Organocopper Chemistry

Size: px
Start display at page:

Download "Organocopper Chemistry"

Transcription

1 rganocopper Chemistry ave a great historical importance, but still remain highly useful reactions. If not the first organometallic reactions developed they are among the first. Most often used in conjugate addition reactions and couplings with sp 2 carbons, but are also quite useful in epoxide openings, S N 2 and S N 2' reactions, and alkyne addtions. While there are a few generaliteis that can be made, this area is still quite empirical and experimentation is critical. Finding a close example in the literature is recommended. We will discuss mechanism a bit, but the details are still debated and are not well understood. Most reactions are still run with stoichiometric amounts of Cu, but catalytic methods are becoming more important. Lipshutz, B.. rganocopper Chemistry, in rganometallics in Synthesis: A Manual, 2nd Ed; Schlosser, M., Ed.; Wiley: New York, 2002, pp

2 rganocopper Chemistry Initial bservations Gilman,.; Straley, J. M. ecl. Trav. Chim. Pays-Bas Belg. 1936, 55, Gilman,.; Jones,. G.; Woods, L. A. J. rg. Chem. 1952, 17, MgX + CuI 1 Cu Et 2 1 equiv 1 equiv insoluble 1 2 CCl 2 1 low to moderate yields Li + CuI 2 equiv 1 equiv Et 2 2 CuLi soluble as since become known as the Gilman reagent Kharasch, M. S.; Tawney, P.. J. Am. Chem. Soc. 1941, 63, MgBr 1 mol% CuCl MgBr 91% 1,2-addition no 1,4-addition Et ºC Et ºC 83% 1,4-addition 7% 1,2-addition CuCl was unique, no other metal halide additive gave higher than ~5% 1,4-addition.

3 rganocopper Chemistry Key ectivity Papers ouse,..; espess, W. L.; Whitesides, G. M. J. rg. Chem. 1966, 31, CuLi M M = Li, MgBr, or Cu high yields, with >99% 1,4-addition quick reaction times (<1 hr) Ac 2 Ac Corey, E. J.; Posner, G.. J. Am. Chem. Soc. 1967, 89, I 2 CuLi Et 2 I 75% Br 89% Br Br 75% 81%

4 Lower rder Gilman Cuprates 2 CuLi Soluble, thermally unstable; typically generate in situ; often the "recipe" used to make the regent and/or react with substrate is critical to success; often discovered emperically Can utilize and transfer virtually any sp 2 or sp 3 hybridized carbon Because of low basicity, diorganocuprates undergo alkylation reactions with a variety of organic electrophiles; generally with high levels of inversion and little elimination; typically reacts in S N 2' manner if available order of reactivity primary > secondary > > tertirary iodide > bromide > chloride alkenyl halides and triflates work as well, with retention of configuration (cis, trans) CCl > aldehydes > tosylates ~ epoxides > iodides > ketones > esters > nitriles Some examples: Tr 2 CuLi Cl Cl 2 CuLi Ac Et Et J. Am. Chem. Soc. 1976, 98, 7854 J. Am. Chem. Soc. 1970, 92, 737 Tr

5 Lower rder Gilman Cuprates 2 CuLi Undergoes conjugate addition reactions with α,β-unsaturated electrophiles; the intermediate enolate can be trapped with a variety of electrophiles Ketones most reactive, only slightly diminished rates with substitution at α or β position Esters less reactive than ketones, dramtically lower rates with substitution at α or β position Esters less reactive than ketones, dramtically lower rates with substitution at α or β position Sulfones are competent substrates; carboxylic acids do not react; amides and anhydrides have seen limited work; aldehydes see competing 1,2-addition Addition of phosphine lignads can often speed up troublesome reactions Some examples: Bu 3 PCu (C 2 ) 4 C 3 (C 2 ) 3 C 2 TBS I (C 2 ) 3 C 2 J. Am. Chem. Soc. 1988, 110, 4726 TBS (C 2 ) 4 C 3 Ac 2 CuLi Ac J. rg. Chem. 1971, 36, 877

6 Lower rder Mixed Cuprates t r CuLi A major problem associated with Gilman-type organocuprate reagents is that they require two alkyl groups, but only transfer one. This is particularly problematic when wanting to transfer "precious" alkyl groups. Also can be quite unstable, so excess reagent often needed. To address this problem modified reagents have been developed with one "transferable" group and one "residual" group. These are often stable at higher temps ( 20 ºC and 0 ºC). ften the reactivity is altered (for better or worse) relative to Gilman-type reagents. Best to compare with known systems. CuSPh Li Cu(SPh)Li Cut-Bu Li Cu(t-Bu)Li lithium phenylthio(alkyl)cuprate lithium t-butoxy(alkyl)cuprate Can also have mixed "alkyl"cuprates with spectator ligands (these are most popular): C CLi CuI C C Cu Li C C Cu()Li lithium acetylide(alkyl)cuprate S Li CuI S Cu Li S Cu()Li 2-thienyl lithium lithium 2-thienyl(alkyl)cuprate

