distinct analytes in complex

More information

Chromatography and Functional Group Analysis

Chromatography and Functional Group Analysis Chromatography Chromatography separates individual substances from a mixture. - to find out how many components there are - to match the components with known reference materials - to use additional analytical

More information

Remember - Ions are more soluble in water than in organic solvents. - Neutrals are more soluble in organic solvents than in water.

Remember - Ions are more soluble in water than in organic solvents. - Neutrals are more soluble in organic solvents than in water. IN-CLASS PROBLEMS SEPARATION SCIENCE CROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set - Extraction 1. Devise a way to separate the materials in the following sample by performing an

More information

[S016. CHROMATOGRAPHY]

[S016. CHROMATOGRAPHY] Phyto-Analysis Sheet Number : 16 Prof. Dr. Talal Aburjai Page 1 of 9 How to read the chromatogram? Comes from any automated chromatography. The chromatograms show the 0 t (t m ) which indicates the solvent

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

7 INSTRUMENTAL CHROMATOGRAPHY

7 INSTRUMENTAL CHROMATOGRAPHY 7 INSTRUMENTAL CHROMATOGRAPHY 7.1 Introduction There are two forms of chromatography, very widely used in analytical laboratories, which rely on electronic control of the process and detection of the species.

More information

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. Chromatography Primer Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. At its heart, chromatography is a technique

More information

The Suite for Environmental GC Analysis

The Suite for Environmental GC Analysis The Suite for Environmental GC Analysis SGE Environmental GC Columns Performance Selectivity Delivery Promise www.sge.com SGE Environmental GC Columns The Suite for Environmental GC Analysis SGE GC Columns

More information

Packings for HPLC. Packings for HPLC

Packings for HPLC. Packings for HPLC Summary of packings for HPLC In analytical HPLC, packings with particle sizes of 3 to 10 µm are preferred. For preparative separation tasks, also particles with diameters larger than 10 µm are applied.

More information

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software GC Columns and Consumables Mark Sinnott Application Engineer January 8 th, 2008 Page 1 Questions to Ask

More information

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for? Chromatography- Separation of mixtures CHEM 212 What is solvent extraction and what is it commonly used for? How does solvent extraction work? Write the partitioning coefficient for the following reaction:

More information

Chromatographic Analysis

Chromatographic Analysis Chromatographic Analysis Distribution of Analytes between Phases An analyte is in equilibrium between the two phases [S 1 ] [S 2 ] (in phase 1) (in phase 2) AS [S2 ] K 2 A S [S1 ] 1 AS, A 1 S Activity

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

Selection of a Capillary

Selection of a Capillary Selection of a Capillary GC Column - Series 3 Mark Sinnott Application Engineer March 19, 2009 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector

More information

Principles of Instrumental Analysis

Principles of Instrumental Analysis Principles of Instrumental Analysis Chapter 27 Gas Chromatography Gas Chromatography (GC): vaporized analytes (solutes) are partitioned between a mobile gaseous phase and a liquid or a solid stationary

More information

Introduction to Chromatographic Separations

Introduction to Chromatographic Separations Introduction to Chromatographic Separations Analysis of complex samples usually involves previous separation prior to compound determination. Two main separation methods instrumentation are available:

More information

Gas chromatography. Advantages of GC. Disadvantages of GC

Gas chromatography. Advantages of GC. Disadvantages of GC Advantages of GC Gas chromatography Fast analysis, typically minutes Effi cient, providing high resolution Sensitive, easily detecting ppm and often ppb Nondestructive, making possible on - line coupling;

More information

What is Chromatography?

What is Chromatography? What is Chromatography? Chromatography is a physico-chemical process that belongs to fractionation methods same as distillation, crystallization or fractionated extraction. It is believed that the separation

More information

M > ACN > > THF

M > ACN > > THF Method Development in HPLC Dr. Amitha Hewavitharana School of Pharmacy University of Queensland Method Development in HPLC References: D A Skoog Principles of instrumental analysis, 3 rd Edition Chapters

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L2 Page1 Instrumental Chemical Analysis Chromatography (General aspects of chromatography) Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester,

More information

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications Chapter 27: Gas Chromatography Principles Instrumentation Detectors Columns and Stationary Phases Applications GC-MS Schematic Interface less critical for capillary columns Several types of Mass Specs

More information

Understanding the Capillary GC Column: How to Choose the Correct Type and Dimension

Understanding the Capillary GC Column: How to Choose the Correct Type and Dimension Understanding the Capillary GC Column: How to Choose the Correct Type and Dimension Simon Jones Application Engineer Things to Consider Is it Volatile enough to chromatograph by GC? Is it a Gas or a Liquid?

