Química Orgânica I. Ciências Farmacêuticas Bioquímica Química. Análise estrutural AFB QO I 2007/08 1 AFB QO I 2007/08 2

Size: px
Start display at page:

Download "Química Orgânica I. Ciências Farmacêuticas Bioquímica Química. Análise estrutural AFB QO I 2007/08 1 AFB QO I 2007/08 2"

Transcription

1 Química Orgânica I Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 Análise estrutural AFB QO I 2007/08 2 1

2 Adaptado de: Organic Chemistry, 6th Edition; L. G. Wade, Jr. Organic Chemistry, William H. Brown AFB QO I 2007/08 3 methods determine the molecular structure Crystallography Mass Spectrometry Elemental Analysis Infrared Spectroscopy UV/VIS Spectroscopy Nuclear Magnetic Resonance Coupled methods: GC-MS; HPLC-NMR... (comparative methods for know structures) AFB QO I 2007/08 4 2

3 methods Crystallography: diffraction patterns relates to atomic positions Mass Spectrometry: molecular weight and fragmentation pattern Elemental Analysis: determination of elemental and isotopic composition. Infrared Spectroscopy: determine the presence or absence of functional groups. UV/VIS Spectroscopy: Spectrophotometry uses a spectrophotometer to measure how much light is absorbed by the sample (Gives information about conjugated π electron systems). Nuclear Magnetic Resonance (NMR): NMR spectroscopy works by studying the magnetism of a nucleus by placing it in alignment with a magnetic field, and then using an electromagnetic field to disrupt this alignment. AFB QO I 2007/08 5 E = hν and spectroscopy AFB QO I 2007/08 6 3

4 AFB QO I 2007/08 7 Electromagnetic Radiation Common units used to express λ wavelength Relation Unit to Meter Meter (m) ---- Millimeter (mm) 1 mm = 10-3 m Micrometer (µm) N anometer (nm) Angstrom (Å) 1 µm = 10-6 m 1 nm = 10-9 m 1 Å = m AFB QO I 2007/08 8 4

5 Electromagnetic Radiation Electromagnetic radiation: light and other forms of radiant energy Wavelength (λ):( the distance between consecutive peaks on a wave Frequency (ν):( the number of full cycles of a wave that pass a given point in a second Hertz (Hz): the unit in which radiation frequency is reported; s -1 (read per second ) AFB QO I 2007/08 9 electronic vibrational rotational nuclear spin UV-Vis Vis infrared microwave radiofrequency AFB QO I 2007/

6 UV-vis spectroscopy AFB QO I 2007/08 11 UV-vis E = hν ν = c / λ Electromagnetic radiation is absorbed when the energy of photon corresponds to difference in energy between two states. AFB QO I 2007/

7 Why UV-vis? Many organic molecules have chromophores that absorb UV UV absorbance is about 1000 x easier to detect per mole than NMR Still used in following reactions where the chromophore changes. Useful because timescale is so fast, and sensitivity so high. Kinetics, esp. in biochemistry, enzymology. Most quantitative Analytical chemistry in organic chemistry is conducted using HPLC with UV detectors AFB QO I 2007/08 13 One of the best ways for identifying the presence of acidic or basic groups, due to big shifts in λ for a chromophore containing a phenol, carboxylic acid, etc. hypsochromic shift bathochromic shift λ AFB QO I 2007/

8 UV-vis - range Conjugated compounds can absorb light in the ultraviolet region of the spectrum The region from 2 x 10-7 m to 4 x 10-7 m (200 to 400 nm) is most useful in organic chemistry AFB QO I 2007/08 15 UV-vis range in detail σ σ* and σ π* transitions: high-energy, accessible in vacuum UV (λ max <150 nm). n σ* and π σ* transitions: non-bonding electrons (lone pairs), wavelength (λ max ) in the nm region. n π* and π π* transitions: most common transitions observed in organic molecular UV-Vis, observed in compounds with lone pairs and multiple bonds with λ max = nm. AFB QO I 2007/

9 Electronic transitions σ π σ σ σ π alkanes carbonyls Energy n π n π σ unsaturated cmpds. O, N, S, halogens π n π carbonyls σ AFB QO I 2007/08 17 calculated π π* transitions Example: π π* transitions responsible for ethylene UV absorption at ~170 nm calculated with ZINDO semi-empirical excited-states methods (Gaussian 03W): hν 170nm photon HOMO π u bonding molecular orbital LUMO π g antibonding molecular orbital AFB QO I 2007/

