Oxidative Addition. Contents. Reporter : Shiliang Tian. Supervisor : Prof. Zhangjie Shi. Introduction to oxidative addition reactions ;

Size: px
Start display at page:

Download "Oxidative Addition. Contents. Reporter : Shiliang Tian. Supervisor : Prof. Zhangjie Shi. Introduction to oxidative addition reactions ;"

Transcription

1 Oxidative Addition eporter : Shiliang Tian Supervisor : Prof. Zhangjie Shi ontents ntroduction to oxidative addition reactions ; Mechanism of oxidative addition reactions ; Some examples in mechanism research ; Summary and outlook. Acknowledgement 2

2 ontents ntroduction to oxidative addition reactions ; Mechanism of oxidative addition reactions ; Some examples in mechanism research ; Summary and outlook. Acknowledgement 3 General information about oxidative addition The origin of modern organo transition metal chemistry can be traced to the discovery of ferrocene in 1951 Fe T. J. Kealy and P.. Pauson *, Nature, 1951, 168,1039 4

3 Vaska s complex PPh 3 Ph 3 P auri Vaska (+1) 16e-. Vaska*, J. Am. hcm. Soc., 1961, 83, PPh 3 Ph 3 P 3 PPh 3 Ph 3 P 3 3 O PPh 3 Ph 3 P 2 Sn 3 O PPh PPh 3 3 Sn 4 O PPh 2 3 Ph Ph 3 P 3 P Ph 3 P O O 2 O 2 3 SO 2 OO 2 PPh 3 PPh 3 SO 2 Ph 3 3 P PPh 3 Ph 3 P Ph 3 P. Voska*, J. Am. hcm. Soc., 1962, 84, 679 6

4 Most common cases General nformation n M A B oxidative addition reductive elimination n M A B 16e 18e O.S. = +2.N. = +2 These reaction are not limited to transition metals; perhaps the most familiar oxidative Addition is the formation of Grignard reagents, but it can also occur whenever an element as two accessible oxidative oxidation states two unit apart: Me Br Mg Me Mg Br P 3 P 5 7 Other types of oxidative addition reactions 1. Electrophilic attack of metals n M E + n M E Examples: O.S. = +2.N. = +1 Fe(O) 5 + [Fe(O) 5 ] + [Mn(O) 5 ] Mn(O) 5-8

5 2. Binuclear oxidation reactions n M M n A B n M A n M B n M M n A B A n M B M n 18e O.S. = +1.N. = +1 u-u = 2.82Å u O O u O O hν u O O u(+1) d 7 u(+2) d 6 O O u K. Peter. Vollhardt et al. J. Am. hem. Soc., 1983, 105(6), Oxidative oupling 3 N Ph 2 P P Ph 2 r 3 N Ph 2 P P Ph 2 r r(+3) d 3 15e- r(+5) d 1 13e- The r on the right now has two new anionic alkyl ligands forming a metallocyclopentane ring system. While this is an oxidative addition, there is a special term for this type of reaction called oxidative coupling. The driving force for this reaction is 1. formation of a new - s-bond (stronger than a p-bond) 2. creation of two new strongly donating anionic ligands that can better donate to the metal even though one has technically lowered the electron count. 10

6 Definition of Oxidative addition An oxidative addition reaction is one in which (usually) a neutral ligand adds to a metal center and in doing so oxidizes the metal, typically by 2eand new anionic ligands end up bonded to the metal center. The transferring of the two electrons from the metal to the incoming ligand breaks a bond in that ligand forming two new anionic ligands. At least one of these new anionic ligands ends up bonded to the metal center. Oxidizes the metal and coordinative number increases!!! 11 General Features of Oxidative Additions the more electron-rich the metal is the easier the oxidative addition to the metal center: strongest donor ligands fewest π-acceptor ligands most negative charge 12

7 Electronic effect Steric effect Metal center 13 The formal oxidative state change is always +2 What about the real charge on the metal changes??? The real charge on the metal changes much less than that because A and B do not end up with pure -1 charges in n M(A)(B). The change in real charge depends on the electronegativity of A and B. arbonyl Stretching Frequencies of the Oxidative Addition Products from Vaska's omplexs eagent v(o)(cm -1 ) v(o)(cm -1 ) None O D Me F

8 ontents ntroduction to oxidative addition reactions ; Mechanism of oxidative addition reactions ; Some examples in mechanism research ; Summary and outlook. Acknowledgement 15 Mechanism of oxidative addition reactions Oxidative addition Two-electron Mechanism Single-electron Mechanism S N 2 onic Three center is-addition adical mechanism hain non-chain 16

9 Two-Electron Mechanisms Oxidative Addition Three-enter is-addition (oncerted pathway ) n M A B n M A B n M A B 16e M(0) 18e M(0) 18e M() The characteristics of this reaction mode would be (a) etention of configuration (b) rate = k[ n M][AB] (c) Metal center must be coordinatively unsaturated with a dn configuration where n >2. (d) A and B must be cis 17 two new anionic hydride ligands PPh 3 Ph 3 P (+1) 16e- + 2 PPh 3 Ph 3 P (+1) 18e- PPh 3 Ph 3 P (+3) 18e- these molecules do NOT contain electro-negative atoms and/or are not good oxidizing agents. Aside from 2, they are often considered to be non-reactive substrates: 2, - bonds, Si- bonds, S- bonds,b- bonds, S-S bonds, - bonds, etc. 18