7 Lower rder Mixed Cuprates t r CuLi Can also use P- and N-based ligands; these are especially stable (still reactive after 24 rt) Cy 2 NLi Cy 2 PLi CuI CuI Cy 2 NCu Cy 2 PCu Li Li Cu(NCy 2 )Li Cu(PCy 2 )Li J. Am. Chem. Soc. 1982, 104, 5824 J. rg. Chem. 1984, 49, 1119 lower oder cyanocuprates, ease of preparation (start from CuCN), but less reactive than other mixed cuprates, but are quite useful in epoxide openings CuCN Li Cu(CN)Li TMS Cu(CN)Li J. rg. Chem. 1979, 44, 4467 TMS "igher order cyanocuprates" can be made by addition of two equivalents of Li to CuCN; Brings reactivity mor ein line with Gilman reagents, but are still more stable Li (2 equiv) CuCN 2 Cu(CN)Li 2

8 Additives BF 3 Et 2 If the cuprate of choice is unreactive at low temperature and especially unstable at higher temperatures, the use of BF 3 Et 2 or 3 SiCl may improve reactivity. [ 2 CuLi] BF 3 3 Cu 2 Li + Li BF 3 + BF 3 J. Am. Chem. Soc. 1989, 111, 1351 Li 2 Cu BF 3 Et 2 Et 2, 78 ºC 71% yield, 2x J. rg. Chem. 1982, 47, 1845 (ex) 2 CuLi BF 3 Et 2 Et 2, 78 to 55 ºC 89% yield, 1 diastereomer ex Tetrahedron Lett. 1984, 25, 3083

9 Additives BF 3 Et 2 with cyanocuprates the effect is more complex and likely involves coordination of the BF 3 to the nitrile at some point. 2 Cu(CN)Li 2 + BF 3 2 Cu(CN BF 3 )Li 2 Cu(CN)Li + Li BF 3 J. Am. Chem. Soc. 1988, 110, 4834 Ph 2 Cu(CN)Li 2 BF 3 Et 2 TF, 78 to 50 ºC >95% yield Ph Tetrahedron Lett. 1984, 25, 5959 TBS C 2 2 Cu(CN)Li 2 BF 3 Et 2 TBS C 2 Ts J. Am. Chem. Soc. 1986, 108, 7420

10 Additives 3 SiCl Exactly how 3 SiCl modifies the Gilman reagents is debated; 3 SiBr can also be used and may give improved benefit C Bu 2 CuLi 3 SiCl, MPA TF, 70 ºC 80% yield, 98:2 E:Z Bu TMS Tetrahedron 1989, 45, Ge Cu(CN)Li 3 Ge 3 SiBr, TF, 78 to 48 ºC 83% yield (34% yield with TMSCl)

11 chanistic Studies The question of how cuprates undergo 1,4-addition has been greatly depated over the years. chanism A Cu (I).A. Cu + (I) Li.E. chanism B Cu (III) + Cu (I) 2 CuLi + electron transfer 2 Cu + Li + π-complexes and Cu(III) intermediates have been observed by NM, see: J. Am. Chem. Soc. 2002, 124, J. Am. Chem. Soc. 2007, 129, 7208 J. Am. Chem. Soc. 2007, 129, 11362

12 chanistic Studies Evidence for adical Pathway Isomerization without conjugate addition t-bu C 2 t-bu <1 equiv 2 CuLi t-bu C 2 t-bu via t-bu Li t-bu adical clocks 2 CuLi + 55% Et 39% 2 CuLi Tetrahedron Lett. 1971, % + 49% 1.3 x 10 8 s -1

13 adical clocks, cont'd chanistic Studies Evidence for adical Pathway Ct-Bu 2 CuLi Ct-Bu radical anion intermediate is very rapidly trapped by cuprate reagent, or mechanism change is occuring Trapping of radical anion Ts 2 CuLi no conjugate addition observed Tetrahedron Lett. 1975, 187

14 chanistic Studies Evidence for adical Pathway eduction potentials J. Am. Chem. Soc. 1972, 94, CuLi 2 CuLi + e E ox = 2.35 V Substrates that react (78 98% yield) and their E red Ph 1.63 V t-bu 2.12 V 2.33 V 2.20 V Substrates that don't react (>90% recovery) and their E red Bu Et C 2 t-bu t-bu 2.43 V 2.45 V 2.50 V

15 rbital Picture Both conjugate additions and S N 2' reactions can be explained by d π* interactions electron repulsion in highly occupied d orbitals of Cu make them quite diffuse and sterically accessible some S N 2 character anti-s N 2' in allylic systems addition to alkynes conjugate additions cross-coupling reactions Tetrahedron Lett. 1984, 25, 3063