10 1,3-butadiene The electrons in the highest occupied molecular orbital (HOMO) undergo a transition to the lowest unoccupied molecular orbital (LUMO) AFB QO I 2007/08 19 Other electronic transitions AFB QO I 2007/

11 AFB QO I 2007/08 21 AFB QO I 2007/

12 AFB QO I 2007/08 23 How Do UV spectrometers work? Rotates, to achieve scan Two photomultiplier inputs, differential voltage drives amplifier. Matched quartz cuvettes Sample in solution at ca M. System protects PM tube from stray light D2 lamp-uv Tungsten lamp-vis Double Beam makes it a difference technique AFB QO I 2007/

13 Transmittance vs Absorbance % Transmittance = (I / I 0 ) * 100% where: I = intensity of transmitted light I 0 = intensity of incident light Absorbance = -log(i / I 0 ) AFB QO I 2007/08 25 Diode Array Detectors Model from Agilent literature. Imagine replacing cell with a microflow cell for HPLC! Diode array alternative puts grating, array of photosens. Semiconductors after the light goes through the sample. Advantage, speed, sensitivity, The Multiplex advantage Disadvantage, resolution is 1 nm, vs 0.1 nm for normal UV AFB QO I 2007/

14 UV vis Spectrum 1.0 λ max with certain extinction ε UV Visible Make solution of concentration low enough that A 1 Even though a dual beam goes through a solvent blank, choose solvents that are UV transparent. Absorbance Wavelength, λ, generally in nanometers (nm) Can extract the ε value if conc. (M) and b (cm) are known UV bands are much broader than the photonic transition event. This is because vibration levels are superimposed on UV. AFB QO I 2007/08 27 Electronic Transitions and UVvisible Spectra in Molecules AFB QO I 2007/

15 Quantitative Use of UV Spectra Beers law: A = εcl A absorbance ε is molar absorptivity (extinction coefficient c is concentration in mol/l l is path of light through sample in cm AFB QO I 2007/08 29 meaning λ max : wavelength where UV absorbance for a compound is greatest Energy difference between HOMO and LUMO decreases as the extent of conjugation increases AFB QO I 2007/

16 Effect of Conjugation λ max increases as conjugation increases (lower energy) 1,3-butadiene: 217 nm 1,3,5-hexatriene: 258 nm Substituents on π system increase λ max AFB QO I 2007/08 31 Ψ 2 Ψ 4 Ψ 3 Ψ 1 π Ψ 2 Ψ 1 E for the HOMO LUMO transition is reduced AFB QO I 2007/

17 Energy Lower energy = Longer wavelengths ethylene butadiene hexatriene octatetraene AFB QO I 2007/08 33 AFB QO I 2007/

18 AFB QO I 2007/08 35 Conjugation, Color and the Chemistry of Vision Visible region is about 400 to 800 nm Extended systems of conjugation absorb in visible region β-carotene, 11 double bonds in conjugation λ max = 455 nm AFB QO I 2007/

19 AFB QO I 2007/08 37 Conjugation, Color and the Chemistry of Vision β-carotene is converted to Vitamin A, which is converted to 11-cis-retinal: AFB QO I 2007/

20 Conjugation, Color and the Chemistry of Vision 11-cis-retinal is converted to rhodopsin in the rod cells of the retina. Visual pigments are responsible for absorbing light in eye and triggering nerves to send signal to brain AFB QO I 2007/08 39 Transmission and Color The human eye sees the complementary color to that which is absorbed AFB QO I 2007/

21 Absorbance and Complementary Colors AFB QO I 2007/08 41 The colors of M&M s Bright Blue Common Food Uses Beverages, dairy products, powders, jellies, confections, condiments, icing. Royal Blue Common Food Uses Baked goods, cereals, snack foods, ice-cream, confections, cherries. Orange-red Common Food Uses Gelatins, puddings, dairy products, confections, beverages, condiments. Lemon-yellow Common Food Uses Custards, beverages, ice-cream, confections, preserves, cereals. Orange Common Food Uses Cereals, baked goods, snack foods, ice-cream, beverages, dessert powders, confections AFB QO I 2007/

22 Biological applications In the biological sciences these compounds are used as dyes to selectively stain different tissues or cell structures Biebrich Scarlet - Used with picric acid/aniline blue for staining collagen, recticulum, muscle, and plasma. Luna's method for erythrocytes & eosinophil granules. Guard's method for sex chromatin and nuclear chromatin. HO O 3 S N N N N SO 3 AFB QO I 2007/08 43 ph paper Methyl Orange In the chemical sciences these are the acid-base indicators used for the various ph ranges: Remember the effects of ph on aromatic substituents O 3 S N N CH 3 N CH 3 O 3 S H N N CH 3 N CH 3 Yellow, ph > 4.4 Red, ph < 3.2 AFB QO I 2007/