10 S N 2 Oxidative Mechanism # n M X n M X n M X - The haracteristics of this mechanism are (a) nversion of configuration of carbon (b) A cationic intermediate n M (c) rate = k[nm][ -X] (d) assical X structure/reactivity patterns Me>primary>secondary>tertiary and -OTs > >Br>>F (e) and X might be cis or trans after the recombination step 19 PPh 3 Ph 3 P δ + δ + 3 Br S N 2 nucleophillic attack Ph 3 P O PPh 3 Br (+1) 16e- (+1) 16e- (+3) 18etwo new anionic ligands two new anionic ligands 3 PPh 3 Ph 3 P Br +Br 3 PPh 3 Ph 3 P (+3) 16e- + Br f the starting metal complex is 16e (as shown above) both ligands will usually end up coordinated to the metal to make an 18e- complex. What about the starting metal complex is 18e??? 20

11 e O O e(-1) 18e- oxidative addition O e + e O -O O e(+1) 18e- 1) O ligand dissociation 2) η 1 - to η 3 -allyl hapticity change + two new anionic ligands e(+1) 18e- n the case of a starting 18e complex (shown below) only one of the two anionic ligands (usually the strongest binding) generated from the oxidative addition will end up coordinated to the metal unless a separate substitution reaction occurs. 21 Another example: Na 2 [Fe(O) 4 ] X Na[Fe(O) 4 ] NaX Fe(-2) 18e ate aw Fe(0) 18e rate=k[na 2 Fe(O) 4 ][X] Structure-eactivity elationship Steric factor: * *10-3 eaving group effect 1.4*10-5 < 1*10-5 > Br > OTs > k(relative) *

12 ow to determine stereochemistry at carbon? Ph Ph 3 Pd X 3 Pd + X - - O MeO Ph MeO O 2 XPd Ph O 2 XPd Ph The processes involving O and MeO are known not to change configuration at carbon J. K. Still et al, Acc. hem. es., 1977, 10, Anion Assisted S N 2 oxidative addition General: M (n) Y - Y M (n) - Y M (n) - X Y M X - O h O - h O Me K 1 h Me O Me K 2 K 2 > K 1 Maitlis *, hem. Soc. ommun., 1984,

13 onic Mechanism Some molecules (e.g., Br, ) dissociate into ions in polar solvents + - Therefore oxidative addition of these molecules in polar solvents must involve ionic species. n M n M X polar solvent n M X n XM 25 -PPh Pt(PPh 3 ) [Pt(PPh 3 ) 3 ] - - -PPh 3 [Pt(PPh 3 ) 2 ] 18e d 10 tetrahedral 16e d 8 square planar 16e d 8 square planar [(cod) 2 ] [(cod) 2 ] + [(cod) 2 ] 16e d 8 square planar 18e d 8 TBP 18e d 6 octahedral O 2, g 2 also react by the same mechanism W. J. uow et.al., J. hem. Soc., Dalton 1978, 340;.. rabtree et al., J. Organomet. hem. 1979,181,203,. 26

14 One-electron electron Mechanisms for Oxidative Addition 1. Atom Abstraction and combination of the esulting adical with a Second Metal rate determining step M (n) X X M (n+1) fast M (n) M (n+1) Net: 2M (n) X M (n+1) X M (n+1) This is not a chain-mechanism! haracteristics : (a) 2:1 stoichiometry (b) acemization of carbon (c) rate = k[m][x] (d) eaction sequence reverse of S N 2 3 > 2 > 1 >Me (e) eaction sequence with respect to X - > -Br >- >> -OTs Thus -OTs reacts fast in S N 2,slow in adical mechanism o(n) 5 X o(n) 5 X 3-3- o(n) 5 o(n) 5 3- (rate determining) Jack alpern et al. J. Am. hem. Soc., 1965, 87, o(dm) 2 PBu 3 BnBr obr(dm) 2 PBu 3 Bn o(dm) 2 PBu 3 Bn o(dm) 2 PBu 3 Bn O N N O DM = dimethylglyoxime Jack alpern et al. J. Am. hem. Soc., 1969, 91, Other examples: Mn(O) 5 ; M(p)(O) 3 (M=r,Mo,W) 17-electron complexes! 28

15 2. nner-sphere Electron transfer/aged adical-pair Mechanism General : M (n) X M (n) X (n+1) M X cage collapse (n+1) M X cage escape n+2 M X X M (n+1) This is the mechanism we shall study here - M (n) M (n+1) Propagation step in radical chain mechnism 29 M (n) X M (n) X (n+1) M X cage n+2 M X haracteristics : (a) The products are very similar to those of a S N 2 reaction (b) The reactivity order is - > -Br > - > -OTs (this order is determined by thermodynamics) Note: in S N 2 -OTs most reactive 3 > 2 >1 > Me (this order is determined by the relative order of the radicals) This order is opposite to S N 2 mechanism (c) This pathway requires a coordinatively unsaturated metal capable of undergoing a formal two-electron oxidation (d) ArO does not work as an inhibitor 30

16 Ni 0 (PEt 3 ) 4 ArX -PEt 3 XNi 1 -PEt (PEt 3 ) 3 Ar 3 XNiAr(PEt 3 ) 2 S Ar S f Ar = (2,4,6-tri-tert-butyl)bromobenzene, the aryl radical can be detected directly by ES in the reaction mixture. J. K. Kochi et al. J. Am. hem. Soc., 1979, 101(21), Pt 3 fast Pt 2 Pt 2 X slow Pt 2 X cage fast Pt 2 X Follows the order 3 > 2 > 1 The radical is not traped by ArO as does not leave the cage ArO ArO 31 3.Outer-sphere Electron-Transfer Mechanism M n X X - [M (n+1) ] [M (n+2) ] X - X - [M (n+1) ] Net X [M (n+2) ] + X - M n This reaction is associated with coordinatively saturated metal centers 32