16 Transmetallation nto Copper "Functionalized" cuprates can be prepared through transmetallation routes FG X Zn CuX FG ZnX FG Cu()ZnI organozinc halide compatible with many different functional groups reactions copper sources: CuCN 2LiCl, Cu(Tf) 2, CuBr S 2 compatibility of zinc species allows catalytic copper to be used in many cases Transmetallation from other organometals (M=Sn, Zr, Al, Te) possible as well, many times 2 CuLi is used and serves as a spectator ligand Bu 3 Sn 2 CuLi Li()Cu

17 Stereoselection Diastereoselectivity can generally be predicted with existing models and chair-like transition states 3,4-selectivity ' 2 CuLi ' + ' axial addition Major major minor Minor 3,5-selectivity ' 2 CuLi + ' major minor ' both conformations approximately equal, but only one is reactive axial addition blocked

18 Stereoselection Fused rings 2 CuLi N N TP 2 CuLi TP consider the radical anion intermediate "Equitorial" approach favored by large nucleophiles (cuprates), but slowed by 1,2-torsional interactions Li "Axial" approach disfavored by large nucleophiles due to 1,3-diaxial interactions

19 Stereoselection exocyclic olefins 2 CuLi t-bu t-bu EWG t-bu preferred by large nucleophiles (cuprates) acyclic electrophiles NBn 2 C 2 Et 2 CuLi TMSCl NBn 2 C 2 Et >95:5 Angew. Chem. Int. Ed. Engl. 1989, 28, 1706 A 1,2 Bn NBn 2 C 2 Et Bn C 2 Et NBn 2 Favored

Organocopper Reagents

Organocopper Reagents rganocopper eagents General Information!!! why organocopper reagents? - Efficient method of C-C bond formation - Cu less electropositive than Li or Mg, so -Cu bond less polarized - consequences: 1. how

More information

Ready; Catalysis Conjugate Addition

Ready; Catalysis Conjugate Addition eady; Catalysis Conjugate Addition Topics covered 1. 1,4 addition involving copper a. stoichiometric reactions b. catalytic reactions c. allylic substitution. Conjugate addition without copper a. Ni-based

More information

transmetallate displace ox. add. M + (insert) (β-elim.)

transmetallate displace ox. add. M + (insert) (β-elim.) Chapter IV. Transition Metal σ-alkyl Complexes I. General For much of the rest of this course it will be necessary to understand how σ-alkyl metal complexes are formed and how they react. This is summarized

More information

Tips for taking exams in 852

Tips for taking exams in 852 Comprehensive Tactical Methods in rganic Synthesis W. D. Wulff 1) Know the relative reactivity of carbonyl compounds Tips for taking exams in 852 Cl > > ' > > ' N2 eg: 'Mg Et ' 1equiv. 1equiv. ' ' Et 50%

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Chem 530A Chemistry 530A Advanced Organic Chemistry Lecture notes part 8 Carbanions Organolithium and Grignard reagents Organocopper reagents 1. Direct metalation 2. From radical

More information

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed CEM 330 Final Exam December 5, 2014 Your name: ASWERS This a closed-notes, closed-book exam The use of molecular models is allowed This exam consists of 12 pages Time: 2h 30 min 1. / 30 2. / 30 3. / 30

More information

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent Copper-Catalyzed eaction of Alkyl Halides with Cyclopentadienylmagnesium eagent Mg 1) cat. Cu(Tf) 2 i Pr 2, 25 o C, 3 h 2) H 2, Pt 2 Masahiro Sai, Hidenori Someya, Hideki Yorimitsu, and Koichiro shima

More information

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction Lecture Notes Chem 51C S. King Chapter 20 Introduction to Carbonyl Chemistry; rganometallic Reagents; xidation & Reduction I. The Reactivity of Carbonyl Compounds The carbonyl group is an extremely important

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Three Type Of Carbene Complexes

Three Type Of Carbene Complexes Three Type f arbene omplexes arbene complexes have formal metal-to-carbon double bonds. Several types are known. The reactivity of the carbene and how it contributes to the overall electron counting is

More information

Reduction. Boron based reagents. NaBH 4 / NiCl 2. Uses: Zn(BH 4 ) 2. Preparation: Good for base sensitive groups Chelation control model.