23 designing colours AFB QO I 2007/08 45 UV spectra and structure From Skoog and West et al. Ch 14 AFB QO I 2007/

24 Empirical understandind of structural effects R.B. Woodward, L.F. Fieser and others have predicted λ max for π π* in extended conjugation systems to within ca. 2-3 nm. Homoannular, base 253 nm Acyclic, base 217 nm heteroannular, base 214 nm Attached group increment, nm Extend conjugation +30 Addn exocyclic DB +5 Alkyl +5 O-Acyl 0 S-alkyl +30 O-alkyl +6 NR2 +60 Cl, Br +5 AFB QO I 2007/08 47 Expected UV (Woodward) Base value x alkyl subst. 10 exo DB 5 total 232 Obs. 237 Base value x alkyl subst. 30 exo DB 5 total 234 Obs. 235 O Base value ß alkyl subst. 24 total 239 Obs. 237 AFB QO I 2007/

25 Distinguish Isomers! HO 2 C Base value x alkyl subst. 20 exo DB 5 total 239 Obs. 238 Base value x alkyl subst. 20 total 273 Obs. 273 AFB HO 2 C QO I 2007/08 49 Substituent effects i. Bathochromic shift (red shift) a shift to longer λ; lower energy ii. Hypsochromic shift (blue shift) shift to shorter λ; higher energy iii. Hyperchromic effect an increase in intensity iv. Hypochromic effect a decrease in intensity ε Hypsochromic Hyperchromic Bathochromic Hypochromic 200 nm 700 nm AFB QO I 2007/

26 Quantitative analysis Isosbestic points Single clear point, can exclude intermediate state, exclude light scattering and Beer s law applies Great for nonaqueous titrations Example here gives detn of endpoint for bromcresol green Binding studies Form I to form II Binding of a lanthanide complex to an oligonucleotide AFB QO I 2007/08 51 Other Electronic Processes Fluorescence: absorption of radiation to an excited state, followed by emission of radiation to a lower state of the same multiplicity Phosphorescence: absorption of radiation to an excited state, followed by emission of radiation to a lower state of different multiplicity Singlet state: spins are paired, no net angular momentum (and no net magnetic field) Triplet state: spins are unpaired, net angular momentum (and net magnetic field) AFB QO I 2007/

27 rtualtext/spectrpy/uv- Vis/spectrum.htm#uv3b vich/teaching/316/index.html AFB QO I 2007/

ULTRAVIOLET SPECTROSCOPY or ELECTRONIC SPECTROSCOPY

ULTRAVIOLET SPECTROSCOPY or ELECTRONIC SPECTROSCOPY ULTRAVILET SPECTRSCPY or ELECTRNIC SPECTRSCPY S. SANKARARAMAN Department of Chemistry Indian Institute of Technology Madras Chennai 600036, INDIA Sanka@iitm.ac.in Absorption of electromagnetic radiation

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy Types of transitions: 1) Electronic (UV-Vis-Near IR) 2) Vibrational (IR) 3) Rotational (microwave) Electronic Absorption Spectra π π* Gary L. Miessler and Donald A. Tarr, Inorganic

More information

Spektroskopi Molekul Organik

Spektroskopi Molekul Organik Spektroskopi Molekul rganik Chapter 7: UV & electronic transitions Usable ranges & observations Selection rules Band Structure Instrumentation & Spectra Beer-Lambert Law Application of UV-spec 1 Dosen:

More information

Spectroscopy. Page 1 of 8 L.Pillay (2012)

Spectroscopy. Page 1 of 8 L.Pillay (2012) Spectroscopy Electromagnetic radiation is widely used in analytical chemistry. The identification and quantification of samples using electromagnetic radiation (light) is called spectroscopy. Light has

More information

UV Spectroscopy: Empirical Approach to Molecular Structures. Dr. Mishu Singh Department of Chemistry M. P.Govt P. G.