17 X pfe(o) 2 Na TF, 0 o -NaX Fe(O) 2 p Fe(O) 2 p X = 70 : 30 X= Br >97 : <3 X pfe(o) 2 - X - pfe(o) 2 S N 2 Fe(O) 2 p X - X - pfe(o) 2 Paul J. Krusic et al., J. Am. hem. Soc., 1977, 99(1), The rearrangement is indicative of radical formation cyclopropyl carbinyl radical butenyl radical adical hain pathway n X n X M (n) M (n+1) M (n+1) X M (n+2) X Propagation M (n+1) side reaction Termination haracteristics : (a) nitiators = impurities,o 2,hv (b) racemization of (c) The reactivity order is - > -Br > - > -OTs Note: in S N 2 -OTs most reactive (d) 3 > 2 >1 > Me This order is opposite to S N 2 mechanism (e) ArO does work as an inhibitor 34

18 nitiation O O Br Br O O Propagation X X X X Br Br = (,S)-PhFBrO 2 Et The reaction can be stoped by ArO Jay A. abinger et al, norg. hem., 1980, 19(11), ontents ntroduction to oxidative addition reactions ; Mechanism of oxidative addition reactions ; Some examples in mechanism research ; Summary and outlook. Acknowledgement 36

19 Miyaura-Suzuki eaction Kosugi-Migita-Stille eaction Negishi eaction Sonogashira eaction Kumada-orriu-Tamao eaction iyama eaction Transmetalation Oxidative addition eductive elimination nitial and rate-determining step 37 The oxidative addition of (sp3)-x to Pd0 The oxidative addition of (sp3)-x to Pd0 complexs [Pd4] (=phosphane) is usually an associative bimolecular process (SN2 reaction) nversion at stereogenic center Ph Ph 3Pd + 3Pd X X- - O Ph MeO O MeO Ph O 2XPd Ph 2XPd J. K. Still et al, Acc. hem. es., 1977, 10,

20 O 2 Me O 2 Me O 2 Me Pd 2 (dba) 3 SnBu 3 benzene dichloromethane 94 6 TF 95 5 acetone DMF acetonitrile 5 95 DMSO 3 97 ideo Kurosawa et al., J. Am. hem. Soc., 1990, 112, [Pd] [Pd] ideo Kurosawa et al., J. Am. hem. Soc., 1992, 114, The oxidative addition of (sp 2 )-X X to Pd 0 1. The palladium species in the catalytic cycle assical Mechanism for ross-oupling eactions 40

21 Jutand and Amatore demonstrated that the three-coordinated anionic Pd(0) species [Pd(P 3 ) 2 OAc] - or [Pd(P 3 ) 2 ] - were formed, instead of the classical two coordinated complex, by the reaction of Pd() salts with phosphine and are involved in the oxidative addition step 41 Amatore,. et al., Organometallics, 1992, 11, 3009 Amatore,., Jutand, A., Suarez, A., J. Am. hem. Soc., 1993, 115, 9531 Jutand, A.; Mosleh, A., Organometallics, 1995, 14, 1810 Amatore,. et al., Organometallics, 1995, 14,

22 The oxidative addition of (sp 2 )-X X to Pd 0 2. cis complexes in the oxidative addition A concerted interaction of a reactive [Pd 2 ] or [Pd(-)] (-=diphosphane) species with X in a three-center transitionstate Pd X Pd X Pd X Pd X Pd X Pd X The intermediates observed in the catalytic cycle are trans-[pdx 2 ] 43 n fact cis complexes are observed to result from the oxidative reaction in a few cases with (sp 2 ) electrophiles Kinetic product Thermodynamic product. Urata, M. Tanaka, T. Fuchikami, hem. ett., 1987,

23 Model reaction for the cis trans isomerization: One of the two main pathways: Pd 1 k -1 k 1 -[Pd] [Pd] Pd 1 k 2 [Pd] Pd 1 fast + - -[Pd] mono-iodo-bridged intermediate Pd 1 A.. asado, P. Espinet, Organometallics, 1998, 17, ontents ntroduction to oxidative addition reactions ; Mechanism of oxidative addition reactions ; Some examples in mechanism research ; Summary and outlook ; Acknowledgement 46

24 Oxidative addition Two-electron Mechanism Single-electron Mechanism S N 2 onic Three center is-addition adical mechanism hain non-chain 47 Acknowledgement Prof. Zhangjie Shi All members in our group 48

25 49

Oxidative Addition/Reductive Elimination 1. Oxidative Addition

Oxidative Addition/Reductive Elimination 1. Oxidative Addition Oxidative Addition Oxidative Addition/Reductive Elimination 1 An oxidative addition reaction is one in which (usually) a neutral ligand adds to a metal center and in doing so oxidizes the metal, typically

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-9 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. rganometallic hemistry xidative Addition, Reductive Elimination, Migratory Insertion, Elimination

More information

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following Module 10 : Reaction mechanism Lecture 1 : Oxidative addition and Reductive elimination Objectives In this lecture you will learn the following The oxidative addition reactions. The reductive elimination