Reduction. Boron based reagents. NaBH 4 / NiCl 2. Uses: Zn(BH 4 ) 2. Preparation: Good for base sensitive groups Chelation control model. Uses: Ar N 2 Ar N 2 Ar N Ar N 2 eduction Boron based reagents NaB 4 / NiCl 2 2 Ar C N Ar C N 2 Preparation: Zn(B 4 ) 2 ZnCl 2 (Ether) NaB 4 Zn(B 4 ) 2 Good for base sensitive groups Chelation control model

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

Ynolate Chemistry. Jeff Kallemeyn October 22, 2002

Ynolate Chemistry. Jeff Kallemeyn October 22, 2002 Ynolate Chemistry While enolates have numbered among the most important reagents of organic chemistry for more than a century, ynolates have hitherto remained unknown although their chemistry should be

More information

Organomagnesium (Grignard) and organolithium reagents

Organomagnesium (Grignard) and organolithium reagents rganomagnesium (Grignard) and organolithium reagents Different polarization of non-metallic and organometallic reagents H CH 3 - I H - CH 3 + I H 3 H 3 C H 3 C H 3 + H 3 C H 3 C H 2 H 3 C H3C H I - CH

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

Chem 251 Fall Learning Objectives

Chem 251 Fall Learning Objectives Learning Objectives Chapter 8 (last semester) 1. Write an electron-pushing mechanism for an SN2 reaction between an alkyl halide and a nucleophile. 2. Describe the rate law and relative rate of reaction

More information

Suggested solutions for Chapter 32

Suggested solutions for Chapter 32 s for Chapter 32 32 PBLEM 1 Explain how the stereo- and regio- chemistry of these reactions are controlled. Why is the epoxidation only moderately diastereoselective, and why does the amine attack where

More information

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. akatani, Y.; Koizumi, Y.; Yamasaki, R.; Saito, S. rg. Lett. 2008, 10, 2067-2070. An Annulation Reaction for the Synthesis

More information

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure Chapter 12 Alcohols from Carbonyl Compounds xidation-eduction & rganometallic Compounds Created by Professor William Tam & Dr. Phillis Chang Structure ~ 120 o ~ 120 o C ~ 120 o Carbonyl carbon: sp 2 hybridized

More information

Organometallic Reagents

Organometallic Reagents Making - bonds rganometallic eagents [hapter 3 Section 3.4; http://ochem.jsd.claremont.edu/tutorials.htm#] alletrin I (aid ) creating - bonds allows for making larger organic molecules from smaller molecules

More information

Synthesis of Amphidinolide X and an Exploration of Key Reactions

Synthesis of Amphidinolide X and an Exploration of Key Reactions PJM 1/12/05 Synthesis of Amphidinolide X and an Exploration of Key eactions Lepage,.; Kattnig, E.; Furstner, A. JACS, 2004, 126, 15970-15971. 7 13 1 6 19 - Produced by marine dinoflagellates, Amphidinium

More information

Use of Cp 2 TiCl in Synthesis

Use of Cp 2 TiCl in Synthesis Use of 2 TiCl in Synthesis eagent Control of adical eactions Jeff Kallemeyn May 21, 2002 eactions of 2 TiCl 1. Pinacol Coupling H H H 2. Epoxide pening H H E H Chemoselectivity Activated aldehydes (aromatic,

More information

Suggested solutions for Chapter 40

Suggested solutions for Chapter 40 s for Chapter 40 40 PBLEM 1 Suggest mechanisms for these reactions, explaining the role of palladium in the first step. Ac Et Et BS () 4 2 1. 2. K 2 C 3 evision of enol ethers and bromination, the Wittig

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

CuI CuI eage lic R tal ome rgan gbr ommon

CuI CuI eage lic R tal ome rgan gbr ommon Common rganometallic eagents Li Et 2 Li Mg Et 2 Li alkyllithium rignard Mg Mg Li Zn TF ZnCl 2 TF dialkylzinc Zn 2 2 Zn Li CuI TF ganocuprate CuI 2 2 CuI common electrophile pairings ' Cl ' '' ' ' ' ' '

More information

Short Literature Presentation 10/4/2010 Erika A. Crane

Short Literature Presentation 10/4/2010 Erika A. Crane Copper-Catalyzed Enantioselective Synthesis of trans-1- Alkyl-2-substituted Cyclopropanes via Tandem Conjugate Additions-Intramolecular Enolate Trapping artog, T. D.; Rudolph, A.; Macia B.; Minnaard, A.

More information

CHEM 330. Topics Discussed on Oct 5. Irreversible nature of the reaction of carbonyl enolates with the electrophiles discussed on Oct 2

CHEM 330. Topics Discussed on Oct 5. Irreversible nature of the reaction of carbonyl enolates with the electrophiles discussed on Oct 2 CEM 330 Topics Discussed on ct 5 Irreversible nature of the reaction of carbonyl enolates with the electrophiles discussed on ct 2 Kinetic control in an irreversible reaction: the product that is obtained

More information

Highlights of Schmidt Reaction in the Last Ten Years

Highlights of Schmidt Reaction in the Last Ten Years ighlights of Schmidt eaction in the Last Ten Years Dendrobates histrionicus Jack Liu ov. 18, 2003 Introduction Classical Schmidt reaction of aldehydes and carboxylic acids Classical Schmidt reaction of

More information

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides ickel-catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides Eunjae Shim Zakarian Group Literature Talk / Dec 13 th, 2018 University of California, Santa Barbara Table of Contents

More information

COPPER-CATALYZED, ENANTIOSELECTIVE CONJUGATE ADDITION. Reported by Monica Jo Patten December 6, 2004

