Applied chemical processes Energy in chemicall processes. Types of energy. Overall energy balance

Size: px
Start display at page:

Download "Applied chemical processes Energy in chemicall processes. Types of energy. Overall energy balance"

Transcription

1 Applied chemical processes Energy in chemicall processes types of energy overall energy balance heat balance cooling and heating in chemical proc. electrical energy Types of energy Energy in chemical processes occurring in various forms: heat, chemical energy, electrical energy, internal energy, potential energy, kinetic energy, etc. Each type of energy is usually connected to a specific activity, but also can be converted to other type as: when pumping media is heated Types of energy can be divided according to their relations to the flow of substances: Bound to the energy flowing agents: potential, kinetic, internal Energy passing through the system boundary: thermal energy, pv work Overall energy balance By analogy with the law of conservation of mass, the law of conservation of energy. For a closed system is: Σ energy input = Σ energy output + accumulation usual case of balance calculation steady state (i.e. accumulation = 0) Special case (start up, shut down) - unsettled state definitions: heat supplied to the system: plus sign (+) work provided by systém: plus sign (+) 3

2 Unsettled state Generally start up or shut down of technological systems For the energy balance calculation is necessary: - knowledge of energetic capacity (consumption of energy) - requested time (time for start up/shut down) For the lack of accurate data (eg heat exchanger capacity) the calculation generally based on estimates and experience from similar operations. The operating temperature is often associated with the need to install the heating elements into the reactor (usually electric heating elements). When oversizing -take place during steady operation, at undersizing approachto steady state takes too long time. 4 The overall energy balance II Mathematical expression of the conservation of energy in the steady state : Epot Ekin pv U Q Epot Ekin pv U W E E pot kin g m z mv m weight [kg] z,z height [m] v,v velocity [m s - ] g acceleration of gravity [m s - ] p,p pressure [Pa] V,V volume [m 3 ] U,U internal energy [J] Q heat [J] W work [J] Thermodynamics: pv+u=h -> related to weight unit kg: v v gz h q gz h w [J kg - ] 5 Energy comparison In the case of heat changes - E pot a E kin insignificant v v gz h q gz h w Transport to m: E pot = 9,8. = 9,8 J kg - [J kg Speed of water flow m s - : E kin = / = 0,5 J kg - Water heating by o C : Δh=c p ΔT = 4, = 480 J kg - - ] Units, Units, Units! c p (H O) = 4, J kg - K - specific heat capacity Δh [J kg - ] c p (H O) = 75,38 J mol - K - molar heat capacity Δh [J mol - ] 6

3 enthalpy heat Enthalpy - heat Internal energy - its change in a system is equal to the heat brought to the system at constant pressure. dependent on standard state standard state: temp. 73,5 K; pres. 0,35 kpa temp. 98,5 K; pres. 0,35 kpa only one standard state during whole calculation! main enthalpy changes during: - heating/cooling - state (phase) change - chemical reaction 7 Balance of Enthalpy without state (phase) change only substance heating/cooling: h h i t i, hi, c p, idt c p, i t t <c p > mean or average heat capacity hi hi, hi, c pl, idt hi, vyp( ) t ( t ) during state change - calculation of phase change included: t c pg, i dt liquid heating state change (evaporation enthalpy) gas heating for mixtures the sum of all components enthalpy + enthalpy of mixing (often neglected) 8 Balance of Enthalpy chemical reaction reaction enthalpy - enthalpy of formation or enthalpy of combustion of participating compounds h mh r h r aa+bb = mm+nn n i i M, sl v h i, sl nh N, sl A, sl B, sl Δh r [J mol - ] heat deliberated or consumed during one reaction turn over i.e. dependent on form of chemical reaction. i, sp Energy change is determined by equilibrium and real reaction progress n i i ah v h bh 9 3

4 Data 0 Data II e-tabulky Calculation Steam enters heat exchanger with flow rate 30 m/s at pressure 500 kpa and temperature 00 o C. From output flows condensate of temperature 50 o C and flow rate m/s. Height distance between input and output is 3m. How much heat is deliberated from kg of steam. Solution Data: Steam enthalpy 00 o C, 500kPa = 854,3 kj kg -, hot water enthalpy 50 o C is 63,78 kj kg - (std. state H=0 at 0 o C, 00kPa). ΔE ΔE v v Δh w gz h w - gz h pot kin q ΔE pot =g(z -z ) = 9,8. (-3) = -7,54 J kg - ΔE kin = ½ (v - v ) = 0,5. (30 - ) = -449,5 J kg - Δh= h -h = 63,78-854,3 = -,5 kj kg - q = -7,54-449,5-, = J kg - 4