UV Spectroscopy: Empirical Approach to Molecular Structures. Dr. Mishu Singh Department of Chemistry M. P.Govt P. G. UV Spectroscopy: Empirical Approach to Molecular Structures Dr. Mishu Singh Department of Chemistry M. P.Govt P. G.College, Hardoi WHAT IS SPECTROSCOPY? Atoms and molecules interact with electromagnetic

More information

Electronic Excitation by UV/Vis Spectroscopy :

Electronic Excitation by UV/Vis Spectroscopy : Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations Radio waves: Nuclear spin states (in a magnetic field) The wavelength

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L6 page 1 Instrumental Chemical Analysis Ultraviolet and visible spectroscopy Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester, 2016/2017

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L6 page 1 Instrumental Chemical Analysis Ultraviolet and visible spectroscopy Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester, 2016/2017

More information

Ultraviolet Spectroscopy. CH- 521 Course on Interpreta2ve Molecular Spectroscopy; Course Instructor: Krishna P. Kaliappan

Ultraviolet Spectroscopy. CH- 521 Course on Interpreta2ve Molecular Spectroscopy; Course Instructor: Krishna P. Kaliappan Ultraviolet Spectroscopy CH- 521 Course on Interpreta2ve Molecular Spectroscopy; Course Instructor: Krishna P. Kaliappan Ultraviolet Spectroscopy UV light can be absorbed by molecules to excite higher

More information

UV-Vis Spectroscopy. Chem 744 Spring Gregory R. Cook, NDSU Thursday, February 14, 13

UV-Vis Spectroscopy. Chem 744 Spring Gregory R. Cook, NDSU Thursday, February 14, 13 UV-Vis Spectroscopy Chem 744 Spring 2013 UV-Vis Spectroscopy Every organic molecule absorbs UV-visible light Energy of electronic transitions saturated functionality not in region that is easily accessible

More information

Terms used in UV / Visible Spectroscopy

Terms used in UV / Visible Spectroscopy Terms used in UV / Visible Spectroscopy Chromophore The part of a molecule responsible for imparting color, are called as chromospheres. OR The functional groups containing multiple bonds capable of absorbing

More information

Spectroscopy may be defined as the study of interaction between electromagnetic radiations and matter.

Spectroscopy may be defined as the study of interaction between electromagnetic radiations and matter. Spectroscopy may be defined as the study of interaction between electromagnetic radiations and matter. Spectroscopy has a wide range of applications. It is heavily used in astronomy and remote sensing.

More information

Chemistry 304B, Spring 1999 Lecture 5 1. UV Spectroscopy:

Chemistry 304B, Spring 1999 Lecture 5 1. UV Spectroscopy: Chemistry 304B, Spring 1999 Lecture 5 1 Ultraviolet spectroscopy; UV Spectroscopy: Infrared spectroscopy; Nuclear magnetic resonance spectroscopy General basis of spectroscopy: Shine light at a collection

More information

UV / Visible Spectroscopy. Click icon to add picture

UV / Visible Spectroscopy. Click icon to add picture UV / Visible Spectroscopy Click icon to add picture Spectroscopy It is the branch of science that deals with the study of interaction of matter with light. OR It is the branch of science that deals with

More information

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry Properties of light Electromagnetic radiation and electromagnetic spectrum Absorption of light Beer s law Limitation of Beer s

More information

09/05/40 MOLECULAR ABSORPTION METHODS

09/05/40 MOLECULAR ABSORPTION METHODS MOLECULAR ABSORPTION METHODS Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of radiation, as a function of wavelength ( absorption spectrum ), due to its interaction

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Electronic Excitation by UV/Vis Spectroscopy :

Electronic Excitation by UV/Vis Spectroscopy : Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations Radio waves: Nuclear spin states (in a magnetic field) The wavelength

More information

9/28/10. Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Valence Electronic Structure. n σ* transitions

9/28/10. Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Valence Electronic Structure. n σ* transitions Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Electromagnetic Spectrum - Molecular transitions Widely used in chemistry. Perhaps the most widely used in Biological Chemistry.

More information

two slits and 5 slits

two slits and 5 slits Electronic Spectroscopy 2015January19 1 1. UV-vis spectrometer 1.1. Grating spectrometer 1.2. Single slit: 1.2.1. I diffracted intensity at relative to un-diffracted beam 1.2.2. I - intensity of light

More information

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Mass Spectrometry and Infrared Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice

More information

4.3A: Electronic transitions

4.3A: Electronic transitions Ashley Robison My Preferences Site Tools Popular pages MindTouch User Guide FAQ Sign Out If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando, Florida 32887-6777 William H. Brown