COPPER-CATALYZED, ENANTIOSELECTIVE CONJUGATE ADDITION. Reported by Monica Jo Patten December 6, 2004 CPPE-CATALYZED, EATISELECTIVE CJUGATE ADDITI eported by Monica Jo Patten December 6, 2004 ITDUCTI Conjugate addition of carbon nucleophiles to α,β-unsaturated electrophiles is an essential carbon-carbon

More information

A. Organometallic Mechanisms

A. Organometallic Mechanisms Dr. P. Wipf - Chem 2320 1 4/10/2006 II. Special Topics IIC. Organometallics Boger Notes: p. 395-426 (Chapter XII) Carey/Sundberg: B p. 477-546 (Chapter B 8) A. Organometallic Mechanisms Oxidation State:

More information

Functionalized Organometallic Reagents

Functionalized Organometallic Reagents Availability Availability Preparation via Insertion Grignard s Synthesis Generally Considered as a Radical Process Schlenk Equilibrium Parasite Reactions Reversible Reaction in THF Substitution Reactions

More information

EWG EWG EWG EDG EDG EDG

EWG EWG EWG EDG EDG EDG Functional Group Interconversions Lecture 4 2.1 rganic Synthesis A. Armstrong 20032004 3.4 eduction of aromatic systems We can reduce aromatic systems to cyclohexanes under very forcing hydrogenolytic

More information

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides Negishi Coupling of Secondary Alkylzinc alides with Aryl Bromides and Chlorides X X = Br, Cl 2 1 ZnBr 1, 2 = Alkyl Cat. Pd(OAc) 2 Ligand TF/Toluene rt or 60 o C 1 2 J. Am. Chem. Soc. 2009, ASAP Article

More information

12.5 Organometallic Compounds

12.5 Organometallic Compounds 12.5 rganometallic Compounds Compounds that contain carbon-metal bond are called organometallic compounds. C M C δ δ + M C M Primarily ionic Primarily covalent (M = Na + or K + )(M = Mg or Li) (M = Pb,

More information

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl.

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl. Iverson C 0N KRE Table: For use in synthesis problems, count carbons in products and starting materials then identify location(s) of new s, especially C-C or C=C s. With that information, use the following

More information

Allyl radicals are especially stable due to resonance ( and double bond switch places):

Allyl radicals are especially stable due to resonance ( and double bond switch places): Ch 10 Alkyl Halides Nomenclature Rules The parent is the longest alkyl chain or ring. The #1 C for a chain is at the end that is nearest to the first substituent. The #1 C for a ring possesses the first

More information

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols by various reactions Structure of the Carbonyl

More information

Ch.10 Alkyl Halides. Organic halides are valuable as industrial solvents, inhaled anesthetics in medicine, refrigerants, and pesticides.

Ch.10 Alkyl Halides. Organic halides are valuable as industrial solvents, inhaled anesthetics in medicine, refrigerants, and pesticides. Ch.10 Alkyl alides Organic halides are valuable as industrial solvents, inhaled anesthetics in medicine, refrigerants, and pesticides. F F C C F Trichloroethylene (a solvent) alothane (an inhaled anesthetic)

More information

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: Z-enolates: M 2 M 2 syn 2 C 2 favored 2 M 2 anti disfavored E-enolates: M 2 2 C 3 C 3 C 2 favored 2 M M disfavored In

More information

Stereoselective reactions of the carbonyl group

Stereoselective reactions of the carbonyl group 1 Stereoselective reactions of the carbonyl group We have seen many examples of substrate control in nucleophilic addition to the carbonyl group (Felkin-Ahn & chelation control) If molecule does not contain

More information

"-Amino Acids: Function and Synthesis

-Amino Acids: Function and Synthesis "-Amino Acids: Function and Synthesis # Conformations of "-Peptides # Biological Significance # Asymmetric Synthesis Sean Brown MacMillan Group eting ovember 14, 2001 Lead eferences: Cheng,. P.; Gellman,

More information

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, Intramolecular Ene Reactions Utilizing xazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, 3058-3059 - versus -Arylation of Aminoalcohols: rthogonal Selectivity in Copper-Based

More information

Alcohol Synthesis. Dr. Sapna Gupta

Alcohol Synthesis. Dr. Sapna Gupta Alcohol Synthesis Dr. Sapna Gupta Synthesis of Alcohols Alcohols can be synthesized from several functional groups. Nucleophilic substitution of O - on alkyl halide ydration of alkenes water in acid solution

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Spiro Monophosphite and Monophosphoramidite Ligand Kit Spiro Monophosphite and Monophosphoramidite Ligand Kit metals inorganics organometallics catalysts ligands custom synthesis cgm facilities nanomaterials 15-5162 15-5150 15-5156 15-5163 15-5151 15-5157