5 z z z=0 Steam enters heat exchanger with flow rate 30 m/s at pressure 500 kpa and temperature 00 o C. From output flows condensate of temperature 50 o C and flow rate m/s. Height distance between input and output is 3m. How much heat is deliberated from kg of steam. Solution Data: ΔH f 98,5K (H O (g))= kj mol -, ΔH f 98,5K (H O (l))= -85,830 kj mol - Cp = A + B t + C t + D t 3 + E/t [t= K/000] ΔE pot = -7,54 J kg -, ΔE kin = -449,5 J kg - (viz. soln..) hi hi, hi, cpl, idt hi, vyp( ) t t c pg, i dt A B C D H O (l) H O (g) E Δh= [At + B*t / + C*t 3 /3 + D*t 4 /4 E/t] t t [kj mol - ] Δh (00C-5C) (H O (g)) = -5,98 kj mol -, Δh (5C-50C) (H O (l)) = +9,5 kj mol - Δh vyp, 98,5 = ΔH f 98,5K (H O (l))-δh f 98,5K (H O (g))= - 44,0 kj mol - Δh = ,0+9,5 =-40,48 kj mol - => -48,89 kj kg - q= , = J kg - t x = 5 o C (98,5K) 3 Calc. - chem. reaction SO + ½ O = SO 3 reactor heat exchanger reactor heat exchanger reactor reactor (H f0 ) SO = -300 kj/mol (T=300 K) (H f0 ) SO3 = -400 kj/mol (T=300 K) (C pm0 ) O= (C pm0 ) N = 9 J mol - K -, (C pm0 ) SO = 44 J mol - K - (C pm0 ) SO3 = ( T) J mol - K Transport of liquids Bernoulli equation energy balance for hydrodynamic calculation. v p v p gz w c gz e ρ ρ w c work of pump e dis energy loss for ideal liquids e dis =0 dis estimation of e dis usually based on exp. value n l v edis λ ζ j d j λ pipe friction factor, l length of piping, d pipe diameter, v flow rate a ζ coefficient of local resistance 5 5

6 Electric energy specific type of energy with universal applicability easy transport no weight changes simple regulation pollutant free - heating(in explosive environnment) ohmic, el. arc, inductive - mechanical operation actuation (pumps, stirrrers,...) performance/consumption, efficiency - electrochemical processes el. energy conversion to chemical and oposite R = U/I P = U. I R resistance [Ω], U- voltage [V], I- current [A], P-performance [W] 6 Calculation 3 Membrane electrolyser for Cl production operates at 3,3V and current density 4kA/m. Electrode area is m. How many electrolysers can be connected to teh power source of performance 50 kw. Solutions I = j. A I elz = = 4000 A x U celk U celk = n. U elektrolyzeru P zdroj = U celk. I n= P zdroj / (U elektrolyzeru.. I) n = / (3, ) =,36 tj. electrolysers 7 Heating and cooling the method of heating / cooling and the choice of heat transfer medium depends on the type and extent of the process temperature Heating exists in almost all chemical plants distillation, absorption, desorption, freeze drying, dissolution, crystalysation, drying, etc. -direct heat exchange medium is in direct contact with the heated substance. ideal heat transfer, low investment costs but leads to weight changes (eg, dilution) - indirect heat exchange medium circulates in a separate circuit. more difficult to heat, increased investment, there is no interaction between the medium and the heated substance 8 6

7 Combustion gases heating The primary heat source - from the combustion of solid, liquid or gaseous fuels. in technological processes is most commonly used gaseous fuels - natural gas, coal gas, reformate gas, petrochemical fumes. production, etc. basic advantage is the ease of adjustability, minimal production of solid waste. Possibility of direct contact with the heated substance in limited technologies (silicate industry, drying, annealing) In the production of steam is often used in so-called cogeneration, which is also producedby steam and electric power. 9 Heat carriers / Heat transfer media / Heat transfer fluids Basic requirements for the heat carriers transmits the highest amount of heat per unit mass or volume are cheap and readily available are chemically stable in the range of pressures and temperaturesused in non corrosive for pipes not flammable, toxic or explosive not too viscous allow the option to controlthe transmitted energy 0 Heat carrier - water most common, readily available, non-toxic, good thermal conductivity, high heat capacity, heat of condensation suitable for direct heating where it is desired dilution (diffusers) steam saturated steam or overheated water steam. Applicable to temperatures up to 300 o C. higher temperature - high pressure (higher investment costs) hot water for heating up to 00 C, higher temperatures require increased pressure (described application at 355 C, 8 MPa). 7