More information

Chapter 2 The Elementary Steps in TM Catalysis

Chapter 2 The Elementary Steps in TM Catalysis hapter 2 The Elementary Steps in TM atalysis + + ligand exchange A oxidative addition > n + A B n+2 reductive elimination < B n n+2 oxidative coupling + M' + M' transmetallation migratory insertion > (carbo-,

More information

Oxidative Addition oxidative addition reductive elimination

Oxidative Addition oxidative addition reductive elimination Oxidative Addition We have seen how neutral ligands such as C 2 H 4 or CO can enter the coordination sphere of a metal by substitution. We now look at a general method for simultaneously introducing pairs

More information

Organometallic Rections 1: Reactions at the Metal

Organometallic Rections 1: Reactions at the Metal E Organometallic Rections 1: Reactions at the Metal Three major classes of reactions: 1 Ligand Substitution associative (cf. S N 2) dissociative (cf. S N 1) interchange (not dealt with in this course)

More information

CHEM Core Chemistry 3. Reaction Mechanisms in Organometallic Chemistry

CHEM Core Chemistry 3. Reaction Mechanisms in Organometallic Chemistry E3012 - ore hemistry 3 eaction echanisms in Organometallic hemistry In an earlier section of this lecture course we considered the mechanisms of substitution reactions in organometallic species, and noted

More information

Chapter 7 Substitution Reactions 7.1 Introduction to Substitution Reactions Substitution Reactions: two reactants exchange parts to give new products

Chapter 7 Substitution Reactions 7.1 Introduction to Substitution Reactions Substitution Reactions: two reactants exchange parts to give new products hapter 7 Substitution eactions 7.1 Introduction to Substitution eactions Substitution eactions: two reactants exchange parts to give new products A-B + -D A-D + B- 3 2 + Br 3 2 Br + Elimination eaction:

More information

O CH 3. Mn CH 3 OC C. 16eelimination

O CH 3. Mn CH 3 OC C. 16eelimination igratory Insertion igratory Insertion/Elimination 1 A migratory insertion reaction is when a cisoidal anionic and neutral ligand on a metal complex couple together to generate a new coordinated anionic

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis rganometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N8 Kashiwa ampus, December 11, 2009 Types of reactions in the coordination sphere of T 3. Reductive elimination X-L n -Y L n +

More information

A Summary of Organometallic Chemistry

A Summary of Organometallic Chemistry A Summary of Organometallic Chemistry Counting valence electrons (v.e.) with the ionic model 1. Look at the total charge of the complex Ph 3 P Cl Rh Ph 3 P PPh 3 OC CO 2 Fe OC CO Co + charge:0 charge:

More information

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom Insertion Reactions xidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. With insertion, and its reverse reaction, elimination, we can now combine and transform

More information

Oxidative Addition and Reductive Elimination

Oxidative Addition and Reductive Elimination xidative Addition and Reductive Elimination red elim coord 2 ox add ins Peter.. Budzelaar xidative Addition Basic reaction: n + X Y n X Y The new -X and -Y bonds are formed using: the electron pair of

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

σ Bonded ligands: Transition Metal Alkyls and Hydrides

σ Bonded ligands: Transition Metal Alkyls and Hydrides σ Bonded ligands: Transition Metal Alkyls and Hydrides Simplest of organo-transitionmetal species Rare until and understanding of their stability in the 60 s and 70 s Metal alkyls can be considered as

More information

Chapter 8. Substitution reactions of Alkyl Halides

Chapter 8. Substitution reactions of Alkyl Halides Chapter 8. Substitution reactions of Alkyl Halides There are two types of possible reaction in organic compounds in which sp 3 carbon is bonded to an electronegative atom or group (ex, halides) 1. Substitution

More information

deactivation or decomposition is therefore quantified using the turnover number.

deactivation or decomposition is therefore quantified using the turnover number. A catalyst may be defined by two important criteria related to its stability and efficiency. Name both of these criteria and describe how they are defined with respect to stability or efficiency. A catalyst

More information

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0 1. (a) rovide a reasonable mechanism for the following transformation. I S 2 C 3 C 3 ( 3 ) 2 2, CuI C 3 TMG, DMF 3 C 2 S TMG = Me 2 Me 2 ICu ( 3 ) 2 0 I S 2 C 3 S 2 C 3 Cu I 3 3 3 C 2 S I 3 3 3 C 2 S 3

More information

The following molecules are related:

The following molecules are related: Isolobal Analogy Inclusion of the ligand η-c 5 H 5 - which, as a donor of 3 π-electron pairs formally occupies 3 coordination sites, yields the analogies: The following molecules are related: 1 Isolobal

More information

Reaction Mechanisms - Ligand Substitutions. ML n-x P x + xl

Reaction Mechanisms - Ligand Substitutions. ML n-x P x + xl Reaction chanisms - igand Substitutions igand Substitutions 1 A substitution reaction is one in which an existing ligand on a metal center is replaced by another ligand. Exactly how this occurs depends

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

Chapter 9. Nucleophilic Substitution and ß-Elimination

Chapter 9. Nucleophilic Substitution and ß-Elimination Chapter 9 Nucleophilic Substitution and ß-Elimination Nucleophilic Substitution Nucleophile: From the Greek meaning nucleus loving. A molecule or ion that donates a pair of electrons to another atom or

More information

Transition Metal Chemistry

Transition Metal Chemistry Transition Metal Chemistry 2 2011.12.2 Ⅰ Fundamental Organometallic Reactions Following four reactions are important formal reaction patterns in organotransition metal complexes, which would conveniently