More information

Chapter 11 Reaction of Alcohols

Chapter 11 Reaction of Alcohols Chapter 11 eaction of Alcohols xidation of alcohols Alcohols are at the same oxidation level as alkenes Therefore alkenes can be converted to alcohols with acidic water PDC or PCC 2 C C 2 3 + X 3 C 3 C

More information

When we deprotonate we generate enolates or enols. Mechanism for deprotonation: Resonance form of the anion:

When we deprotonate we generate enolates or enols. Mechanism for deprotonation: Resonance form of the anion: Lecture 5 Carbonyl Chemistry III September 26, 2013 Ketone substrates form tertiary alcohol products, and aldehyde substrates form secondary alcohol products. The second step (treatment with aqueous acid)

More information

Suggested solutions for Chapter 41

Suggested solutions for Chapter 41 s for Chapter 41 41 PBLEM 1 Explain how this synthesis of amino acids, starting with natural proline, works. Explain the stereoselectivity of each step after the first. C 2 C 2 3 CF 3 C 2 2 Pd 2 C 2 +

More information

Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions.

Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions. ucleophilic ubstitution & Elimination Chemistry Beauchamp 1 Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions. ources of

More information

Lecture 3: Aldehydes and ketones

Lecture 3: Aldehydes and ketones Lecture 3: Aldehydes and ketones I want to start by talking about the mechanism of hydroboration/ oxidation, which is a way to get alcohols from alkenes. This gives the anti-markovnikov product, primarily

More information

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions Chap 11. Carbonyl Alpha-Substitution eactions and Condensation eactions Four fundamental reactions of carbonyl compounds 1) Nucleophilic addition (aldehydes and ketones) ) Nucleophilic acyl substitution

More information

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College Chiral Diol Promoted Boronates Addi3on Reac3ons Lu Yan Morken Group Boston College Main Idea R R B or R R B Ar * exchange B * * or B Ar R 1 R 1 R 2 R 1 R 2 Products not nucleophilic enough nucleophilic

More information

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition 1. Radical Substitution on Alkanes Only Cl and Br are useful at the laboratory level. Alkane reactivity: tertiary > secondary > primary > methyl Numbers below products give their relative yield. Relative

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

Chem 263 Notes March 2, 2006

Chem 263 Notes March 2, 2006 Chem 263 Notes March 2, 2006 Average for the midterm is 102.5 / 150 (approx. 68%). Preparation of Aldehydes and Ketones There are several methods to prepare aldehydes and ketones. We will only deal with

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

Hydroboration. Carreira: Chapter 7

Hydroboration. Carreira: Chapter 7 ydroboration Carreira: Chapter 7 ydroboration of alkenes/alkynes is one of the most versatile reactions available. Most commonly, the resulting alkyl borane intermediates are not isolated, but are used

More information

ANSWER GUIDE APRIL/MAY 2006 EXAMINATIONS CHEMISTRY 249H

ANSWER GUIDE APRIL/MAY 2006 EXAMINATIONS CHEMISTRY 249H AWER GUIDE APRIL/MAY 2006 EXAMIATI CEMITRY 249 1. (a) PDC / C 2 2 (b) t-bume 2 i (1 equiv) / imidazole (1 equiv) i TBDM protection of the less sterically hindered alcohol (c) BuLi (1 equiv) then (d) 2

More information

Mechanistic Studies in Copper Catalysis

Mechanistic Studies in Copper Catalysis chanistic Studies in Copper Catalysis Jen Alleva May 1st 2013 Timeline of Achievements in Copper Chemistry General istorical verview first cross-couplings 1869 Ullmann Goldberg Glaser 1903 Glaser, C. Ann.

More information

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides hapter 11, Part 1: Polar substitution reactions involving alkyl halides Overview: The nature of alkyl halides and other groups with electrophilic sp 3 hybridized leads them to react with nucleophiles and

More information

Stereoselective reactions of enolates: auxiliaries

Stereoselective reactions of enolates: auxiliaries 1 Stereoselective reactions of enolates: auxiliaries Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones

More information

2.222 Practice Problems 2003

2.222 Practice Problems 2003 2.222 Practice Problems 2003 Set #1 1. Provide the missing starting compound(s), reagent/solvent, or product to correctly complete each of the following. Most people in the class have not done this type

More information

Reactions at α-position

Reactions at α-position Reactions at α-position In preceding chapters on carbonyl chemistry, a common reaction mechanism observed was a nucleophile reacting at the electrophilic carbonyl carbon site NUC NUC Another reaction that

More information

Stereoselective reactions of enolates

Stereoselective reactions of enolates 1 Stereoselective reactions of enolates Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones These are

More information

Stereoselective Organic Synthesis

Stereoselective Organic Synthesis Stereoselective rganic Synthesis Prabhat Arya Professor and Leader, Chemical Biology Program Dean, Academic Affairs, Institute of Life Sciences (An Associate Institute of University of yderabad Supported