8 Demands on water quality Heat carrier - water Heat water to be demineralized circuits - high purity exchangers in cooling water flows through the pipes of small cross - sensitive to solid deposits (heat transfer deterioration, clogging pipes) The most common cause - equilibrium disruption of HCO 3- and CO in the presence of Ca + to form CaCO 3. The mineral content also supports the growth of microorganisms (bacteria, algae, fungi) Demands on water quality are increasing the demand for long-term continuous operation. organic substances Heat carriers Overheating leads to degradation to form the carbon slurry. When exceeding the limit values it must be replaced the entire load - expensive mineral oils Allow heat to higher temperatures without increasing pressure. Oils guarantee protection against corrosion and rusting, high oil film resistance and excellent lubricating properties, are resistant to water washout Special mixtures e.g. dowterm (difenile 6,5% and difenyloxide 73.5%) boiling point 58 o C for atm. pressure. Melting point - C. Non-toxic compound, forming deposits, non-corrosive. Using both in liquid and gaseous form. Heat of evaporation - less than 9x to water. 3 Molten salts Heat carriers Enables high temperatures - heating up to 500 o C. (e.g.: molten 40% NaNO, 7% NaNO 3 and 53% KNO 3, application range o C) At higher temperatures degradation occurs and increasing the freezing point of the mixture. Risk nitration respectively. oxidation org. substances (Not for org. processes) Molten metals Allow heat to high temperatures up to about 800 o C. (eg alloy Pb and Bi, Hg, or occasionally molten alkali metals) High heat transfer coefficient. Construction and materials - very demanding. Use only if no other option. 4 8

9 Heat carriers - cooling air Only for big temperature difference. Low coefficient of heat transfer. Low cost. water often enough raw water. Heated above 50 C - release of dissolved gases (reducing the heat transfer surface) and increases the risk of the formation of deposits. For higher temperatures are used circuits with treated water. 5 Heat carriers - cooling ammonia the most common cooling medium is used for compressor and absorption cooling applications up to temperatures of -70 o C, low pressure, high heat transfer coefficient, toxic, flammable to explosive. SO, freons, CO, metane, etane, etylene, propane freons CF Cl (R-), HCF Cl (R-) negativeinfluence to the ozone layer substutued by propane For temperatures below -00 o C adiabatic expansion of gases is used eg. for the air liquefaction 6 Energy in chem. technology Conventional ammonia production by steam reforming 7 9

Applied Chemical Processes - S Energy in chemicall processes. Types of energy 3/5/2013

Applied Chemical Processes - S Energy in chemicall processes. Types of energy 3/5/2013 3/5/03 Applied Chemical Processes - S0500 Sylabus. Design of chemical technology. Treatment and mass transfer in chemical processes 3. Energy in chemical processes 4. Separation processes 5. Kinetics of

More information

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit.

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit. Page 1 of 8 Hall Ticket Number: 14CH 404 II/IV B.Tech (Regular) DEGREE EXAMINATION June, 2016 Chemical Engineering Fourth Semester Engineering Thermodynamics Time: Three Hours Maximum : 60 Marks Answer

More information

Lecture 35: Vapor power systems, Rankine cycle

Lecture 35: Vapor power systems, Rankine cycle ME 00 Thermodynamics I Spring 015 Lecture 35: Vapor power systems, Rankine cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R.

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

5 Energy from chemicals

5 Energy from chemicals 5 Energy from chemicals Content 5.1 Enthalpy 5.2 Hydrogen fuel cell Learning Outcomes Candidates should be able to: (a) (b) (c) (d) (e) describe the meaning of enthalpy change in terms of exothermic (H

More information

THE ENERGY OF THE UNIVERSE IS CONSTANT.

THE ENERGY OF THE UNIVERSE IS CONSTANT. Chapter 6 Thermochemistry.notebook Chapter 6: Thermochemistry Jan 29 1:37 PM 6.1 The Nature of Energy Thermodynamics: The study of energy and its interconversions Energy: the capacity to do work or to

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19. Chemical Thermodynamics Sample Exercise 19.2 (p. 819) Elemental mercury is a silver liquid at room temperature. Its normal freezing point is -38.9 o C, and its molar enthalpy of fusion is H

More information

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES Chapter 10 THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES It is not the sun to overtake the moon, nor doth the night outstrip theday.theyfloateachinanorbit. The Holy Qur-ān In many engineering applications,

More information

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU Chapter 17 Thermochemistry 17.1 The Flow of Energy 17. Measuring and Expressing Enthalpy Changes 17.3 Heat in Changes of State 17.4 Calculating Heats of Reaction Why does sweating help

More information

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy Chapter Objectives Larry Brown Tom Holme www.cengage.com/chemistry/brown Chapter 9 Energy and Chemistry Explain the economic importance of conversions between different forms of energy and the inevitability