More information

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides hapter 11, Part 1: Polar substitution reactions involving alkyl halides Overview: The nature of alkyl halides and other groups with electrophilic sp 3 hybridized leads them to react with nucleophiles and

More information

1-What is substitution reaction? 2-What are can Nucleophilic Substitution Reaction? 3- SN1 reaction. 4-SN2 reaction 5- mechanisms of SN1&SN2

1-What is substitution reaction? 2-What are can Nucleophilic Substitution Reaction? 3- SN1 reaction. 4-SN2 reaction 5- mechanisms of SN1&SN2 1-What is substitution reaction? 2-What are can Nucleophilic Substitution eaction? 3- SN1 reaction. 4-SN2 reaction 5- mechanisms of SN1&SN2 1- SUBSTITUTION EACTIONS 1-Substitution eaction In this type

More information

BSc. II 3 rd Semester. Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1

BSc. II 3 rd Semester. Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1 BSc. II 3 rd Semester Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1 Introduction to Alkyl Halides Alkyl halides are organic molecules containing a halogen atom bonded to an

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants:

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants: An Overview of Organic Reactions Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants: 1. Addition (forward) Gain of atoms across a bond Example:

More information

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions hapter 15 eactions of Aromatic ompounds 1. Electrophilic Aromatic Substitution eactions v verall reaction reated by Professor William Tam & Dr. Phillis hang opyright S 3 2 S 4 S 3 2. A General Mechanism

More information

7. Haloalkanes (text )

7. Haloalkanes (text ) 2009, Department of hemistry, The University of Western Ontario 7.1 7. aloalkanes (text 7.1 7.10) A. Structure and Nomenclature Like hydrogen, the halogens have a valence of one. Thus, a halogen atom can

More information

Chapter 8: Nucleophilic Substitution 8.1: Functional Group Transformation By Nucleophilic Substitution

Chapter 8: Nucleophilic Substitution 8.1: Functional Group Transformation By Nucleophilic Substitution hapter 8: Nucleophilic Substitution 8.1: Functional Group Transformation By Nucleophilic Substitution Nu: = l,, I Nu - Nucleophiles are Lewis bases (electron-pair donor) Nucleophiles are often negatively

More information

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122) Basic Organic Chemistry Course code : CHEM 12162 (Pre-requisites : CHEM 11122) Chapter 01 Mechanistic Aspects of S N2,S N1, E 2 & E 1 Reactions Dr. Dinesh R. Pandithavidana Office: B1 222/3 Phone: (+94)777-745-720

More information

Chapter 21 Coordination chemistry: reactions of complexes

Chapter 21 Coordination chemistry: reactions of complexes CHEM 511 chapter 21 page 1 of 7 Chapter 21 Coordination chemistry: reactions of complexes Reactions of Complexes Typically measure ligand substitution reactions in solution (usually water) Lability and

More information

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1 Asymmetric Palladium Catalyzed Cross-Coupling Reactions Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1 Palladium Catalyzed Cross-Coupling Reactions 2 Kumada/Negishi Cross-Coupling Kumada:

More information

Chapter 11: Nucleophilic Substitution and Elimination Walden Inversion

Chapter 11: Nucleophilic Substitution and Elimination Walden Inversion hapter 11: Nucleophilic Substitution and Elimination Walden Inversion (S)-(-) Malic acid [a] D = -2.3 Ag 2, 2 Pl 5 l Ag 2, 2 ()-2-hlorosuccinic acid l (-)-2-hlorosuccinic acid Pl 5 ()-() Malic acid [a]

More information

Three Type Of Carbene Complexes

Three Type Of Carbene Complexes Three Type f arbene omplexes arbene complexes have formal metal-to-carbon double bonds. Several types are known. The reactivity of the carbene and how it contributes to the overall electron counting is

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-8 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. Organometallic hemistry yclopentadienyl, Alkyl and Alkene yclopentadienyl p The cyclopentadienyl ligand

More information

Chem 263 Nov 3, 2016

Chem 263 Nov 3, 2016 hem 263 Nov 3, 2016 Preparation of Aldehydes from Acid alides? + l l acid chloride aka acyl chloride aldehyde Needed: 2 Actual eagents: 2 /Pd Al This is lithium tri-t-butoxy aluminum hydride, a very sterically

More information

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA Chapter 5 Nucleophilic aliphatic substitution mechanism by G.DEEPA 1 Introduction The polarity of a carbon halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

Recapping where we are so far

Recapping where we are so far Recapping where we are so far Valence bond constructions, valence, valence electron counting, formal charges, etc Equivalent neutral classification and MLX plots Basic concepts for mechanism and kinetics

More information

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6 Chem 634 Introduction to Transition etal Catalysis eading: eg Ch 1 2 CS-B 7.1, 8.2 8.3, 11.3 Grossman Ch 6 Announcements Problem Set 1 due Thurs, 9/24 at beginning of class ffice our: Wed, 10:30-12, 220

More information

Chem 263 Notes March 2, 2006

Chem 263 Notes March 2, 2006 Chem 263 Notes March 2, 2006 Average for the midterm is 102.5 / 150 (approx. 68%). Preparation of Aldehydes and Ketones There are several methods to prepare aldehydes and ketones. We will only deal with

More information

Reductive Elimination

Reductive Elimination Reductive Elimination Reductive elimination, the reverse of oxidative addition, is most often seen in higher oxidation states because the formal oxidation state of the metal is reduced by two units in

More information

11, Inorganic Chemistry III (Metal π-complexes and Metal Clusters) Module 31: Preparation and reactions of metal clusters