More information

Conjugated Dienes and Ultraviolet Spectroscopy

Conjugated Dienes and Ultraviolet Spectroscopy Conjugated Dienes and Ultraviolet Spectroscopy Key Words Conjugated Diene Resonance Structures Dienophiles Concerted Reaction Pericyclic Reaction Cycloaddition Reaction Bridged Bicyclic Compound Cyclic

More information

Electronic Excitation by UV/Vis Spectroscopy :

Electronic Excitation by UV/Vis Spectroscopy : SPECTROSCOPY Light interacting with matter as an analytical tool III Pharm.D Department of Pharmaceutical Analysis SRM College Of Pharmacy,Katankulathur Electronic Excitation by UV/Vis Spectroscopy : X-ray:

More information

Terms used in UV / Visible Spectroscopy

Terms used in UV / Visible Spectroscopy Terms used in UV / Visible Spectroscopy Chromophore The part of a molecule responsible for imparting color, are called as chromospheres. OR The functional groups containing multiple bonds capable of absorbing

More information

Organic Chemistry: CHEM2322

Organic Chemistry: CHEM2322 Conjugated Systems Organic Chemistry: We met in Chem 2321 unsaturated bonds as either a C=C bond or C C bond. If these unsaturated bonds are well separated then they react independently however if there

More information

Lecture 09 MO theory. (Refer Slide Time: 00:33)

Lecture 09 MO theory. (Refer Slide Time: 00:33) (Refer Slide Time: 00:33) Atomic and Molecular Absorption Spectrometry for Pollution Monitoring Dr. J R Mudakavi Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture 09 MO

More information

Lecture 2 nmr Spectroscopy

Lecture 2 nmr Spectroscopy Lecture 2 nmr Spectroscopy Pages 427 430 and Chapter 13 Molecular Spectroscopy Molecular spectroscopy: the study of the frequencies of electromagnetic radiation that are absorbed or emitted by substances

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters ) September 17, 2018 Reference literature (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters 13-14 ) Reference.: https://slideplayer.com/slide/8354408/ Spectroscopy Usual Wavelength Type of Quantum

More information

Molecular Spectroscopy. H 2 O e -

Molecular Spectroscopy. H 2 O e - Molecular Spectroscopy ν (cm -1 ) λ (cm) 10 6 10 8 10 10 10 12 10 14 10 16 10 18 10 20 10 22 ν (Hz) NMR ESR microwave IR UV/Vis VUV X-Ray Gamma Ray H 2 e - UV/Vis Spectroscopy absorption technique X hν

More information

17.1 Classes of Dienes

17.1 Classes of Dienes W 2/1 Due: HW14, spec03 Due: n/a M 2/6 Lecture HW14 grading Lect17a Conjugated π systems Lecture quiz Lect17b Lab Lab02 Qual Analysis II (cont) 7-1 17.1 Classes of Dienes There are three categories for

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry

Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry 13A Measurement Of Transmittance and Absorbance Absorption measurements based upon ultraviolet and visible radiation

More information

Lectures Spectroscopy. Fall 2012

Lectures Spectroscopy. Fall 2012 Lectures 19-20 Spectroscopy Fall 2012 1 spectroscopic principles (Chem 1M/1N exps. #6 and #11) 4 1 spectroscopic excitations ( E = h = hc/ ; = c ) (nm) (sec -1 ) radiation technique molecular excitation

More information

Lectures Spectroscopy. Fall 2012

Lectures Spectroscopy. Fall 2012 Lectures 19-20 Spectroscopy Fall 2012 1 spectroscopic principles (Chem 1M/1N exps. #6 and #11) 4 spectroscopic excitations ( E = h = hc/ ; = c ) (nm) (sec -1 ) radiation technique molecular excitation

More information

17.1 Classes of Dienes

17.1 Classes of Dienes 17.1 Classes of Dienes There are three categories for dienes: Cumulated: pi bonds are adjacent. Conjugated: pi bonds are separated by exactly ONE single bond. Isolated: pi bonds are separated by any distance

More information

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (I) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (I) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2 Química Orgânica I Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 Nuclear Magnetic Resonance Spectroscopy (I) AFB QO I 2007/08 2 1 Adaptado de: Organic Chemistry, 6th Edition; L. G. Wade,

More information

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages )

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages ) Spectroscopy: Introduction Required reading Chapter 18 (pages 378-397) Chapter 20 (pages 424-449) Spectrophotometry is any procedure that uses light to measure chemical concentrations Properties of Light

More information

Questions on Instrumental Methods of Analysis

Questions on Instrumental Methods of Analysis Questions on Instrumental Methods of Analysis 1. Which one of the following techniques can be used for the detection in a liquid chromatograph? a. Ultraviolet absorbance or refractive index measurement.