More information

General Chemistry 1 CHM201 Unit 3 Practice Test

General Chemistry 1 CHM201 Unit 3 Practice Test General Chemistry 1 CHM201 Unit 3 Practice Test 1. Heat is best defined as a. a substance that increases the temperature and causes water to boil. b. a form of potential energy. c. a form of work. d. the

More information

Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions

Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions Jeffrey Mack California State University, Sacramento Energy & Chemistry Questions that need to be addressed: How do we measure

More information

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste, CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

More information

Chemical Thermodynamics. Chemical Thermodynamics. Changes of State. Chemical Thermodynamics. State Functions. State Functions 11/25/13

Chemical Thermodynamics. Chemical Thermodynamics. Changes of State. Chemical Thermodynamics. State Functions. State Functions 11/25/13 Chemical Thermodynamics n Thermodynamics is the study of the energetics and order of a system. n A system is the thing we want to study it can be a chemical reaction, a solution, an automobile, or the

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

ChE 201 August 26, ChE 201. Chapter 8 Balances on Nonreactive Processes Heat of solution and mixing

ChE 201 August 26, ChE 201. Chapter 8 Balances on Nonreactive Processes Heat of solution and mixing ChE 201 Chapter 8 Balances on Nonreactive Processes Heat of solution and mixing Definitions A solution is a homogeneous mixture A solute is dissolved in a solvent. solute is the substance being dissolved

More information

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics. By: Yidnekachew Messele The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

More information

First Law of Thermodynamics

First Law of Thermodynamics CH2303 Chemical Engineering Thermodynamics I Unit II First Law of Thermodynamics Dr. M. Subramanian 07-July-2011 Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College

More information

Exam 4, Enthalpy and Gases

Exam 4, Enthalpy and Gases CHEM 1100 Dr. Stone November 8, 2017 Name_ G Exam 4, Enthalpy and Gases Equations and constants you may need: ΔE system = q + w PV = nrt R = 0.0821 (L*atm)/(mole*K) w = -PΔV K.E. = 1 2 m *µ 2 rms µ rms=

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 17 Lecture Lecture Presentation Chapter 17 Free Energy and Thermodynamics Sherril Soman Grand Valley State University First Law of Thermodynamics You can t win! The first law of thermodynamics

More information

In terms of production, nitric acid is the third most widely produced acid across the world.

In terms of production, nitric acid is the third most widely produced acid across the world. In terms of production, nitric acid is the third most widely produced acid across the world. It has a wide range of uses in agriculture, industry and medicine where it is used as a fertiliser and in the

More information

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES Phase Diagrams Solutions Solution Concentrations Colligative Properties Brown et al., Chapter 10, 385 394, Chapter 11, 423-437 CHEM120 Lecture Series Two : 2013/01

More information

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22.

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22. Entropy Clausius inequality can be used to analyze the cyclic process in a quantitative manner. The second law became a law of wider applicability when Clausius introduced the property called entropy.

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

= (25.0 g)(0.137 J/g C)[61.2 C - (-31.4 C)] = 317 J (= kj)

= (25.0 g)(0.137 J/g C)[61.2 C - (-31.4 C)] = 317 J (= kj) CHEM 101A ARMSTRONG SOLUTIONS TO TOPIC D PROBLEMS 1) For all problems involving energy, you may give your answer in either joules or kilojoules, unless the problem specifies a unit. (In general, though,

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 2 THERMODYNAMIC PRINCIPLES SAE

More information

Electrochemical reaction

Electrochemical reaction Electrochemical reaction electrochemistry electrochem. reaction mechanism electrode potential Faradays law electrode reaction kinetics 1 Electrochemistry in industry Chlor-Alkali galvano industry production

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Question 4. Calculate q when 0.10 g of ice is cooled from 10.ºC to -75ºC. (c ice = J/g ºC) A) -18 J B) -14 J C) -8.5 J D) + 14 J E) +18 J 5-4

Question 4. Calculate q when 0.10 g of ice is cooled from 10.ºC to -75ºC. (c ice = J/g ºC) A) -18 J B) -14 J C) -8.5 J D) + 14 J E) +18 J 5-4 Question 1 A system conducts 1.07 kj of heat to the surroundings while delivering 1.79 kj of work. What is the change in internal energy of the system? A) +0.72 kj B) -0.72 kj C) +2.86 kj D) -2.86 kj 5-1

More information

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School Brown, LeMay Ch 5 AP Chemistry Monta Vista High School 1 From Greek therme (heat); study of energy changes in chemical reactions Energy: capacity do work or transfer heat Joules (J), kilo joules (kj) or