11, Inorganic Chemistry III (Metal π-complexes and Metal Clusters) Module 31: Preparation and reactions of metal clusters 1 Subject Paper No and Title Module No and Title Module Tag Chemistry 11, Inorganic Chemistry III (Metal π-complexes and Module 31: Preparation and reactions of metal clusters CHE_P11_M31 2 TABLE OF CONTENTS

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles

π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles M Transition metal alkene complexes The report in 1825 by William

More information

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H adical eactions adical Stability!!! bond dissociation energies X Y X Y bond BDE (kcal/mol) bond BDE (kcal/mol) C 3 104 108 C 3 C 2 98 110 95 2 C 102 (-) 93 (C-) 92 C 3 C 3 36 89 85 C 3 C 3 80 adical eactions

More information

Substitution and Elimination reactions

Substitution and Elimination reactions PART 3 Substitution and Elimination reactions Chapter 8. Substitution reactions of RX 9. Elimination reactions of RX 10. Substit n/elimin n of other comp ds 11. Organometallic comp ds 12. Radical reactions

More information

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry A. Loupy, B.Tchoubar Salt Effects in Organic and Organometallic Chemistry 1 Introduction - Classification of Specific Salt Effects 1 1.1 Specific Salt Effects Involving the Salt's Lewis Acid or Base Character

More information

Loudon Chapter 18 Review: Vinyl/Aryl Reactivity Jacquie Richardson, CU Boulder Last updated 2/21/2016

Loudon Chapter 18 Review: Vinyl/Aryl Reactivity Jacquie Richardson, CU Boulder Last updated 2/21/2016 Chapter 18 covers leaving groups that are directly attached to double-bonded sp 2 carbons. These molecules don t do most of the regular alkyl halide chemistry from Ch. 9 (S N1/ S N2/E1), but they can do

More information

8.8 Unimolecular Nucleophilic Substitution S N 1

8.8 Unimolecular Nucleophilic Substitution S N 1 8.8 Unimolecular Nucleophilic Substitution S N 1 A question. Tertiary alkyl halides are very unreactive in substitutions that proceed by the S N 2 mechanism. Do they undergo nucleophilic substitution at

More information

Elimination Reactions Heating an alkyl halide with a strong base causes elimination of a. molecule of HX

Elimination Reactions Heating an alkyl halide with a strong base causes elimination of a. molecule of HX Elimination eactions eating an alkyl halide with a strong base causes elimination of a molecule of X 1. Potassium hydroxide dissolved in ethanol and the sodium salts of alcohols (such as sodium ethoxide)

More information

Classes of Halides. Chapter 6 Alkyl Halides: Nucleophilic Substitution and Elimination. Polarity and Reactivity. Classes of Alkyl Halides

Classes of Halides. Chapter 6 Alkyl Halides: Nucleophilic Substitution and Elimination. Polarity and Reactivity. Classes of Alkyl Halides rganic hemistry, 5 th Edition L. G. Wade, Jr. hapter 6 Alkyl alides: Nucleophilic Substitution and Elimination lasses of alides Alkyl: alogen, X, is directly bonded to sp 3 carbon. Vinyl: X is bonded to

More information

Organic Reactions Susbstitution S N. Dr. Sapna Gupta

Organic Reactions Susbstitution S N. Dr. Sapna Gupta Organic Reactions Susbstitution S N 2 Dr. Sapna Gupta Kinetics of Nucleophilic Reaction Rate law is order of reaction 0 order is when rate of reaction is unaffected by change in concentration of the reactants

More information

Ligand Substitution Reactivity of Coordinated Ligands

Ligand Substitution Reactivity of Coordinated Ligands Reactivity of Coordinated Ligands 2 C 2 H 4 (0) + H + + + 2 2 e (Cu 2 Cu) H CH 3 CH H "βh elim" ins βh elim H Peter H.M. Budzelaar Why care about substitution? Basic premise about metalcatalyzed reactions:

More information

CHEM 344 Organometallic Chemistry Practice Problems (not for credit)

CHEM 344 Organometallic Chemistry Practice Problems (not for credit) CHEM 344 Organometallic Chemistry Practice Problems (not for credit) Name (print): TA name (print): 1) Careful choice of solvent is essential for the successful generation and reaction of a Grignard reagent.

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N6 Kashiwa Campus, November 27, 2009 Group VIB: Cr, Mo, W -Oxidation states from -2 to +6 -While +2 and +3 for Cr are quite

More information

Organometallic Catalysis

Organometallic Catalysis Organometallic Catalysis The catalysts we will study are termed homogeneous catalysts as they are dissolved in th e same solvent as the substrate. In contrast, heterogeneous catalysts, such as palladium

More information

Learning Guide for Chapter 17 - Dienes

Learning Guide for Chapter 17 - Dienes Learning Guide for Chapter 17 - Dienes I. Isolated, conjugated, and cumulated dienes II. Reactions involving allylic cations or radicals III. Diels-Alder Reactions IV. Aromaticity I. Isolated, Conjugated,

More information

Inorganic Chemistry Year 3

Inorganic Chemistry Year 3 Inorganic Chemistry Year 3 Transition Metal Catalysis Eighteen Electron Rule 1.Get the number of the group that the metal is in (this will be the number of d electrons) 2.Add to this the charge 1.Negative

More information

Hydrogen iodide is a strong acid and will drive the reverse reaction, meaning the forward reaction will not occur.