More information

CHEM 330. Final Exam December 11, 2007 A N S W E R S. This a closed-notes, closed-book exam. The use of molecular models is allowed

CHEM 330. Final Exam December 11, 2007 A N S W E R S. This a closed-notes, closed-book exam. The use of molecular models is allowed CEM 330 Final Exam December 11, 2007 Your name: A S W E R S This a closed-notes, closed-book exam The use of molecular models is allowed This exam contains 12 pages Time: 2h 30 min 1. / 20 / 20 3. / 30

More information

Suggested solutions for Chapter 28

Suggested solutions for Chapter 28 s for Chapter 28 28 PBLEM 1 ow would you make these four compounds? Give your disconnections, explain why you chose them and then give reagents for the. 2 2 Me S Exercises in basic one- group C X disconnections.

More information

Denmark s Base Catalyzed Aldol/Allylation

Denmark s Base Catalyzed Aldol/Allylation Denmark s Base Catalyzed Aldol/Allylation Evans Group Seminar ovember 1th, 003 Jimmy Wu Lead eferences: Denmark, S. E. Acc. Chem. es., 000, 33, 43 Denmark, S. E. Chem. Comm. 003, 167 Denmark, S. E. Chem.

More information

Asymmetric Nucleophilic Catalysis

Asymmetric Nucleophilic Catalysis Asymmetric ucleophilic Catalysis Chiral catalyst X 2 Chiral catalyst X = alkyl, X 1 2 1 Vedejs, E.; Daugulis,. J. Am. Chem. Soc. 2003, 125, 4166-4173 Shaw, S. A.; Aleman,.; Vedejs, E. J. Am. Chem. Soc.

More information

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities.

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities. Problem session (3) Daiki Kuwana Please fill in the blank and explain reaction mechanisms and stereoselectivities. 1. 1-1 1. (Ac) 2 (10 mol%), DPEphos (20 mol%) Et 3, toluene, 90 C 2. s 4 (14 mol%), M;

More information

Detailed Course Content

Detailed Course Content Detailed Course Content Chapter 1: Carbon Compounds and Chemical Bonds The Structural Theory of Organic Chemistry 4 Chemical Bonds: The Octet Rule 6 Lewis Structures 8 Formal Charge 11 Resonance 14 Quantum

More information

CHEM 330. Final Exam December 11, This a closed-notes, closed-book exam. The use of molecular models is allowed. This exam contains 12 pages

CHEM 330. Final Exam December 11, This a closed-notes, closed-book exam. The use of molecular models is allowed. This exam contains 12 pages CEM 330 Final Exam December 11, 2007 Your name: This a closed-notes, closed-book exam The use of molecular models is allowed This exam contains 12 pages Time: 2h 30 min 1. / 20 2. / 20 3. / 30 4. / 40

More information

ζ ε δ γ β α α β γ δ ε ζ

ζ ε δ γ β α α β γ δ ε ζ hem 263 Nov 17, 2016 eactions at the α-arbon The alpha carbon is the carbon adjacent to the carbonyl carbon. Beta is the next one, followed by gamma, delta, epsilon, and so on. 2 ε 2 δ 2 γ 2 2 β α The

More information

Total synthesis of Spongistatin

Total synthesis of Spongistatin Literature Semminar 1. Introduction: Total synthesis of Spongistatin Chen Zhihua (M2) Isolation: Pettit et al. J. rg. Chem. 1993, 58, 1302. Kitagawa et al. Tetrahedron Lett. 1993, 34, 1993. Fusetani et

More information

Investigations of Organocuprates

Investigations of Organocuprates Investigations of rganocuprates Department of Chemistry University of North Carolina at Charlotte Andy Thomas Rapid injection NMR Why is RINMR so useful? Time intervals between spectra can be modified

More information

Name: Unit 3 Packet: Activation Energy, Free Radical Chain Reactions, Alkane Preparations, S N 2, E 2

Name: Unit 3 Packet: Activation Energy, Free Radical Chain Reactions, Alkane Preparations, S N 2, E 2 Name: Unit 3 Packet: Activation Energy, Free Radical Chain Reactions, Alkane Preparations, S N 2, E 2 Key Terms For Unit 3 Free Radical Chain Reaction Homolytic Cleavage Free Radical Initiation Propagation

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Iron Catalysed Coupling Reactions

Iron Catalysed Coupling Reactions LONG LITERATURE REPORT Iron Catalysed Coupling Reactions Mingyu Liu 2017. 8. 31 1 Fe [Ar]3d 6 4s 2 The fourth most common element in the Earth s crust Relatively less understanding and manipulation of

More information

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Shiqing Xu, Akimichi Oda, Thomas Bobinski, Haijun Li, Yohei Matsueda, and Ei-ichi Negishi Angew. Chem. Int. Ed. 2015,