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces

Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces 1 To understand properties, we want to connect what we see to what is happening on a molecular level. Start with

More information

Liquids and Solids Chapter 10

Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Nov 15 9:56 AM Types of Solids Crystalline solids: Solids with highly regular arrangement of their components Amorphous solids: Solids with considerable disorder in their

More information

Lecture 7 Enthalpy. NC State University

Lecture 7 Enthalpy. NC State University Chemistry 431 Lecture 7 Enthalpy NC State University Motivation The enthalpy change ΔH is the change in energy at constant pressure. When a change takes place in a system that is open to the atmosphere,

More information

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv Chapter 5. Thermochemistry Common Student Misconceptions Students confuse power and energy. Students confuse heat with temperature. Students fail to note that the first law of thermodynamics is the law

More information

Investigations on Performance of an Auto-Cascade Absorption Refrigeration System Operating with Mixed Refrigerants

Investigations on Performance of an Auto-Cascade Absorption Refrigeration System Operating with Mixed Refrigerants Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Investigations on Performance of an Auto-Cascade Absorption Refrigeration

More information

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition Chapter 6 Energy and Chemical Change Brady and Senese 5th Edition Index 6.1 An object has energy if it is capable of doing work 6.2 Internal energy is the total energy of an object s molecules 6.3 Heat

More information

Thermochemistry Chapter 8

Thermochemistry Chapter 8 Thermochemistry Chapter 8 Thermochemistry First law of thermochemistry: Internal energy of an isolated system is constant; energy cannot be created or destroyed; however, energy can be converted to different

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Learning Outcomes: Interconvert energy units Distinguish between the system and the surroundings in thermodynamics Calculate internal energy from heat and work and state sign

More information

Energy and Energy Balances

Energy and Energy Balances Energy and Energy Balances help us account for the total energy required for a process to run Minimizing wasted energy is crucial in Energy, like mass, is. This is the Components of Total Energy energy

More information

Exam3Fall2009thermoelectro

Exam3Fall2009thermoelectro Exam3Fall2009thermoelectro Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Thermodynamics can be used to determine all of the following EXCEPT

More information

1. Basic state values of matter

1. Basic state values of matter 1. Basic state values of matter Example 1.1 The pressure inside a boiler is p p = 115.10 5 Pa and p v = 9.44.10 4 Pa inside a condenser. Calculate the absolute pressure inside the boiler and condenser

More information

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5 THE SECOND LAW OF THERMODYNAMICS Professor Benjamin G. Levine CEM 182H Lecture 5 Chemical Equilibrium N 2 + 3 H 2 2 NH 3 Chemical reactions go in both directions Systems started from any initial state

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

8.21 The Physics of Energy Fall 2009

8.21 The Physics of Energy Fall 2009 MIT OpenCourseWare http://ocw.mit.edu 8.21 The Physics of Energy Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.21 Lecture 10 Phase Change

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry Section 6.1: Introduction to Thermochemistry Thermochemistry refers to the study of heat flow or heat energy in a chemical reaction. In a study of Thermochemistry the chemical

More information

Chemical Thermodynamics

Chemical Thermodynamics Quiz A 42.8 ml solution of ammonia (NH 3 ) is titrated with a solution of 0.9713 M hydrochloric acid. The initial reading on the buret containing the HCl was 47.13 ml and the final reading when the endpoint

More information

Entropy. Spontaneity. Entropy. Entropy mol of N 2 at 1 atm or 1 mol of N 2 at atm. process a process that occurs without intervention

Entropy. Spontaneity. Entropy. Entropy mol of N 2 at 1 atm or 1 mol of N 2 at atm. process a process that occurs without intervention Entropy Spontaneity process a process that occurs without intervention can be fast or slow Entropy (s) the measure of molecular randomness or disorder Think of entropy as the amount of chaos Entropy Predict

More information

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names:

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names: Chemistry Lab Fairfax High School Invitational January 7, 2017 Team Number: High School: Team Members Names: Reference Values: Gas Constant, R = 8.314 J mol -1 K -1 Gas Constant, R = 0.08206 L atm mol

More information

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction.

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction. Ch 18 Thermodynamics and Equilibrium Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction. Internal Energy (U) Internal energy

More information

Tutorial 1 (not important for 2015)

Tutorial 1 (not important for 2015) Tutorial 1 (not important for 2015) 1 st Law of thermodynamics and other basic concepts Do No. 5 (05-03-2015) 1. One mole of an ideal gas is allowed to expand against a piston which supports 41 atm pressures.

More information

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed.