Hydrogen iodide is a strong acid and will drive the reverse reaction, meaning the forward reaction will not occur. EM 261 Oct 18, 2018 Photosynthesis and Related Reactions O 2 2 O 6 12 O 6 2 O N 3, S, Fe, u, o, other Natural Products D-Glucose R O R OR Ionic substitution S N 1 & R X X 2 hv Petroleum/ Alkanes R N 2

More information

4 - BENZENE: AROMATICITY, CONJUGATION AND ASSOCIATED REACTIVITY

4 - BENZENE: AROMATICITY, CONJUGATION AND ASSOCIATED REACTIVITY 4 - BENZENE: AROMATICITY, CONJUGATION AND ASSOCIATED REACTIVITY During the early 1800's, a group of compounds of natural origin became collectively known as aromatic compounds. As several of these compounds

More information

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course:

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course: hem 263 Nov 7, 2013 Preparation of Ketones and Aldehydes from Alcohols xidation of Alcohols [] must have at least 1 E elimination reaction [] = oxidation; removal of electrons [] = reduction; addition

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 15 Apr 11: Substitution Reactions and the Trans Effect

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 15 Apr 11: Substitution Reactions and the Trans Effect 5.03, Inorganic Chemistry Prof. Daniel G. ocera Lecture 15 Apr 11: Substitution Reactions and the Trans Effect A substitution reaction is one in which an existing ligand on a metal center is replaced by

More information

Organometallics Study Meeting Part 4. Reactions of Organometallic Complexes

Organometallics Study Meeting Part 4. Reactions of Organometallic Complexes rganometallics Study eeting art 4. eactions of rganometallic Complexes 1. asics 2011/4/28 oshino(d1).10 1-1. igand Exchange Dissosiative echanism ' n n-1 ' n-1 Fe(C) 5 (18e):hoto-promoteddissociationofigand

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones hapter 20: Aldehydes and Ketones [hapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ketone ' aldehyde 2. eview of the Synthesis of Aldehydes and Ketones Br Br f

More information

Sonogashira: in situ, metal assisted deprotonation

Sonogashira: in situ, metal assisted deprotonation M.C. White, Chem 253 Cross-Coupling -120- Week of ctober 11, 2004 Sonogashira: in situ, metal assisted deprotonation catalytic cycle: ' (h 3 ) n d II The first report: h Sonogashira T 1975 (50) 4467. h

More information

Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction

Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction Nucleophilic substitution and base induced elimination are among most widely occurring and versatile reaction types in organic

More information

acetaldehyde (ethanal)

acetaldehyde (ethanal) hem 263 Nov 2, 2010 Preparation of Ketones and Aldehydes from Alkenes zonolysis 1. 3 2. Zn acetone 1. 3 2. Zn acetone acetaldehyde (ethanal) Mechanism: 3 3 3 + - oncerted reaction 3 3 3 + ozonide (explosive)

More information

Nucleophilic Substitution and Elimination

Nucleophilic Substitution and Elimination Nucleophilic Substitution and Elimination Alkyl halides react with a nucleophile in one of two ways. Either they eliminate an X to form an alkene, or they undergo a substitution with the nucleophile, Nu,

More information

Some Arrow-Pushing Guidelines (Section 1.14) 1. Arrows follow electron movement.

Some Arrow-Pushing Guidelines (Section 1.14) 1. Arrows follow electron movement. Chem 350 Jasperse Ch. 1 Notes 1 Note: The headers and associated chapters don t actually jive with the textbook we are using this summer. But otherwise this highlights a lot of the chemistry from Organic

More information

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid Revision Hybridisation -The valence electrons of a Carbon atom sit in 1s 2 2s 2 2p 2 orbitals that are different in energy. It has 2 x 2s electrons + 2 x 2p electrons are available to form 4 covalent bonds.

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

Chapter 8: Alkene Structure and Preparation via Elimination Reactions

Chapter 8: Alkene Structure and Preparation via Elimination Reactions 1. Nature of the pi bond Chapter 8: Alkene Structure and Preparation via Elimination eactions [Sections: 8.1-8.13] C C bond length bond strength 3 C C 3 3 C C 3 3 C C 3 3 C 2 C C 2 3 C a C=C double bond

More information

Kinetics and reaction mechanisms in coordination compounds

Kinetics and reaction mechanisms in coordination compounds Kinetics and reaction mechanisms in coordination compounds Square planar complexes Three pathways by which one ligand can replace another Nucleophilic substitutions in square planar complexes (with Y being

More information

Chapter 8: Alkene Structure and Preparation via Elimination Reactions

Chapter 8: Alkene Structure and Preparation via Elimination Reactions Nature of the pi bond Chapter 8: Alkene Structure and Preparation via Elimination eactions [Sections: 8.1-8.13] C C 3 C C 3 bond length bond strength 2 C C 2 a C=C double bond is stronger than a C C single

More information

11. Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

11. Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations 11. Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations Based on McMurry s Organic Chemistry, 6 th edition 2003 Ronald Kluger Department of Chemistry University of Toronto Alkyl Halides

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N1 Kashiwa Campus, October 9, 2009 What compounds we can call organometallic compounds? Compounds containing direct metal-carbon

More information

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2018

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2018 OChem 1 Mechanism Flashcards Dr. Peter Norris, 2018 Mechanism Basics Chemical change involves bonds forming and breaking; a mechanism describes those changes using curved arrows to describe the electrons

More information

PAPER No. : 5; Organic Chemistry-II MODULE No. : 13; Mixed S N 1 and S N 2 Reactions