More information

Chapter 20 Carboxylic Acid Derivatives. Nucleophilic Acyl Substitution

Chapter 20 Carboxylic Acid Derivatives. Nucleophilic Acyl Substitution ucleophilic Acyl Substitution hapter 20 arboxylic Acid Derivatives ucleophilic Acyl Substitution Y (1) need to have Y as a u Y u u + Y (2) could not happen with aldehydes or ketones as : and : are poor

More information

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA Conjugation in Alkadienes and Allylic Systems conjugation a series of overlapping p orbitals The Allyl Group allylic position is the next to a double bond 1 allyl

More information

Part C- section 1 p-bonds as nucleophiles

Part C- section 1 p-bonds as nucleophiles Part C- section 1 p-bonds as nucleophiles Chemistry of Alkenes (Ch 8, 9, 10) - the double bond prevents free rotation - isomerism cis and trans - nomenclature E and Z (3 or 4 different substituents around

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions ALKANES Water-insoluble, low density C-C single bonds Higher MW -> higher BP, higher MP Branching -> lower BP, higher MP Forms cycloalkanes which can have ring strain Cyclohexane: chair vs. boat configuration

More information

R N R N R N. primary secondary tertiary

R N R N R N. primary secondary tertiary Chapter 19 Amines omenclature o assification of amines Amines are classified as 1, 2, or 3 based on how many R groups are attached to the nitrogen R R R R R R primary secondary tertiary When there are

More information

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination CHAPTER 7 Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination 7-1 Solvolysis of Tertiary and Secondary Haloalkanes The rate of S N 2 reactions decrease dramatically

More information

Learning Guide for Chapter 15 - Alcohols (II)

Learning Guide for Chapter 15 - Alcohols (II) Learning Guide for Chapter 15 - Alcohols (II) I. Introduction to alcohol reactivity II. Reactions of alcohols with acids III. Reactions of alcohols with electrophiles alogenated phosphorus and sulfur compounds

More information

Answers To Chapter 1 In-Chapter Problems.

Answers To Chapter 1 In-Chapter Problems. Answers To Chapter In-Chapter Problems... The resonance structure on the right is better because every atom has its octet... C + C C C C C C C C C C C the second structure is hopelessly strained Chapter..

More information

Carbonyl Ylide Cycloadditions

Carbonyl Ylide Cycloadditions Carbonyl Ylide Cycloadditions cond. icholas Anderson Denmark Group eting 07/13/10 Carbonyl Ylides Uncharged 1,3-Dipole Conjugated π-system ighly reactive on-isolable Generate in-situ Carbonyl Ylide Stability

More information

Asymmetric Alklylation of Enolates

Asymmetric Alklylation of Enolates Asymmetric Alklylation of Enolates M with material from A G Meyers http://faculty.chemistry.harvard.edu/myers/pages/chem-215-handouts 745 rganic Synthesis Spring 2015 Asymmetric Alkylation - eed to control

More information

STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY

STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY Pierre Deslongchamps (version du 16 février 2010) Cf. pour le livre: http://pages.usherbrooke.ca/pdeslongchamps/cv.htm 1 SECTION 8 Stereoelectronic

More information

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010 Enantioselective Borylations David Kornfilt Denmark Group Meeting Sept. 14 th 2010 30.000-foot View Enantioenriched Organoboranes What to do with them Crudden C. M. et. al., Eur. J. Org. Chem. 2003, 46

More information

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of X 2. Addition of and addition of Y X 3. Addition to allene and alkyne 4. Substitution at α-carbon 5. eactions via organoborane

More information

Chemistry 335 Supplemental Slides: Interlude 1. Reduction: addition of hydrogen to the substrate. Oxidation: addition of oxygen to the substrate

Chemistry 335 Supplemental Slides: Interlude 1. Reduction: addition of hydrogen to the substrate. Oxidation: addition of oxygen to the substrate Interlude 1: Oxidations, Reductions & Other Functional Group Interconversions (FGI) 1. Definition of Oxidation and Reduction For practical purposes in organic chemistry, oxidation and reduction are defined

More information

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols

More information

Reducing Agents. Linda M. Sweeting 1998

Reducing Agents. Linda M. Sweeting 1998 Reducing Agents Linda M. Sweeting 1998 Reduction is defined in chemistry as loss of oxygen, gain of hydrogen or gain of electrons; the gain of electrons enables you to calculate an oxidation state. Hydride

More information

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44%

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44% VII Abstracts 2010 p1 2.4.12 Arene rganometallic Complexes of Chromium, Molybdenum, and Tungsten M. Uemura This review is an update to Section 2.4 and covers the literature from 1999 to 2010. (h 6 -Arene)chromium

More information

Chapter 2: An Introduction to Organic Compounds

Chapter 2: An Introduction to Organic Compounds Chapter : An Introduction to Organic Compounds I. FUNCTIONAL GROUPS: Functional groups with similar structure/reactivity may be "grouped" together. A. Functional Groups With Carbon-Carbon Multiple Bonds.

More information