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU

The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU 1 Agilent is committed to the educational community and is willing to provide access to company-owned material. This slide

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 6 Spectroscopic Techniques Lecture - 2 UV-Visible Spectroscopy

More information

CHEM 261 Notes Nov 22, 2017 REVIEW:

CHEM 261 Notes Nov 22, 2017 REVIEW: 155 CEM 261 Notes Nov 22, 2017 REVIEW: Recall how we can show the energy levels of the atomic orbitals of C. If the C is sp 2 hybridized, two of the 2p orbitals combine with the 2s orbital to form two

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

Chapter 13 Spectroscopy

Chapter 13 Spectroscopy hapter 13 Spectroscopy Infrared spectroscopy Ultraviolet-Visible spectroscopy Nuclear magnetic resonance spectroscopy Mass Spectrometry 13.1 Principles of Molecular Spectroscopy: Electromagnetic Radiation

More information

Increasing energy. ( 10 4 cm -1 ) ( 10 2 cm -1 )

Increasing energy. ( 10 4 cm -1 ) ( 10 2 cm -1 ) The branch of science which deals with the interaction of electromagnetic radiation with matter is called spectroscopy The energy absorbed or emitted in each transition corresponds to a definite frequency

More information

Ultraviolet-Visible Spectroscopy

Ultraviolet-Visible Spectroscopy Ultraviolet-Visible Spectroscopy Introduction to UV-Visible Absorption spectroscopy from 160 nm to 780 nm Measurement of transmittance Conversion to absorbance * A=-logT=εbc Measurement of transmittance

More information

Ch 14 Conjugated Dienes and UV Spectroscopy

Ch 14 Conjugated Dienes and UV Spectroscopy Ch 14 Conjugated Dienes and UV Spectroscopy Conjugated Systems - Conjugated systems have alternating single and double bonds. For example: C=C C=C C=C and C=C C=O - This is not conjugated because the double

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando, Florida 32887-6777 William H. Brown

More information

Spectrophotometry. Introduction

Spectrophotometry. Introduction Spectrophotometry Spectrophotometry is a method to measure how much a chemical substance absorbs light by measuring the intensity of light as a beam of light passes through sample solution. The basic principle

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

MOLECULAR ABSORPTION METHODS

MOLECULAR ABSORPTION METHODS MOLECULAR ABSORPTION METHODS Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of radiation, as a function of wavelength ( absorption spectrum ), due to its interaction

More information

Classification of spectroscopic methods

Classification of spectroscopic methods Introduction Spectroscopy is the study of the interaction between the electromagnetic radiation and the matter. Spectrophotometry is the measurement of these interactions i.e. the measurement of the intensity

More information

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions Spin States Molecular Rotations Molecular Vibrations Outer Shell Electrons Inner Shell Electrons Nuclear Transitions NMR EPR Microwave Absorption Spectroscopy Infrared Absorption Spectroscopy UV-vis Absorption,

More information

Topics Spectroscopy. Fall 2016

Topics Spectroscopy. Fall 2016 Topics 19-20 Spectroscopy Fall 2016 1 SPECTROSCOPY: short wavelength regions ESCA (photoelectron) and UV handout 2 alert approach for spectroscopy material not straight from text chapter must FOLLOW videos,

More information

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light Chapter 18 Fundamentals of Spectrophotometry Properties of Light Electromagnetic Radiation energy radiated in the form of a WAVE caused by an electric field interacting with a magnetic field result of

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

CHEM Atomic and Molecular Spectroscopy

CHEM Atomic and Molecular Spectroscopy CHEM 21112 Atomic and Molecular Spectroscopy References: 1. Fundamentals of Molecular Spectroscopy by C.N. Banwell 2. Physical Chemistry by P.W. Atkins Dr. Sujeewa De Silva Sub topics Light and matter

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by the sample is measured as wavelength

More information

Chapter 5 Materials Characterization Lecture III

Chapter 5 Materials Characterization Lecture III Chapter 5 Materials Characterization Lecture III Dr. Alagiriswamy A A (PhD., PDF) Dept. of Physics and Nanotechnology SRM University Main Campus, Ktr., SRM Nagar, Chennai, Tamilnadu 5.0 Characterization

More information

Lecture- 08 Emission and absorption spectra

Lecture- 08 Emission and absorption spectra Atomic and Molecular Absorption Spectrometry for Pollution Monitoring Dr. J R Mudakavi Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture- 08 Emission and absorption spectra