PAPER No. : 5; Organic Chemistry-II MODULE No. : 13; Mixed S N 1 and S N 2 Reactions Subject Chemistry Paper No and Title Module No and Title Module Tag 5; Organic Chemistry-II 13; Mixed S N 1 and S N 2 Reactions CHE_P5_M13 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Nature

More information

Substitution Reactions

Substitution Reactions Substitution Reactions Substitution reactions are reactions in which a nucleophile displaces an atom or group of atoms (the leaving group) from a tetrahedral carbon atom. onsider the following general

More information

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2015

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2015 OChem 1 Mechanism Flashcards Dr. Peter Norris, 2015 Mechanism Basics Chemical change involves bonds forming and breaking; a mechanism describes those changes using curved arrows to describe the electrons

More information

Reductive Elimination

Reductive Elimination Reductive Elimination Reductive elimination, the reverse of oxidative addition, is most often seen in higher oxidation states because the formal oxidation state of the metal is reduced by two units in

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones Chapter 20: Aldehydes and Ketones [Chapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ' ketone aldehyde f both aldehydes and ketones, the parent chain is the longest

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N2 Kashiwa ampus, October 16, 2009 Properties I. Nature of II. Nature of L II.a. Ligands with -atom attached to II.b. Ligands

More information

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH +

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH + omework problems hapters 6 and 7 1. Give the curved-arrow formalism for the following reaction: : 3 - : 2 : 3 2-3 3 2. In each of the following sets, arrange the compounds in order of decreasing pka and

More information

2311A and B Practice Problems to help Prepare for Final from Previous Marder Exams.

2311A and B Practice Problems to help Prepare for Final from Previous Marder Exams. 2311A and B Practice Problems to help Prepare for Final from Previous Marder Exams. Disclaimer.: Use only to help learn what you need to know and don t expect the final to be in the same form. 1 1. Short

More information

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7 Sevada Chamras, Ph.D. Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7 Description: Examples: 3 Major Types of Organic Halides: 1. Alkyl Halides: Chapter 6 (Part 1/2) : Alkyl

More information

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides"

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides" t Introduction" The polarity of a carbon-halogen bond leads to the carbon having a partial positive charge"

More information

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides Negishi Coupling of Secondary Alkylzinc alides with Aryl Bromides and Chlorides X X = Br, Cl 2 1 ZnBr 1, 2 = Alkyl Cat. Pd(OAc) 2 Ligand TF/Toluene rt or 60 o C 1 2 J. Am. Chem. Soc. 2009, ASAP Article

More information

Nucleophilic Addition Reactions of Carboxylic Acid Derivatives

Nucleophilic Addition Reactions of Carboxylic Acid Derivatives Lecture 5: bjectives: Nucleophilic Addition eactions of Carboxylic Acid Derivatives By the end of this lecture you will be able to: draw the mechanism of a nucleophilic addition-elimination reaction with

More information

5. Reactions of Alkenes (text )

5. Reactions of Alkenes (text ) 2009, Department of hemistry, The University of Western Ontario 5.1 5. Reactions of Alkenes (text 5.1 5.5) A. Addition Reactions In hapter 4, we saw that π bonds have electron density on two sides of the

More information

S N 1 Displacement Reactions

S N 1 Displacement Reactions S N 1 Displacement Reactions Tertiary alkyl halides cannot undergo S N 2 reactions because of the severe steric hindrance blocking a backside approach of the nucleophile. They can, however, react via an

More information

PAPER No. 05: TITLE: ORGANIC CHEMISTRY-II MODULE No. 12: TITLE: S N 1 Reactions

PAPER No. 05: TITLE: ORGANIC CHEMISTRY-II MODULE No. 12: TITLE: S N 1 Reactions Subject hemistry Paper o and Title Module o and Title Module Tag 05, ORGAI EMISTRY-II 12, S 1 Reactions E_P5_M12 EMISTRY PAPER o. 05: TITLE: ORGAI EMISTRY-II TABLE OF OTETS 1. Learning Outcomes 2. Introduction

More information

Ch.10 Alkyl Halides. Organic halides are valuable as industrial solvents, inhaled anesthetics in medicine, refrigerants, and pesticides.

Ch.10 Alkyl Halides. Organic halides are valuable as industrial solvents, inhaled anesthetics in medicine, refrigerants, and pesticides. Ch.10 Alkyl alides Organic halides are valuable as industrial solvents, inhaled anesthetics in medicine, refrigerants, and pesticides. F F C C F Trichloroethylene (a solvent) alothane (an inhaled anesthetic)

More information

Organometallic Reagents

Organometallic Reagents Making - bonds rganometallic eagents [hapter 3 Section 3.4; http://ochem.jsd.claremont.edu/tutorials.htm#] alletrin I (aid ) creating - bonds allows for making larger organic molecules from smaller molecules

More information

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction Lecture Notes Chem 51C S. King Chapter 20 Introduction to Carbonyl Chemistry; rganometallic Reagents; xidation & Reduction I. The Reactivity of Carbonyl Compounds The carbonyl group is an extremely important

More information

C h a p t e r S e v e n : Substitution Reactions S N 2 O H H H O H H. Br -

C h a p t e r S e v e n : Substitution Reactions S N 2 O H H H O H H. Br - C h a p t e r S e v e n : Substitution Reactions Br Br S N 2 CM 321: Summary of Important Concepts YConcepts for Chapter 7: Substitution Reactions I. Nomenclature of alkyl halides, R X A. Common name:

More information