More information

Fast Analysis of Aromatic Solvent with 0.18 mm ID GC column. Application. Authors. Introduction. Abstract. Gas Chromatography

Fast Analysis of Aromatic Solvent with 0.18 mm ID GC column. Application. Authors. Introduction. Abstract. Gas Chromatography Fast Analysis of Aromatic Solvent with.8 mm ID GC column Application Gas Chromatography Authors Yun Zou Agilent Technologies (Shanghai) Co. Ltd. Ying Lun Road Waigaoqiao Free Trade Zone Shanghai 3 P.R.

More information

Thermo Scientific Accucore XL HPLC Columns. Technical Manual

Thermo Scientific Accucore XL HPLC Columns. Technical Manual Thermo Scientific Accucore XL HPLC Columns Technical Manual Thermo Scientific Accucore XL HPLC Columns Based on Core Enhanced Technology using µm solid core particles, Accucore XL HPLC columns allow users

More information

An Introduction to Gas Chromatography Mass Spectrometry

An Introduction to Gas Chromatography Mass Spectrometry An Introduction to Gas Chromatography Mass Spectrometry Dr Kersti Karu email: kersti.karu@ucl.ac.uk Office number: Room LG11 Recommended Textbooks:- Analytical Chemistry, G. D. Christian, P. K. Dasgupta,

More information

Chapter 26. An Introduction to Chromatographic Separations. Chromatography

Chapter 26. An Introduction to Chromatographic Separations. Chromatography Chapter 26 An Introduction to Chromatographic Separations Chromatography 1 Chromatography-Model as Extraction Chromatography-Model as Extraction 2 Chromatography Planar Chromatography-Types paper chromatography

More information

Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. CHAPTER 26

Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. CHAPTER 26 Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. Instructor s Manual CHAPTE 26 26-1. (a) Elution is a process in which species are washed through a chromatographic column by

More information

Phenyl-Hexyl. UHPLC Columns. Alternate, complementary selectivity to C18 and C8 bonded phases

Phenyl-Hexyl. UHPLC Columns. Alternate, complementary selectivity to C18 and C8 bonded phases Phenyl-Hexyl UHPLC Columns Alternate, complementary selectivity to C8 and C8 bonded phases Particularly recommended for compounds containing aromatic groups Excellent bonded phase stability for durable,

More information

Separations---Chromatography and Electrophoresis

Separations---Chromatography and Electrophoresis Separations---Chromatography and Electrophoresis Chromatography--one of most diverse and important analytical methods-- Used initially primarily to purify species With advent of sensitive detectors---now

More information

Selection of a Capillary GC Column

Selection of a Capillary GC Column Selection of a Capillary GC Column Mark Sinnott Application Engineer March 13, 2008 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector Electrometer

More information

Principles of Gas- Chromatography (GC)

Principles of Gas- Chromatography (GC) Principles of Gas- Chromatography (GC) Mohammed N. Sabir January 2017 10-Jan-17 1 GC is a chromatographic technique utilizes gas as the mobile phase which is usually an inert gas (Hydrogen, Helium, Nitrogen

More information

How To Select the Correct GC Column. Simon Jones Application Engineer

How To Select the Correct GC Column. Simon Jones Application Engineer How To Select the Correct GC Column Simon Jones Application Engineer Things to Consider Is it Volatile enough to chromatograph by GC? Is it a Gas or a Liquid? How are we getting the Sample Injected? What

More information

Gas Chromatography. Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 2

Gas Chromatography. Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 2 Print version Gas Chromatography Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 1 Contents The primary components to a GC system 1. Carrier Gas System (including

More information

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis Chromatography: sample transported by mobile phase electrostatic

More information

10/27/10. Chapter 27. Injector typically 50 C hotter than oven

10/27/10. Chapter 27. Injector typically 50 C hotter than oven Sample and solvent are vaporized onto the head of a column Vaporized solvent and solute are carried through the column by an inert gas (mobile phase) The mobile phase does not interact with compounds of

More information

Agilent J&W GC Column Selection Guide

Agilent J&W GC Column Selection Guide Agilent J&W GC Column Selection Guide Rely on unsurpassed reproducibility, efficiency, and inertness. Speed your selection with this one-stop resource. Agilent J&W GC Column Selection Guide Table of Contents