More information

Chemistry Instrumental Analysis Lecture 3. Chem 4631

Chemistry Instrumental Analysis Lecture 3. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 3 Quantum Transitions The energy of a photon can also be transferred to an elementary particle by adsorption if the energy of the photon exactly matches the

More information

24 Introduction to Spectrochemical Methods

24 Introduction to Spectrochemical Methods 24 Introduction to Spectrochemical Methods Spectroscopic method: based on measurement of the electromagnetic radiation produced or absorbed by analytes. electromagnetic radiation: include γ-ray, X-ray,

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

UV Visible Spectroscopy

UV Visible Spectroscopy UV Visible Spectroscopy It involves the measurement of absorption of light in the UV region(10-200(far UV)-200-400nm(near UV) and visible region(400-800nm)by the compound under investigation. It is also

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Conjugated Systems. With conjugated double bonds resonance structures can be drawn

Conjugated Systems. With conjugated double bonds resonance structures can be drawn Conjugated Systems Double bonds in conjugation behave differently than isolated double bonds With conjugated double bonds resonance structures can be drawn With isolated double bonds cannot draw resonance

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

February 8, 2018 Chemistry 328N

February 8, 2018 Chemistry 328N Lecture 7 UV-Vis spectroscopy February 8, 2018 First Midterm Exam When: Wednesday, 2/14 When: 7-9 PM (please do not be late) Where: WEL 2.122 This room!!! What: Covers material through today s lecture

More information

Absorption spectrometry summary

Absorption spectrometry summary Absorption spectrometry summary Rehearsal: Properties of light (electromagnetic radiation), dual nature light matter interactions (reflection, transmission, absorption, scattering) Absorption phenomena,

More information

Spectroscopy Chapter 13

Spectroscopy Chapter 13 Spectroscopy Chapter 13 Electromagnetic Spectrum Electromagnetic spectrum in terms of wavelength, frequency and Energy c=λν c= speed of light in a vacuum 3x108 m/s v= frequency in Hertz (Hz s-1 ) λ= wavelength

More information

13.24: Mass Spectrometry: molecular weight of the sample

13.24: Mass Spectrometry: molecular weight of the sample hapter 13: Spectroscopy Methods of structure determination Nuclear Magnetic Resonances (NMR) Spectroscopy (Sections 13.3-13.19) Infrared (IR) Spectroscopy (Sections 13.20-13.22) Ultraviolet-visible (UV-Vis)

More information

Course: M.Sc (Chemistry) Analytical Chemistry Unit: III

Course: M.Sc (Chemistry) Analytical Chemistry Unit: III Course: M.Sc (Chemistry) Analytical Chemistry Unit: III Syllabus: Principle of spectrophotometry Types of spectrophotometer Applications - Dissociation constants of an indicator simultaneous spectrophotometric

More information

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Lecture 6: Physical Methods II UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Physical Methods used in bioinorganic chemistry X ray crystallography X ray absorption (XAS)

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

on-line spectroscopy 1!!! Chemistry 1B Fall 2013 Chemistry 1B, Fall 2013 Lecture Spectroscopy Lectures Spectroscopy Fall 2013

on-line spectroscopy 1!!! Chemistry 1B Fall 2013 Chemistry 1B, Fall 2013 Lecture Spectroscopy Lectures Spectroscopy Fall 2013 Lecture 190 Spectroscopy Flipping the lecture discussion Flip teaching (or flipped classroom) is a form of blended learning in which students learn new content online by watching video lectures, usually

More information

levels. The signal is either absorbance vibrational and rotational energy levels or percent transmittance of the analyte

levels. The signal is either absorbance vibrational and rotational energy levels or percent transmittance of the analyte 1 In this chapter, absorption by molecules, rather than atoms, is considered. Absorption in the ultraviolet and visible regions occurs due to electronic transitions from the ground state to excited state.

More information

Assumed knowledge. Chemistry 2. Learning outcomes. Electronic spectroscopy of polyatomic molecules. Franck-Condon Principle (reprise)

Assumed knowledge. Chemistry 2. Learning outcomes. Electronic spectroscopy of polyatomic molecules. Franck-Condon Principle (reprise) Chemistry 2 Lecture 11 Electronic spectroscopy of polyatomic molecules Assumed knowledge For bound excited states, transitions to the individual vibrational levels of the excited state are observed with

More information

and Ultraviolet Spectroscopy

and Ultraviolet Spectroscopy Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 15 Conjugated Systems, Orbital Symmetry, and Ultraviolet Spectroscopy 2010, Prentice all Conjugated Systems Conjugated double bonds are separated

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 1: Atomic Spectroscopy Text: Chapter 12,13 & 14 Rouessac (~2 weeks) 1.0 Review basic concepts in Spectroscopy 2.0 Atomic Absorption and Graphite Furnace Instruments 3.0 Inductively Coupled Plasmas

More information

Spectroscopy. a laboratory method of analyzing matter using electromagnetic radiation.