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed. Ch 6. Energy and Chemical Change Brady & Senese, 5th Ed. Energy Is The Ability To Do Work Energy is the ability to do work (move mass over a distance) or transfer heat Types: kinetic and potential kinetic:

More information

Chapter 6. Thermochemistry

Chapter 6. Thermochemistry Chapter 6 Thermochemistry Section 5.6 The Kinetic Molecular Theory of Gases http://www.scuc.txed.net/webpages/dmackey/files /chap06notes.pdf ..\..\..\..\..\..\Videos\AP Videos\Thermochemistry\AP

More information

CHEM1901/ J-8 June 2013

CHEM1901/ J-8 June 2013 CHEM1901/3 2013-J-8 June 2013 The atmosphere of Venus contains 96.5 % CO 2 at 95 atm of pressure, leading to an average global surface temperature of 462 C. The energy density of solar radiation striking

More information

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and

More information

AAE THERMOCHEMISTRY BASICS

AAE THERMOCHEMISTRY BASICS 5.4 THERMOCHEMISTRY BASICS Ch5 23 Energies in Chemical Reactions Enthalpy of Combustion (Reactions): Q CV H in = H reactant H out = H product REACTANTS Stoichiometric fuel-oxidizer (air) mixture at standard

More information

NAME: NITROMETHANE CHEMISTRY 443, Fall, 2015(15F) Section Number: 10 Final Examination, December 18, 2015

NAME: NITROMETHANE CHEMISTRY 443, Fall, 2015(15F) Section Number: 10 Final Examination, December 18, 2015 NAME: NITROMETHANE CHEMISTRY 443, Fall, 015(15F) Section Number: 10 Final Examination, December 18, 015 Answer each question in the space provided; use back of page if extra space is needed. Answer questions

More information

Sensible Heat and Enthalpy Calculations

Sensible Heat and Enthalpy Calculations Sensible Heat and Enthalpy Calculations Sensible Heat - The amount of heat that must be added when a substance undergoes a change in temperature from 298 K to an elevated temperature without a change in

More information

Exam3Fall2009thermoelectro

Exam3Fall2009thermoelectro Exam3Fall2009thermoelectro Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Thermodynamics can be used to determine all of the following EXCEPT

More information

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT?

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT? 1 Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT? A) The collisions between gas molecules are perfectly elastic. B) At absolute zero, the average kinetic

More information

Chapter 11 part 2. Properties of Liquids Viscosity Surface Tension Capillary Action. Phase Changes (energy of phase changes)

Chapter 11 part 2. Properties of Liquids Viscosity Surface Tension Capillary Action. Phase Changes (energy of phase changes) Chapter 11 part 2 Properties of Liquids Viscosity Surface Tension Capillary Action Phase Changes (energy of phase changes) Dynamic Equilibrium Vapor pressure Phase diagram 1 Structure Affects Function

More information

Thermochemistry: Heat and Chemical Change

Thermochemistry: Heat and Chemical Change Thermochemistry: Heat and Chemical Change 1 Heat or Thermal Energy (q) Heat is a form of energy Is heat the same as temperature? Heat flows between two objects at different temperatures. Hot Cold 2 Chemical

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy. Chapter 4 Physical Properties of Solutions

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy.   Chapter 4 Physical Properties of Solutions General Chemistry CHEM 11 (3+1+) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 4 Physical Properties of Solutions 1 Types of Solutions A solution is a homogenous mixture of 2 or more substances.

More information

Unit 4: Gas Laws. Matter and Phase Changes

Unit 4: Gas Laws. Matter and Phase Changes Unit 4: Gas Laws Matter and Phase Changes ENERGY and matter What is 에너지 A fundamental property of the universe that cannot be easily defined. Energy No one knows what energy is, only what it does or has

More information

ENTHALPY CHANGE CHAPTER 4

ENTHALPY CHANGE CHAPTER 4 ENTHALPY CHANGE CHAPTER 4 ENTHALPY Is the total energy of a system. E k = Kinetic energy. Vibrational Rotational Translational E due to motion H = E k + E p E P = Potential energy Attractive force b/w

More information

Dr Ali Jawarneh. Hashemite University

Dr Ali Jawarneh. Hashemite University Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Examine the moving boundary work or P d work commonly encountered in reciprocating devices such as automotive engines and compressors.