More information

Introduction to Gas Chromatography

Introduction to Gas Chromatography Introduction to Gas Chromatography 31-1 Objectives To know what is chromatography To understand the mechanism of compound separation To know the basic of gas chromatography system 31-2 Chromatography Definition

More information

Resolution Modeling of Length Tuning in Gas Chromatography

Resolution Modeling of Length Tuning in Gas Chromatography Eastern Michigan University DigitalCommons@EMU Senior Honors Theses Honors College 2009 Resolution Modeling of Length Tuning in Gas Chromatography James P. Grinias Eastern Michigan University Follow this

More information

Trajan SGE GC Columns

Trajan SGE GC Columns Trajan Scientific and Medical Trajan SGE GC Columns Trajan Scientific and Medical Our focus is on developing and commercializing technologies that enable analytical systems to be more selective, sensitive

More information

https://www.chemicool.com/definition/chromatography.html

https://www.chemicool.com/definition/chromatography.html CHROMATOGRAPHY 1 Chromatography - a physical method of mixture separation in which the components to be separated are distributed between two phases, one of which is stationary (stationary phase) while

More information

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software High Efficiency GC Columns Page 1 Variables for Shortening Run Times Stationary Phase Shorten Column Length

More information

Chemistry Gas Chromatography: Separation of Volatile Organics

Chemistry Gas Chromatography: Separation of Volatile Organics Chemistry 3200 Gas chromatography (GC) is an instrumental method for separating volatile compounds in a mixture. A small sample of the mixture is injected onto one end of a column housed in an oven. The

More information

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products.

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products. Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products. CHRISTOPHER M. ENGLISH, CHRISTOPHER S. COX, FRANK

More information

Chromatographie Methods

Chromatographie Methods Chromatographie Methods Fifth Edition A. BRAITHWAITE Department of Physical Sciences Nottingham Trent University and F. J. SMITH Department of Chemistry and Chemical Engineering University of Paisley BLACKIE

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 1 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

Get Selective. By Jaap de Zeeuw

Get Selective. By Jaap de Zeeuw 34 Get Selective Modern narrow bore columns have made chromatographers lazy when it comes to stationary phase selection. Here s how getting back to basics in gas chromatography by using selectivity can

More information

Ch24. Gas Chromatography (GC)

Ch24. Gas Chromatography (GC) Ch24. Gas Chromatography (GC) 24.1 What did they eat in the year 1000? From 13 C content of cholesterol in ancient bone 13 C : 1.1%, 12 C: 98.9% 13 C/ 12 C ratio types of plants Bones of 50 people in Barton-on-Humber

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

Gas Chromatography. 1. Introduction. 2. Stationary phases. 3. Retention in Gas-Liquid Chromatography. 4. Capillary gas-chromatography

Gas Chromatography. 1. Introduction. 2. Stationary phases. 3. Retention in Gas-Liquid Chromatography. 4. Capillary gas-chromatography Gas Chromatography 1. Introduction 2. Stationary phases 3. Retention in Gas-Liquid Chromatography 4. Capillary gas-chromatography 5. Sample preparation and injection 6. Detectors (Chapter 2 and 3 in The

More information

LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry

LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry TYPICAL SOLVENT USE IN Pharma Industry Usage of solvents in an API process development is for: Diluent to carry out reaction

More information

An Overview of the the Development of Stationary Phases for Reversed-Phase Liquid Chromatography

An Overview of the the Development of Stationary Phases for Reversed-Phase Liquid Chromatography An Overview of the the Development of Stationary Phases for Reversed-Phase Liquid Chromatography Analytical Potential of Stable Phases for Reversed-Phase Liquid Chromatography by Jacek Nawrocki, Jon Thompson,

More information

Gas chromatography/mass spectrometry (GC MS) Interpretation of EI spectra

Gas chromatography/mass spectrometry (GC MS) Interpretation of EI spectra Gas chromatography/mass spectrometry (GC MS) Interpretation of EI spectra Arpad Somogyi CCIC MSP MSP Summer Workshop July 13, 2016 Important goals in chromatography Achieve the best separation Little band

More information

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost Gas Chromatography Like other methods of chromatography, a partitioning of molecules must occur between the stationary phase and the mobile phases in order to achieve separation. This is the same equilibrium

More information

Luminescence transitions. Fluorescence spectroscopy

Luminescence transitions. Fluorescence spectroscopy Luminescence transitions Fluorescence spectroscopy Advantages: High sensitivity (single molecule detection!) Measuring increment in signal against a dark (zero) background Emission is proportional to excitation

More information

Supelco Ionic Liquid GC Columns Introduction to the Technology

Supelco Ionic Liquid GC Columns Introduction to the Technology Supelco Ionic Liquid GC Columns Introduction to the Technology Updated: -Jan-203 Agenda Overview GC Column Polarity Scale Temperature Effects on Selectivity Column Selectivity: QC Test Mix (0.2 mm I.D.