Spectroscopy. a laboratory method of analyzing matter using electromagnetic radiation. Spectroscopy a laboratory method of analyzing matter using electromagnetic radiation. Mass Spectrometry Determines the relative abundance of the different isotopes of an element Used to determine the average

More information

Spectroscopy. a laboratory method of analyzing matter using electromagnetic radiation

Spectroscopy. a laboratory method of analyzing matter using electromagnetic radiation Spectroscopy a laboratory method of analyzing matter using electromagnetic radiation The electromagnetic spectrum Radiation Scale of Absorption involves: Example of spectroscopy Gamma rays pm Nuclear reactions

More information

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY E35 SPECTRSCPIC TECNIQUES IN RGANIC CEMISTRY Introductory Comments. These notes are designed to introduce you to the basic spectroscopic techniques which are used for the determination of the structure

More information

Calculate a rate given a species concentration change.

Calculate a rate given a species concentration change. Kinetics Define a rate for a given process. Change in concentration of a reagent with time. A rate is always positive, and is usually referred to with only magnitude (i.e. no sign) Reaction rates can be

More information

Chapter 14: Conjugated Dienes and Ultraviolet Spectroscopy Diene: molecule with two double bonds Conjugated diene: alternating double and single bonds

Chapter 14: Conjugated Dienes and Ultraviolet Spectroscopy Diene: molecule with two double bonds Conjugated diene: alternating double and single bonds Chapter 14: Conjugated Dienes and Ultraviolet Spectroscopy Diene: molecule with two double bonds Conjugated diene: alternating double and single bonds C-C single bond lkene Diene C=C double bonds Conjugate

More information

Paper: 12, Organic Spectroscopy Module: 5, Applications of UV spectroscopy

Paper: 12, Organic Spectroscopy Module: 5, Applications of UV spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy Applications of UV-visible Spectroscopy CHE_P12_M5 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction

More information

Chapter 13 Conjugated Unsaturated Systems

Chapter 13 Conjugated Unsaturated Systems Chapter 13 Conjugated Unsaturated Systems Introduction Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double or triple bond The

More information

Química Orgânica I. Ciências Farmacêuticas Bioquímica Química. IR spectroscopy AFB QO I 2007/08 1 AFB QO I 2007/08 2

Química Orgânica I. Ciências Farmacêuticas Bioquímica Química. IR spectroscopy AFB QO I 2007/08 1 AFB QO I 2007/08 2 Química Orgânica I Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 IR spectroscopy AFB QO I 2007/08 2 1 Adaptado de: Organic Chemistry, 6th Edition; L. G. Wade, Jr. Organic Chemistry, William

More information

A very brief history of the study of light

A very brief history of the study of light 1. Sir Isaac Newton 1672: A very brief history of the study of light Showed that the component colors of the visible portion of white light can be separated through a prism, which acts to bend the light

More information

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature)

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature) What is a conjugated system? Chapter 13 Conjugated Unsaturated Systems Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital may be empty (a carbocation The

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

Topic 6: Light Absorption and Color in Biomolecules

Topic 6: Light Absorption and Color in Biomolecules 1 6.1 INTRODUCTION Topic 6: Light Absorption and Color in Biomolecules Why are trees green? Blood red? Carrots orange? Most colors in biological tissues arise from natural pigments. A pigment is a molecule

More information

高等食品分析 (Advanced Food Analysis) I. SPECTROSCOPIC METHODS *Instrumental methods: 1. Spectroscopic methods (spectroscopy): a) Electromagnetic radiation

高等食品分析 (Advanced Food Analysis) I. SPECTROSCOPIC METHODS *Instrumental methods: 1. Spectroscopic methods (spectroscopy): a) Electromagnetic radiation *Instrumental methods: 1. Spectroscopic methods (spectroscopy): a) Electromagnetic radiation (EMR): γ-ray emission X-Ray absorption, emission, fluorescence and diffraction Vacuum ultraviolet (UV) absorption

More information