More information

Homework 01. Phase Changes and Solutions

Homework 01. Phase Changes and Solutions HW01 - Phase Changes and Solu!ons! This is a preview of the published version of the quiz Started: Jan 16 at 1:pm Quiz Instruc!ons Homework 01 Phase Changes and Solutions Question 1 Given that you have

More information

Chapter 8 Thermochemistry

Chapter 8 Thermochemistry William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 8 Thermochemistry Edward J. Neth University of Connecticut Outline 1. Principles of heat flow 2. Measurement

More information

Section 1 - Thermochemistry

Section 1 - Thermochemistry Reaction Energy Section 1 - Thermochemistry Virtually every chemical reaction is accompanied by a change in energy. Chemical reactions usually absorb or release energy as heat. You learned in Chapter 12

More information

NAME Student No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Mid-Term Test I February 3, Part II Score Exam results Score

NAME Student No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Mid-Term Test I February 3, Part II Score Exam results Score NAME Student No. Section (circle one): A01 (Lipson) A02 (Briggs) A03 (Cartwright) UNIVERSITY OF VICTORIA Version A CHEMISTRY 102 Mid-Term Test I February 3, 2012 Version A This test has two parts: (A Data

More information

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit.

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit. Unit 5: Spontaneity of Reaction You need to bring your textbooks everyday of this unit. THE LAWS OF THERMODYNAMICS 1 st Law of Thermodynamics Energy is conserved ΔE = q + w 2 nd Law of Thermodynamics A

More information

NAME Student No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Mid-Term Test I February 3, Part II Score Exam results Score

NAME Student No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Mid-Term Test I February 3, Part II Score Exam results Score NAME Student No. Section (circle one): A01 (Lipson) A02 (Briggs) A03 (Cartwright) UNIVERSITY OF VICTORIA Version B CHEMISTRY 102 Mid-Term Test I February 3, 2012 Version B This test has two parts: (A Data

More information

Homework Problem Set 6 Solutions

Homework Problem Set 6 Solutions Chemistry 360 Dr. Jean M. Standard Homework Problem Set 6 Solutions 1. Determine the amount of pressure-volume work performed by 50.0 g of liquid water freezing to ice at 0 C and 1 atm pressure. The density

More information

Chapter 8 Thermochemistry: Chemical Energy

Chapter 8 Thermochemistry: Chemical Energy Chapter 8 Thermochemistry: Chemical Energy 國防醫學院生化學科王明芳老師 2011-11-8 & 2011-11-15 Chapter 8/1 Energy and Its Conservation Conservation of Energy Law: Energy cannot be created or destroyed; it can only be

More information

Chemistry: The Central Science. Chapter 5: Thermochemistry

Chemistry: The Central Science. Chapter 5: Thermochemistry Chemistry: The Central Science Chapter 5: Thermochemistry Study of energy and its transformations is called thermodynamics Portion of thermodynamics that involves the relationships between chemical and

More information

Unit 7 Thermochemistry Chemistry 020, R. R. Martin

Unit 7 Thermochemistry Chemistry 020, R. R. Martin Unit 7 Thermochemistry Chemistry 020, R. R. Martin 1. Thermochemistry Heat is a form of energy - which may take many forms: - Kinetic energy due to motion, ½ mv 2 - Potential energy due to position - Electrical

More information

S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-189 S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks

More information

LECTURE #26 Fri. April 11, Covers entire course: Ch.6, 9.8, 19, , 14, 15, 16, 17,

LECTURE #26 Fri. April 11, Covers entire course: Ch.6, 9.8, 19, , 14, 15, 16, 17, CHEM 206 section 01 LECTURE #26 Fri. April 11, 2008 LECTURE TOPICS: TODAY S CLASS: finish Ch.18 to 18.5 FINAL EXAM: Saturday April 19 th (9am-12pm) Covers entire course: Ch.6, 9.8, 19, 13.1-5, 14, 15,

More information

Ch. 17 Thermochemistry

Ch. 17 Thermochemistry Ch. 17 Thermochemistry 17.1 The Flow of Energy Energy Transformations Thermochemistry: study of energy changes in chemical reactions and changes in state Chemical potential energy: energy stored in bonds

More information

EVAPORATION YUSRON SUGIARTO

EVAPORATION YUSRON SUGIARTO EVAPORATION YUSRON SUGIARTO Evaporation: - Factors affecting evaporation - Evaporators - Film evaporators - Single effect and multiple effect evaporators - Mathematical problems on evaporation Principal

More information

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV CHEMICAL HERMODYNAMICS Nature of Energy hermodynamics hermochemistry Energy (E) Work (w) Heat (q) Some Definitions Study the transformation of energy from one form to another during physical and chemical

More information

ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, , 13.3

ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, , 13.3 ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, 11.5-11.7, 13.3 Thermochemistry Prediction and measurement of energy transfer, in the form of heat, that accompanies chemical and physical processes. Chemical

More information

Gravity is a force which keeps us stuck to the earth. The Electrostatic force attracts electrons to protons in an atom.