More information

Understanding Gas Chromatography

Understanding Gas Chromatography Understanding Gas Chromatography What is Really Going on Inside the Box? Simon Jones GC Applications Engineer Page 1 Group/Presentation Title Month ##, 200X ?? K? Page 2 Typical GC System Gas supply Injector

More information

Overview topics. Basics of chromatography. Gaschromatography. Construction. Sampling techniques. Application of gaschromatography

Overview topics. Basics of chromatography. Gaschromatography. Construction. Sampling techniques. Application of gaschromatography Overview topics Basics of chromatography Gaschromatography Construction Sampling techniques Application of gaschromatography Example of a measurement page 2 Why chromatography? Samples of investigation

More information

Chromatography and other Separation Methods

Chromatography and other Separation Methods Chromatography and other Separation Methods Probably the most powerful class of modern analytical methods for analyzing mixture of components---and even for detecting a single component in a complex mixture!

More information

CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography. M. Subramanian

CH 2252 Instrumental Methods of Analysis Unit V  Gas Chromatography.  M. Subramanian CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography M. Subramanian Assistant Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 High Performance Liquid Chromatography () Instrumentation Normal Phase Chromatography Normal Phase - a polar stationary phase with a less polar mobile phase.

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A.

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A. Instrumental Analysis II Course Code: CH3109 Chromatographic &Thermal Methods of Analysis Part 1: General Introduction Prof. Tarek A. Fayed What is chemical analysis? Qualitative analysis (1) Chemical

More information

Lab 3 Guide: Gas Chromatography (GC) (Sept 8-14)

Lab 3 Guide: Gas Chromatography (GC) (Sept 8-14) Lab 3 Guide: Gas Chromatography (GC) (Sept 8-14) How GC works The Basic Idea Gas chromatography (GC) is mainly used for the qualitative analysis of samples: it answers the question What chemicals are present

More information

Column Dimensions. GC Columns and Consumables. Mark Sinnott Application Engineer. March 12, 2010

Column Dimensions. GC Columns and Consumables. Mark Sinnott Application Engineer. March 12, 2010 Secrets of GC Column Dimensions GC Columns and Consumables Mark Sinnott Application Engineer Folsom California March 12, 2010 Page 1 Secrets of GC Column Dimensions Do I have the right column phase? Resolution

More information

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC Gas Chromatography Gas Chromatography Presented By Mr. Venkateswarlu Mpharm KTPC What is Gas Chromatography? It is also known as Gas-Liquid Chromatography (GLC) GAS CHROMATOGRAPHY Separation of gaseous

More information

Applications. Overview of applications of elevated temperature and temperature programmed liquid chromatography

Applications. Overview of applications of elevated temperature and temperature programmed liquid chromatography Applications Overview of applications of elevated temperature and temperature programmed liquid chromatography The applications are arranged by field of interest Fundamental page 2 Pharmaceutical page

More information

Chapter 27: Gas Chromatography

Chapter 27: Gas Chromatography Chapter 27: Gas Chromatography Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid

More information

6.1 Revision The following questions cover the important concepts that you should have understood in the first year introduction to chromatography.

6.1 Revision The following questions cover the important concepts that you should have understood in the first year introduction to chromatography. 6 Gas Chromatography 6.1 Revision The following questions cover the important concepts that you should have understood in the first year introduction to chromatography. 1. How does a gas chromatograph

More information

Theory and Instrumentation of GC. Chromatographic Parameters

Theory and Instrumentation of GC. Chromatographic Parameters Theory and Instrumentation of GC Chromatographic Parameters i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this

More information

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas Agilent Porous Polymer PLOT Columns: New Products, Expanded Uses, Prices Cut in Half! Product Brief Need improved resolution of small volatile compounds? Didn't try a PLOT column due to high price, short

More information

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography)

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography) Gas Chromatography 1. Introduction. Stationary phases 3. Retention in Gas-Liquid Chromatography 4. Capillary gas-chromatography 5. Sample preparation and injection 6. Detectors (Chapter and 3 in The essence

More information