Gravity is a force which keeps us stuck to the earth. The Electrostatic force attracts electrons to protons in an atom. Energy Relations in Chemistry: Thermochemistry The Nature of Energy Sugar you eat is "combusted" by your body to produce CO 2 and H 2 O. During this process energy is also released. This energy is used

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. Department: Mechanical Subject Code: ME2202 U N IT - 1 Semester: III Subject Name: ENGG. THERMODYNAMICS 1. 1 kg of gas at 1.1 bar, 27 o C is compressed

More information

Chapter 17 Thermochemistry

Chapter 17 Thermochemistry Chapter 17 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Second law of thermodynamics

Second law of thermodynamics Second law of thermodynamics It is known from everyday life that nature does the most probable thing when nothing prevents that For example it rains at cool weather because the liquid phase has less energy

More information

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014)

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014) PTT 77/3 APPLIED THERMODYNAMICS SEM 1 (013/014) 1 Energy can exist in numerous forms: Thermal Mechanical Kinetic Potential Electric Magnetic Chemical Nuclear The total energy of a system on a unit mass:

More information

Figure 4-1: Pretreatment schematic

Figure 4-1: Pretreatment schematic GAS TREATMENT The pretreatment process consists of four main stages. First, CO 2 and H 2 S removal stage which is constructed to assure that CO 2 would not exceed 50 ppm in the natural gas feed. If the

More information

Topic 5: Energetics. Heat & Calorimetry. Thursday, March 22, 2012

Topic 5: Energetics. Heat & Calorimetry. Thursday, March 22, 2012 Topic 5: Energetics Heat & Calorimetry 1 Heat is energy that is transferred from one object to another due to a difference in temperature Temperature is a measure of the average kinetic energy of a body

More information

Exam 1A. 4) Calculate the H 0 rxn in kj for this reaction. a) 6339 b) 5106 c) 775 d) 6535 e) 2909

Exam 1A. 4) Calculate the H 0 rxn in kj for this reaction. a) 6339 b) 5106 c) 775 d) 6535 e) 2909 Exam 1A 1) The molar solubility of a salt M 2 X 3 is 1.9 10 3 M. (M is the cation and X is the anion.) What is the value of Ksp for this salt? a) 1.5E-13 b) 2.7E-12 c) 2.5E-14 d) 8.9E-13 e) 3.8E-3 2) What

More information

Energy Heat Work Heat Capacity Enthalpy

Energy Heat Work Heat Capacity Enthalpy Energy Heat Work Heat Capacity Enthalpy 1 Prof. Zvi C. Koren 20.07.2010 Thermodynamics vs. Kinetics Thermodynamics Thermo = Thermo + Dynamics E (Note: Absolute E can never be determined by humans!) Can

More information

Dual Program Level 1 Physics Course

Dual Program Level 1 Physics Course Dual Program Level 1 Physics Course Assignment 15 Due: 11/Feb/2012 14:00 Assume that water has a constant specific heat capacity of 4190 J/kg K at all temperatures between its melting point and boiling

More information

Energy Balances. F&R Chapter 8

Energy Balances. F&R Chapter 8 Energy Balances. F&R Chapter 8 How do we calculate enthalpy (and internal energy) changes when we don t have tabulated data (e.g., steam tables) for the process species? Basic procedures to calculate enthalpy

More information

Fuel ash behavior importance of melting

Fuel ash behavior importance of melting Fuel ash behavior importance of melting Why is ash melting important? Bed agglomeration in fluidized bed boilers Bed behavior in BL recovery boilers Deposit formation and build up Corrosion of superheaters

More information

Solids, liquids and gases

Solids, liquids and gases Solids, liquids and gases Solids, liquids, and gases are held together by intermolecular forces. Intermolecular forces occur between molecules, not within molecules (as in bonding). When a molecule changes

More information

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas Thermochemistry Part 1 Notes States of Matter and Intermolecular Forces (IMF) Chemistry HP At the end of this unit, students should be able to: Describe the various states of matter in terms of kinetic

More information

Contact Process SULFURIC ACID. H 2 SO 4. The 3 Sources of Sulfur Dioxide. Frasch Process. Stage 1

Contact Process SULFURIC ACID. H 2 SO 4. The 3 Sources of Sulfur Dioxide. Frasch Process. Stage 1 SULFURIC ACID. H 2 SO 4 The 3 Sources of Sulfur Dioxide Combustion of natural deposits of elemental sulfur Combination of sulfur recovered from natural gas and crude oil SO 2 formed during the smelting

More information

Term Info Picture. Anything that has mass and takes up space; everything is made of matter.

Term Info Picture. Anything that has mass and takes up space; everything is made of matter. Characteristics, Changes, and States of Matter S8P1. Obtain, evaluate, and communicate information about the structure and properties of matter. B. Develop and use models to describe the movement of particles

More information